
FAIMS 3
ELABORATION
REPORT
DESIGN TECHNOLOGIES FOR 2021-2022
THE MOBILE APP DEVELOPMENT CYCLE

For Technical Advisory Group &
Steering Committee

License Creative Commons 4.0 International - With Attribution

Contact Brian Ballsun-Stanton
<brian@faims.edu.au>

Version 1.0.0-SC

DOI 10.5281/zenodo.4616766

Authors Brian Ballsun-Stanton
Rini Angreani
Steve Cassidy
Simon O’Toole
Nuria Lorente
Elizabeth Mannering

18 March 2021

Changelog

1.0.0-SC 2021-02-25 Typesetting in LATEX
0.9.0-SC 2021-02-18 Report with comments to Shawn Ross for advancement to steering

committee.
0.2.0-TAG 2021-02-12 Adding feedback from emails
0.1.0-TAG 2020-12-17 Final typesetting and release to the Technical Advisory Group
0.0.5 2020-12-16 Edit by BBS
0.0.4 2020-12-15 Edit by Shawn Ross (versioned named before edit)
0.0.3 2020-12-09 First edit by BBS
0.0.2 2020-12-03 Release to dev team, Update QA work division wording, Updates on

framework/platform choices, SC and BBS discussed frameworks and
JSON Forms choices.

0.0.1 2020-11-26 Initial composition

This document is licensed under Creative Commons 4.0 International - With Attribution

Copyright 2021 Macquarie University.

This document was typeset with LATEX.

Macquarie University NSW 2109

Australia

E: info@faims.edu.au

W: faims.edu.au

ABN 90 952 801 237

CRICOS Provider 00002J

Macquarie University CC-BY 2

Contents
1 Design objectives 4

2 Technologies 5

2.1 Programming language and datastore . 5

2.1.1 Programming language . 6

2.1.2 Datastore . 6

2.2 Framework, essential packages, and toolchain. 6

2.2.1 Framework . 6

2.2.2 Packages and native runtimes . 7

2.3 Application Programming Interfaces (APIs) . 10

2.3.1 Datastore access . 10

2.3.2 Application API . 10

2.3.3 ‘Round trip’ functionality . 11

2.3.4 Data exporters . 11

2.4 DevOps, QA, CI/CD . 11

2.4.1 DevOps Philosophy . 11

2.4.2 Quality assurance . 12

2.4.3 CI/CD Pipeline . 13

3 Non-elaborated functionality 14

3.1 Anticipated but untested functionality . 14

3.2 Functionality not yet elaborated . 14

4 Team Composition and Development Plans 16

5 Future Decisions 17

5.1 Dependency hell is a place . 17

5.2 GIS Features . 17

5.3 The Round Trip Problem. 17

5.4 External Partner Support . 17

6 Technical Advisory Group Comments and Responses 20

Macquarie University CC-BY 3

1 Design objectives
FAIMS3 is a ground-up rewrite of the FAIMS Mobile (v2.6) offline-capable, geospatial, multimedia,
field-data collection application (Ballsun-Stanton et al. 2018). This rewrite is designed to be multi-
platform, maintainable, and to support data collection at a citizen-science scale. The code and plat-
form should last for at least five years, assuming regular maintenance.

These are difficult objectives.

Our memorandum of understanding with the developers lists the following intended capacities:

• Replicate all FAIMS v2.6 features that are currently used as part of three projects’ research
practice: CSIRO environmental geochemistry, LTU Mungo Lakes archaeology, and UNSW Oral
History.

• Allow self-service customisation and deployment via a web application without needing FAIMS
team intervention for the vast majority of deployments.

• Operate cross-platform, running the same code on Android, iOS, and ‘desktop’.
• Allow data ‘round trip’ to web and desktop applications. Round-trip, aspirationally, can be con-
sidered as data captured in-field, edited externally, then returned to the device in editable for-
mat.

