

Present Day Forcing by Methane (CH₄)

Fiona M. O'Connor, Timothy Andrews, Omar Jamil, Ben Johnson, James Manners, and Jane Mulcahy

CRESCENDO Final General Assembly, 15 March 2021

Motivation (1)

- Better characterization of changes to the Earth's radiative budget since the preindustrial through co-ordinated experiments within RFMIP and AerChemMIP
- Use of the effective radiative forcing as the forcing metric of choice

ERF is easier to diagnose in global climate models and is more representative of the eventual temperature response

$$ERF = IRF + \sum_{i} A_{i}$$

Chung and Soden, Environ. Res. Lett., 2016.

Motivation (2)

Thornhill et al., Atmos. Chem. Phys. (2021)

- Sum of the tropospheric adjustments in all models are negative except UKESM1 – most likely due to the positive cloud adjustment in UKESM1
- To provide a process-based understanding of the positive cloud adjustment in UKESM1

Methane ERF Breakdown

Units: W m⁻²

Perturbation	NET	LW' _{cs}	SW' _{cs}	LW CRE'	SW CRE'	NET' _{CS}	NET CRE'
ΔCH_4	0.97	0.74	0.11	-0.39	0.50	0.85	0.12
	± 0.04	± 0.02	± 0.02	± 0.02	± 0.02	± 0.03	± 0.02

Change in CRE diagnosed as recommended in Ghan (2013)

Active Forcing Agents and/or Interactions	LW' _{cs}	SW' _{cs}	LW CRE'	SW CRE'	NET CRE'
CH4, O3, H2O,	0.74	0.11	-0.39	0.50	0.12
ARI, ACI	± 0.02	± 0.02	± 0.02	± 0.02	± 0.02
CH4, O3, H2O,	0.72	0.11	-0.38	0.25	-0.14
ARI	± 0.03	± 0.02	± 0.02	± 0.03	± 0.03

 Using additional paired simulations, the change in the CRE in UKESM1 is only positive when aerosol-cloud interactions are active

Sulphate Aerosol Formation

Schematic of sulphate aerosol formation in pre-industrial atmosphere

Stippling here indicates changes that are *not* significant at the 95% confidence level

Biogenic SOA Formation

Species	Simulation	Production (Tg/yr)		Loss (Burden	
		Primary	Secondary	Dry	Wet	(Tg)
ОМ	piClim- control	49.25 ± 0.01	38.24 ± 0.37	17.79 ± 0.14	69.35 ± 0.32	1.28 ± 0.02
	piClim-CH4	49.25 ± 0.01	38.35 ± 0.30	17.78 ± 0.12	69.46 ± 0.24	1.28 ± 0.02

Global mean SOA production unchanged despite less condensation onto nucleation & Aitken modes

Aerosol Response

Aitken mode no. concn.

Accum. mode no. concn.

Aerosol optical depth (AOD)

Stippling here indicates changes that are *not* significant at the 95% confidence level

Global mean changes in aerosol mass & AOD are near-zero, but aerosol size distribution changes

Aerosol & Cloud Response

- Little evidence that the positive cloud adjustment is dynamically-driven
- Local to regional changes in CRE correspond mainly with changes in cloud fraction
- The global mean CRE is ~0.12 Wm⁻² more positive: +ve SW outweighs –ve LW
- Cloud Droplet Number Concentration (CDNC) decline is making the SW CRE generally more positive

Conclusions

- Methane ERF from UKESM1 is one of the highest of the AerChemMIP models
- Partly due to the inclusion of tropospheric chemistry (e.g., O₃)
- Partly due to the tropospheric adjustments being positive (Cloud adjustment)

We find:

- Little evidence that the cloud adjustment in UKESM1 is dynamically-driven
- Positive cloud adjustment is aerosol-mediated
- Overall reduction in cloud fraction & the positive LW CRE outweighs the negative SW CRE
- Changes in SO₂ oxidation pathways lead to a reduction in nucleation, a shift in aerosol size distribution and a reduction in CDNC

O'Connor et al., J. Adv. Earth Sys. Modeling, In revision (2021)