# Supplementary Material for: Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP 

Jethro Browell and Matteo Fasiolo

## 1 Overview

This document provides additional materials that accompany "Probabilistic Forecasting of Regional Net-load with Conditional Extremes and Gridded NWP" by Browell and Fasiolo [1]. It provides descriptions of the R scripts and data files. The data includes Case Study dataset comprising net-load for the 14 regions of the GB electricity transmission system from 2014-2018, forecasts and evaluation results, and the code used to produce them. In addition, we provide an extended set of results to supplement and support those presented in the main paper.

## 2 Description of Code

The code used in this study is shared along with this document. Brief descriptions of the relevant files are provided here. Please also see comments in the scripts themselves. In addition to R packages available on CRAN, we have used ProbCast, a package developed by Jethro Browell and Ciaran Gilbert for probabilistic forecasting 2].

## 2.1 forecasting.R

Main script which reads in and prepares the dataset of net-load and weather forecasts, fits forecast models (including cross-validation and testing with rolling updates), calculates evaluation metrics and saves results. This script fits many models and as a result takes several days to run on a high performance laptop (Intel i7-7500U quad-core processor, 16GM RAM). Various speed-ups are possible, e.g. only fitting 'test' models, estimating models for fewer quantiles, and not calculating the PIT transformation of residuals. The data output by this script is provided so that forecasts can be examined without the need to run it and wait.

### 2.2 NodeForecasting_funcs.R

Additional functions called in forecasting.R. See comments in script.

## 2.3 evaluation. $R$

This scrips loads the forecasts and evaluation metrics calculated and saved by forecasting. R. It reproduces all of the figures and tables presented in the main paper and supplementary material.

## 3 Description of Data

The following data are provided to support reproduction of this research. Unfortunately, due to legal restrictions, is is not possible to share the raw components of net-load, i.e. the metered net-load at each Grid Supply Point. Following some basic leaning, we have aggregated the GSPs withing each Group, which we share here. Weather forecasts from ECWMF have been pre-processed as described in the main paper.

### 3.1 GSPGroup_NetD_v3_2.Rda

Table 1: List of columns/data fields in GSPGroup_NetD_v3_2.Rda. Additional features are created in forecasting. $R$, including lagged and interaction variables. Not all features were ultimately used in net-load forecasting models. For more details on NWP parameters, see the ECMWF Parameter Database

| Column Name | Description |
| :--- | :--- |
| issueTime | Base time for NWP, [posixct] |
| targetTime | Time stamp for forecast, [posixct] |
| var246_max_2 | 100 metre U wind component, maximum value |
| var246_min_2 | in $+/-2^{\circ}$ of GSP Group centre |
|  | 100 metre U wind component, minimum value |
| var246_mean_2 | in $+/-2^{\circ}$ of GSP Group centre |
|  | 100 metre U wind component, mean value in |
|  | $+/-2^{\circ}$ of GSP Group centre |
| var246_sd_2 | 100 metre U wind component, standard devi- |
|  | ation in $+/-2^{\circ}$ of GSP Group centre |
| var247_max_2 | 100 metre V wind component, maximum value |
|  | in $+/-2^{\circ}$ of GSP Group centre |
| var247_min_2 | 100 metre V wind component, minimum value |
|  | in $+/-2^{\circ}$ of GSP Group centre |
| var247_mean_2 | 100 metre V wind component, mean value in |
|  | $+/-2^{\circ}$ of GSP Group centre |


| var247_sd_2 | 100 metre V wind component, standard deviation in $+/-2^{\circ}$ of GSP Group centre |
| :---: | :---: |
| x10U_max_2 | 10 metre U wind component... |
| x10U_min_2 | ... |
| x10U_mean_2 | $\ldots$ |
| x10U_sd_2 | ... |
| x10V_max_2 | 10 metre V wind component... |
| x10V_min_2 | ... |
| x10V_mean_2 | ... |
| x10V_sd_2 | $\ldots$ |
| SSRD_max_2 | Surface solar radiation downwards... |
| SSRD_min_2 | ... |
| SSRD_mean_2 | $\ldots$ |
| SSRD_sd_2 | $\ldots$ |
| LCC_max_2 | Low cloud cover... |
| LCC_min_2 | $\ldots$ |
| LCC_mean_2 | $\ldots$ |
| LCC_sd_2 | $\ldots$ |
| MCC_max_2 | Medium cloud cover |
| MCC_min_2 | ... |
| MCC_mean_2 | $\ldots$ |
| MCC_sd_2 | $\ldots$ |
| HCC_max_2 | High cloud cover... |
| HCC_min_2 | ... |
| HCC_mean_2 | $\ldots$ |
| HCC_sd_2 | $\ldots$-. |
| x2T_weighted.mean_cell | 2 meter temperature, mean over precise GSP Group region |
| x2T_weighted.sd_cell | 2 meter temperature, standard deviation over precise GSP Group region |
| WindSpd100_weighted.mean_cell | 100 meter wind speed... |
| WindSpd100_weighted.sd_cell | .. |
| WindSpd10_weighted.mean_cell | 10 meter wind speed... |
| WindSpd10_weighted.sd_cell | ... |
| TP_weighted.mean_cell | Total precipitation... |
| TP_weighted.sd_cell | ... |
| SSRD_weighted.mean_cell | Surface solar radiatoin downwards... |
| SSRD_weighted.sd_cell | ... |
| LCC_weighted.mean_cell | Low cloud cover... |
| LCC_weighted.sd_cell | ... |
| MCC_weighted.mean_cell | Medium cloud cover... |
| MCC_weighted.sd_cell | ... |
| HCC_weighted.mean_cell | High cloud cover... |
| HCC_weighted.sd_cell | ... |
| x2T_weighted.mean_pcell | 2 meter temperature, mean weighted by population density in GSP Group region |