• Improved scalability and performance. Our target is ten times the number of records per de-
ployment compared to v2.6 plus server-to-server synchronisation.

Pragmatically, we had to balance these objectives against available skills, the costs of retraining/hir-
ing, development budgets/timelines, and future maintainability. During elaboration, we had several
objectives:

1. Try to quickly falsify technologies to rule-out unsuitable ones;
2. Build a team – determine patterns of communication, management, and capabilities;
3. Explore where we needed to take on technical debt, what developmental affordances were

supported by our choices, what external dependencies will be a worthwhile tradeoff between
time saved versus external support risk, andwherewewill have to rebuild components because
external support was insufficient;

4. Explore the technologies needed to support development and make a persuasive case for
DevOps choices;

5. Produce elaboration outputs that indicate the feasibility of our desired development; and
6. Elicit feedback from the project community to provide an external perspective that can catch

errors and suggest improvements.

Macquarie University CC-BY 4

https://github.com/FAIMS

2 Technologies

2.1 Programming language and datastore

Language-wise, our primary inquiry compared the modern Javascript app development ecosystem
versus promoted languages like Google’s Dart. Javascript has advanced significantly over the years,
moving from a browser-based web-scripting language to a modern, fully fledged programming lan-
guage capable of managing front-end experience and back-end business logic. Dart, on the other
hand, is a recently designed, purpose-built language fromGoogle that assessors found persuasive in
the FAIMS submission to the DataApp Challenge competition as a ‘well-supported native-code com-
pilation framework’ (Bureau of Reclamation 2017). While Dart compiles to Javascript or native-code
application, none of the proposed programming team has experience with the language.

Initial inspection, unfortunately, was enough to discount Dart. While Node.JS has excellent offline
NoSQL support with Apache’s PouchDB, and server-side synchronisation with CouchDB, no similarly
mature packages exist for Dart. We also found no persuasive mapping packages. Dart is certainly
a viable tool for standard web applications built using a modern client-server or online serverless
environment. However, its design priorities and library support do not emphasise multi-OS, geospa-
tial, offline capabilities. Furthermore, Dart’s library environment is less mature than Node.JS. This
lack-of-maturity for offline and geospatial support, combined with Google’s proclivity to abandon
underperforming projects, argued against Dart.

We also had to decide between writing native applications versus making a pure Javascript webapp.
Native applications in Java, Objective-C, and a language appropriate for desktop provide lower-level
access to operating systems, sensors, and device capabilities in exchange for a tripled programming
load. At the other end of the spectrum, we could pursue a pure-browser progressive web application
approach, offering a seamless multi-platform experience in the browser. We chose neither of these
routes. On one hand, we could not deploy a pure progressive web application that runs only in a
browser since we had to access device capabilities that are carefully and appropriately isolated from
the browser. On the other, we chose not to deploy a purely native application due to the expense
of development without a compelling need for the performance gains offered by low-level operating
system access.

We chose themiddle route: wrapping a progressive Javascript ‘single page application’ in native code.
That way, we can ‘deploy an app’ (native code) to all platforms (AppStore, Google Play, Microsoft Store)
but written in Javascript and shipped with enough webbrowser-like code so that it acts and appears
as a normal application on someone’s mobile or desktop device. This approach, deploying ‘native
progressive webapps’ is an extremely common programming practice for those projects needing to
deliver amultiplatform experience without the ability to support three ormore distinct programming
teams.

Macquarie University CC-BY 5

https://en.wikipedia.org/wiki/Single-page_application

2.1.1 Programming language

We will use ECMAScript 6, known as Javascript, with JSX code extensions. This choice was primarily
motivated by the React framework and ecosystem – though we are still investigating the need for a
framework like React at all. We will be using Node.JS v14 for Alpha development as it is the current
LTS release. It will reach end-of-life on 2023-04-30. If possible, we will try a version upgrade to v16 as
early as possible to extend EOL to 2024. We recognise that these short ‘long-term service’ releases
will impose substantial maintenance – but as we plan for a yearly maintenance cycle to allow testing
and ensure support for major Android and Apple releases, bumping and testing the node version
will be part of that plan. Furthermore, we anticipate a need for more frequent security releases due
to the enormous complexity of the Node.JS package ecosystem.

All base components of FAIMS3 developed by us will be written in Javascript: the application, the
module designer, and whatever supporting server infrastructure is required. There may also be a
need for OS specific plugins to support specific functionality, though we will try to avoid this exigency
whenever possible.

2.1.2 Datastore

We have chosen to use the CouchDB document store as our fundamental database. It is a robust
multi-master document store designed to deal with intermittent connectivity and opportunistic syn-
chronisation. It is ACID-compliant and supports integral document versioning implying support for
a version-history similar to that of FAIMS2.6. It also has a stronger focus on mobile application sup-
port via PouchDB. Finally, the Apache License used for CouchDB and PouchDB is more permissive
than the viral AGPL. We have therefore chosen the robust and mature pair of CouchDB 3 / PouchDB
7 as the FAIMS3 datastore. Elaboration experiments with these DBMSes in React and React-Native
have proven satisfactory. We hope to be using GeoCouch as a spatial index addon for CouchDB and
GeoPouch as its local complement but both GeoCouch and GeoPouch are aging projects that do
not have current updates. While there is legitimate concern around GIS performance, we have not
investigated implementation options for the specific geospatial functionality and tradeoffs needed
for our target users and their modules.

2.2 Framework, essential packages, and toolchain

2.2.1 Framework

We are not yet convinced that we want to take on the technical debt of the React framework. How-
ever, we have investigated React and React Native, and we undertook preliminary investigations of
Ionic and Vue. As a result, if we do use a framework, it will be React 17. React 17 supports gradual
upgrades and, considering the current developer-base of the framework, it will still be in use in 2025.

Macquarie University CC-BY 6

https://nodejs.org/en/about/releases/
https://nodejs.org/en/about/releases/
https://docs.couchdb.org/en/stable/api/database/misc.html#db-revs-diff
https://dba.stackexchange.com/a/248675
https://severalnines.com/database-blog/battle-nosql-databases-comparing-mongodb-and-couchdb
https://severalnines.com/database-blog/battle-nosql-databases-comparing-mongodb-and-couchdb
https://pouchdb.com/
https://db-engines.com/en/system/CouchDB%3BMongoDB%3BPouchDB
https://reactjs.org/docs/faq-versioning.html

The choice of React is driven by the experience the team has with it and the lack of clear differentia-
tors with Vue. We did not investigate Angular due to the expert advice of our programmer who is
involved in a complex and entailed migration away from Angular.

The main alternative to using React would be to use a collection of more limited frameworks for
specific tasks such as building web components, producing page layout, etc. The main advantage of
this approach would be reduction of overall project dependencies, but we currently believe that the
value of React outweighs its concomitant dependency risks.

One of our elaboration exercises was exploring React Native. React Native did not present the same
capabilities as React in terms of its supported packages and is not yet at a stable release. Due to
its relative immaturity and lack of compelling advantages over React, we chose not to explore React
Native further.

We also chose not to explore the Ionic framework. While it does have some useful upgrades for
Capacitor, discussed in the next section, the features offered in either its open source or enterprise
versions were not required during elaboration. During development, however, if one of those Ionic
plugins for Capacitor are needed, wewould need tomake a judgement call about including thewhole
Ionic framework.

2.2.2 Packages and native runtimes

Compiling to Native runtimes

Our cross-platform commitment requires systems able to compile to Apple and Android native run-
times, as well as building to Electron’s native desktop wrappers and a Progressive Web Application
for pure web browser support. We investigated Apache Cordova, Ionic’s Capacitor, and Facebook’s
React Native for this purpose. React Native did not offer compelling advantages for our use-case, and
increased development friction. React Native’s plugin ecosystem also appears weaker compared to
the first-class support from Ionic. While Cordova nee PhoneGap was initially our preferred native
runtime, it does not offer the same access to web APIs and native platform capabilities.