100 metre V wind component, standard deviation in $+/-2^{\circ}$ of GSP Group centre 10 metre U wind component...
...
10 metre V wind component...
...

Surface solar radiation downwards...
...

Low cloud cover...
...

Medium cloud cover
...

High cloud cover...
...

2 meter temperature, mean over precise GSP
Group region
2 meter temperature, standard deviation over
precise GSP Group region
100 meter wind speed...
10 meter wind speed...
Total precipitation...

Surface solar radiatoin downwards...

Low cloud cover...

Medium cloud cover...
High cloud cover...
2 meter temperature, mean weighted by pop-
ulation density in GSP Group region

| TP_weighted.mean_pcell | Total precipitation... <br> settlement_date |
| :--- | :--- |
| Settlement data (corresponding to GB Bal- |  |
| ancing Mechanism) |  |
| settlement_period | Settlement period (corresponding to GB Bal- |
| ancing Mechanism) |  |
| node | Net-load, agregation of GSP meters in a given |
| GSP Group [MWh] |  |
| targetTimeLondon | Local time |
| t | Time since 2014-01-01T00:00:00Z |
| dow | Day of the week [factor] |
| doy | Day of the year [numeric] |
| clock_hour | Hour of the day [numeric] |
| Date | Date [date] |
| type | Day type [factor] |
| hol_EW | Holiday in England and Wales [factor] |
| hol_Sc | Holiday in Scotland [factor] |
| type_simple | Day type grouped [factor] |
| node_sm | Smoothed net-load, 8 week rolling mean |
| kfold | Cross-validation fold |
| SolarCap | Embedded solar capacity in GSP Group |
| n2ex | Day-ahead electricity price from n2ex acution |
| EMBEDDED_WIND_CAPACITY | National (GB) embedded wind capacity |
| x2T_weighted.mean_p_max_point | 2 meter temperature at point of maximum |
|  | population density in GSP Group |
| TP_weighted.mean_p_max_point | Total precipitation at point of maximum pop- |
|  | ulation density in GSP Group |

### 3.2 Forecast data

A file is provided with forecast data for each of the five models named [model name] .Rda. Each file loads an R list object called NodeData_temp with entries detailed in the following table.

Table 2: Caption. *See ProbCast documentation for details.

| Element | Description |
| :---: | :---: |
| model_formula | Formula for deterministic model [formula] |
| model_formula_qr | Formula for linear quantile regression [formula] |
| gam_models | List of estimated models [list] |
| [GSPG] | Main modelling table, detailed in Table 3 [data.table] |
| [GSPG]_norm | Mean and standard deviation used to calculate node_n (z-score of net-load) [list] |
| [GSPG]_qr | Table of predictive quantiles from quantile regression, rows correspond to those in [GSPG] [MultiQR]* |
| [GSPG]_u | PIT transformed node_n using cGPD tails [numeric] |
| [GSPG]_u_sGPD | PIT transformed node_n using sGPD tails [numeric] |
| [GSPG]_u_QR | PIT transformed node_n using quantile regression and interpolation |
| [GSPG]_evtails | Specification* of $\alpha_{L}$ and $\alpha_{R}$ [list] |
| tail_parama_[GSPG] | Parameters* for interpolating quantile regression to form full predictive CDF [list] |

Table 3: List of columns/data fields in main modelling table for each GSP Group.