Ionic’s open source offering in this space is Capacitor. Capacitor, billed as the successor to Cordova,
compiles to a Native Progressive Web App, giving us the flexibility to include native code for OS-
specific features. Capacitor offers critical capacities required for feature delivery and performance.
Capacitor compiles its Javascript into platform-specific IDE builds which allow us to ‘add custom na-
tive code...without having to build a new plugin for it [and] provides better appmaintainability as new
mobile operating system versions are released’. This support for mobile operating system upgrade
and migration is critical to FAIMS3’s long-term sustainability and is a major benefit over Cordova for
this project.

Macquarie University CC-BY 7

https://github.com/FAIMS/faims3reactnative
https://ionicframework.com/blog/ask-a-lead-dev-react-native-or-ionic/
https://ionicframework.com/resources/articles/capacitor-vs-cordova-modern-hybrid-app-development
https://ionicframework.com/docs/reference/glossary
https://capacitorjs.com/docs/cordova
https://capacitorjs.com/docs/cordova

We investigated Ionic Enterprise due to their claims of ‘enterprise security updates’ and its Capacitor
enterprise plugins. We have, however, seen no compelling features in its enterprise support. If we
decide that JSON Forms, when implemented in detail, do not provide the schema support we require,
we will investigate Ionic again, since it offers some additional functionality in that regard.

JSON Forms

We are provisionally satisfiedwith the functionality of JSON Forms, which renders a JSON Schema as a
dynamic form. Although we have some concerns about its capacity to accommodate the complexity
we will ask of the system, we have not found a persuasive alternative for dynamic form rendering
based on a JSON schema. If JSON Forms fails, we will need to contribute to the package, fork it,
or build our own. This will be a significant but necessary expense, but one that would result in
downscoping other features.

The main shortcoming of JSON Forms arises from the JSON Schema standard itself, which does not
allow sub-typing (defining types as specialisations of other types). This lack of subtypes makes it
hard to extend the basic set of types to cover new kinds of input fields. For example, we would like
to have a library of predefined types like ‘GPS Location’ that could be used in any application. Two
things stop us. First, we cannot build a ’standard library’ of these custom subtypes in the style of the
FAIMS v2.6 autogenerator. Each JSON Schema would need to be entirely self-contained. Secondly,
even if we declared these subtypes in a schema, the declaration is not of an abstract type but of a full
form element. Having two or more GPS Locations in one form would either require them to have
the same ‘prompt’ (form label) or be defined as separate types (top-left-GPS-location, secondary-
GPS-location, etc). This constraint on custom fields means that we will need to extend the JSON
Schema to allow us to write appropriate specifications. Such development would also prevent use
of any existing JSON Form library in our application.

The JSON Schema is basically sound, but we need to build our own version that meets project re-
quirements. The architecture of the JSON Forms library is quite complex, as it handles multiple host
frameworks and multiple output rendering options. We can learn from and build upon the existing
library but we will need our own implementation. A major effort of alpha development will be to
design and build a sub-system that can instantiate appropriate forms from a JSON representation.

Leaflet

The other major avenue of investigation during elaboration was mapping / mobile GIS support. We
currently favour an approach using Leaflet, a Javascript tile-render. Leaflet supports many of the
features researchers used in FAIMS v2.x – raster maps, vector maps, dynamic points, vectors, and
rudimentary vector styling. It also utilises hardware acceleration on mobile devices, which should
result in a higher performance. We are investigating multiple offline modes for Leaflet, either with a

Macquarie University CC-BY 8

https://eclipsesource.com/blogs/2018/12/21/json-forms-goes-mobile-with-ionic/
https://jsonforms.io/
https://leafletjs.com/#features

global caching functionality or something like Leaflet Offline, another tradeoff between development
time and external dependencies. Since Leaflet is an open-source javascript project, however, it does
not present the same external library trap as Nutiteq (a proprietary mobile GIS) did for FAIMS v2.x.
Nutiteq locked us into a specific Android API and Sqlite version and then stopped supporting their
code. Because Leaflet does not dictate our datastore or ship with native code that we have to
incorporate into our application, it is much easier to switch it out later.

Geospatial storage has advanced significantly since our last elaboration in 2013 (when the only viable
option was Spatialite extensions to SQLite rendered via a mobile GIS). We will store GeoJSON in our
CouchDB document store. Hopefully, as discussed earlier, using the GeoCouch spatial extension to
allow for spatial queries to reduce rendering complexity. We do not anticipate building significant GIS
query capabilities into our fundamental datastore as those expensive features were underutilised by
clients in FAIMS v1.0-2.6. Instead, wewill rely on building that functionality into plugins when explicitly
required (and funded) by clients. A more modular design will also allow us to replace components
as they reach end-of-life without impacting the rest of the application.

However, other members of the FAIMS Leadership team have experience with Leaflet and geojson
and note that both have a ceiling when it comes to fast display of complex and large (10000+) geospa-
tial datasets. We do not plan to implement significant GIS functionality in the application, but being
able to visualise collected data is an essential requirement. Therefore, it is important that users be
able to visualise all the points they have collected on an open street map or satellite view as a mini-
mum basis for field usability. While some projects will need to collect more sophisticated GeoJSON
objects (lines, linestrings, and polygons), we anticipate that support for the collection of these objects
will happen in a later development cycle – not because the library does not support it, but because
the user interface needed to specify and interact with complex geometries will consume significant
development time and is not part of the three modules we are targeting as part of this development
cycle. However, all of the fundamental data structures support a more sophisticated mobile GIS –
which we develop with successive rounds of funding.

However, more projects will need to visualise external vector data. To increase GIS vector display
performance, we hope to use Leaflet.VectorGrid or Leaflet.VectorTileLayer as a way of precomputing
and rendering these vector tiles. However, we did not have enough built during elaboration to justify
significant exploration of GIS capabilities in this phase. As a development priority, however, we will
focus more on GIS performance than features.

Dynamic Plugin Architecture

Because we will be building a ‘progressive native web application’ written in Javascript, we will rely
heavily on a dynamic plugin architecture. As many aspects of the application as possible will ship
as plugins. This approach provides a modular structure that avoids vendor lock-in. It also supports

Macquarie University CC-BY 9

https://github.com/allartk/leaflet.offline
https://github.com/couchbase/geocouch
https://github.com/Leaflet/Leaflet.VectorGrid
https://leafletjs.com/plugins.html#vector-tiles

custom functionality required by clients without recompiling the application. We hope to be able to
havemodules load custom,module-specific, plugins downloaded froma central server. For example,
instead of compiling Zebra bluetooth printer support into the core FAIMS application, we hope to
load the necessary bluetooth-serial plugins dynamically when users request the CSIROmodule. This
will improve performance for modules that do not require the additional functionality and allow us
to more easily customise specific user experiences. Our intended plugin architecture will support
Javascript and webassembly.

We have not significantly elaborated on our plugin architecture. While there are indications that
Android and iOS support dynamic loading, there is no evidence that Capacitor integrates into these
specific native code features. We hope to also support Java (Android) and Swift (iOS) dynamic plugins,
but that hope is not currently explored in the literature.

Where possible, we will strongly prefer Javascript plugins for maintainability, although some tension
exists between Javascript and native binding-reliant elements. If we use dynamic, native-code plugins,
they will have to be transpiled into objective C and Java as needed. Only in the last resort will we
write new Objective C or Java. Managing these development time tradeoffs will be one of the major
factors of plugin versus core functionality.