| Column Name | Description |
| :---: | :---: |
| issueTime | Base time for NWP, [posixct] |
| targetTime | Time stamp for forecast, [posixct] |
| node | Net-load [numeric, MWh] |
| node_n | Net-load [numeric, standardised/z-score] |
| WindSpd100_weighted.mean_cell | Wind speed 100 m above ground, spatial mean over region [numeric, $\mathrm{m} / \mathrm{s}$ ] |
| SSRD_weighted.mean_cell | Surface Solar Radiation Downwards, spatial mean over region [numeric, w/m2] |
| clock_hour | hour of the day in local time, i.e. Europe/London [numeric] |
| kfold | Indicator for cross-validation fold (1, 2, 3, or Test) [factor] |
| BadData | Flag for bad data which is excluded from all analysis [Boolean] |
| gam_pred | Deterministic forecast of node_n, out-ofsample by virtue of either cross-validation or being in Test data [numeric] |
| tail_l_resid | Residuals for peaks-over-threshold fitting of left tail GPDs, i.e. $q_{\alpha_{L}}-$ node_n [numeric] |
| tail_r_resid | Residuals for peaks-over-threshold fitting of right tail GPDs, i.e. node_n $-q_{\alpha_{R}}$ [numeric] |
| gpd_scale_l0 | Scale parameter for left tail static GPD, out-of-sample (OOS) by virtue of either crossvalidation or being in Test data [numeric] |
| gpd_shape_10 | Shape parameter for left tail static GPD, OOS as above [numeric] |
| gpd_scale_r0 | Scale parameter for right tail static GPD, OOS as above [numeric] |
| gpd_shape_r0 | Shape parameter for right tail static GPD, OOS as above [numeric] |
| gpd_scale_l | Scale parameter for left tail conditional GPD, OOS as above [numeric] |
| gpd_shape_l | Shape parameter for left tail conditional GPD, OOS as above [numeric] |
| gpd_scale_r | Scale parameter for right tail conditional GPD, OOS as above [numeric] |
| gpd_shape_r | Shape parameter for right tail conditional GPD, OOS as above [numeric] |

### 3.3 Evaluation.Rda

A file containing a data.table of forecast evaluation results. Metrics are provided by quantile, model (Vanilla-Point, GAM-Grid etc) and tail model (QR, sGPD, CGP) where appropriate.

### 3.4 School_Hols_v1.Rda

A file containing estimates of school holidays in Great Britain 2014-2018. These can vary between local authority and are only estimated here based on those which provide machine-readable tables and manual entry for regions with little or no data.

## 4 Additional Results

An expanded set of results is presented here covering all metrics and visualisations of which only a subset fit in the main paper.

### 4.1 Deterministic Forecasts Error



Figure 1: Mean Absolute Error (MAE) for each model, GSP Group, and crossvalidation fold (1, 2, 3 and Test) in original units of MWh per half-hour settlement period. GAM-Point is not always visible because it is covered by GAMGrid.


Figure 2: Mean Absolute Error (MAE) for each model, GSP Group and crossvalidation fold (1, 2, 3 and Test) in standardised units (data transformed to z-score).

### 4.2 Pinball Loss



Figure 3: Pinball Loss for each model, GSP Group, and quantile in standardised units (data transformed to z-score). Average across all cross-validation folds.


Figure 4: Pinball Loss for each model, GSP Group, and quantile in standardised units (data transformed to z-score). Test period.


Figure 5: Pinball Loss Skill Score for GAM-Point relative to Vanilla-Point for each GSP Group, quantile and cross-validation fold (1, 2, 3 and Test).


$$
\begin{aligned}
& \rightarrow \mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{G} \rightarrow \mathrm{~K} \rightarrow \mathrm{~N} \\
& \text { GSP Group } \rightarrow \mathrm{B} \rightarrow \mathrm{E} \rightarrow \mathrm{H} \rightarrow \mathrm{~L} \rightarrow \mathrm{P} \\
& \rightarrow \text { C } \rightarrow \mathrm{F} \rightarrow \mathrm{~J} \rightarrow \mathrm{M}
\end{aligned}
$$

Figure 6: Pinball Loss Skill Score for GAM-Grid relative to GAM-Point for each GSP Group, quantile and cross-validation fold (1, 2, 3 and Test).

### 4.3 Reliability/Calibration



Figure 7: Reliability diagram for all models and GSP Groups from crossvalidation exercise.


$$
\begin{aligned}
& \rightarrow \mathrm{A} \rightarrow \mathrm{D} \rightarrow \mathrm{G} \rightarrow \mathrm{~K} \rightarrow \mathrm{~N} \\
& \text { GSP Group } \rightarrow \mathrm{B} \rightarrow \mathrm{E} \rightarrow \mathrm{H} \rightarrow \mathrm{~L} \rightarrow \mathrm{P} \\
& \rightarrow \mathrm{C} \rightarrow \mathrm{~F} \rightarrow \mathrm{~J} \rightarrow \mathrm{M}
\end{aligned}
$$

Figure 8: Quantile bias (deviation from nominal) for all models and GSP Groups from cross-validation exercise.


Figure 9: Reliability diagram for all models and GSP Groups on Test data.


Figure 10: Quantile bias (deviation from nominal) for all models and GSP Groups on Test data.

### 4.4 Sharpness



Figure 11: Sharpness diagrams for all models and GSP Groups for crossvalidation exercises.


Figure 12: Sharpness diagrams for GAM-Grid and all tail models and GSP Groups for cross-validation exercises.


Figure 13: Sharpness diagrams for all models and GSP Groups on Test data.


Figure 14: Sharpness diagrams for GAM-Grid and all tail models and GSP Groups on Test data.

## References

[1] J. Browell and M. Fasiolo, "Probabilistic forecasting of regional net-load with conditional extremes and gridded NWP," IEEE Transactions on Smart Grid, 2021, (submitted).
[2] J. Browell and C. Gilbert, "ProbCast: Open-source production, evaluation and visualisation of probabilistic forecasts," in Probabilistic Methods Applied to Power Systems Conference, 2020.