2.3 Application Programming Interfaces (APIs)

One of the limiting factors of FAIMS 2.6 was the lack of interoperability with external programs, re-
quiring dedicated on-server ‘exporters’ to transformmodule data and produce files compatible with
spreadsheets, ArcGIS, and Google Earth. FAIMS 3 will instead support a modern API for data ex-
change and other interactions.

2.3.1 Datastore access

A highly normalised, append-only relational database was required in FAIMS v1.0-2.6 to support pro-
found customisation and robust versioning, but it made data export difficult and data import nearly
impossible. In FAIMS 3.0, we will open our data to external services. We plan to use an unmodified
CouchDB instance as our server-side datastore. CouchDB uses well documented RESTful APIs to
create, read, update, and delete data. Therefore, most external interactions with our server do not
involve the mobile application; users only need to know how we store record ‘documents’ in the
database.

2.3.2 Application API

The FAIMS 3 application, however, should function both as a data collection app and a ’server,’ han-
dling module coordination and data synchronization within the same codebase. As a result, indi-

Macquarie University CC-BY 10

https://developer.android.com/guide/app-bundle/play-feature-delivery
https://theswiftdev.com/building-and-loading-dynamic-libraries-at-runtime-in-swift/
https://www.joshmorony.com/creating-a-local-capacitor-plugin-to-access-native-functionality-ios-swift/

vidual instances of the app will need to be able to communicate to each other: changes in data,
modifications in vocabularies, and sometimes even acting as a server, given an instance of the app
running inside a cloud virtual machine.

Thus, the FAIMS 3 app will support an API allowing module creation and access alongside data cre-
ation, reading, updating, and deleting. While access to the CouchDB datastore will be permitted,
some partners may prefer to engage with a single, consistent record-level API rather than imple-
menting record-parsing inside of their systems.

2.3.3 ‘Round trip’ functionality

At present, there are too many dependencies in any ‘round trip’ between FAIMS and data editing or
analysis software to decide on technology. Interaction with the Application API will likely be the basis
of any data ‘round trip’ with properly configured external programs. Our fallback is provision of a
tabular multi-record editable data view with interactive editing (i.e., something like a spreadsheet).
Libraries that can interact with ‘excel workbooks’ suggest the viability of this approach. Potential
integration with desktop applications and existing online services requires further exploration.

There are also indications that the Web Feature Service specification offers a way to expose geospa-
tial vector features in an editable fashion to GIS software. While we have not investigated how to
engage with this specification, we are optimistic that some sort of GIS round trip is theoretically
supported by external vendors.

2.3.4 Data exporters

An exporter is a data manipulation sequence, so it is either implied in the round-trip functionality, or
is well demonstrated by FAIMS 2.6 exporters.

2.4 DevOps, QA, CI/CD

2.4.1 DevOps Philosophy

Tooling and infrastructure choices have been made to minimise system administration and server
requirements. As such, exploiting open-source development incentives offered by GitHub, Atlassian,
and BrowserStack were fundamental to our approach. GitHub’s offerings for Open Source Teams,
Education, and public repositories allow us to run our CI/CD pipeline for free along with maintaining
a robust set of version controlled repositories. Atlassian’s Open Source Project License allows us
to use a professional Jira and Confluence instance for free, hosted by Atlassian. BrowserStack for
Open Source allows us to run device level end to end and integration tests on real and virtual devices.
Utilising these software-as-a-service offerings allows us to demonstrate a software delivery pipeline

Macquarie University CC-BY 11

https://www.npmjs.com/package/editable-table
https://www.npmjs.com/package/xlsx
https://www.ogc.org/standards/wfs
https://github.com/account/organizations/new?plan=free&ref_cta=Sign%2520up%2520your%2520team&ref_loc=changing%2520the%2520world&ref_page=%2Fpricing&source=pricing-open-source
https://education.github.com
https://www.atlassian.com/software/views/open-source-license-request
https://www.browserstack.com/open-source
https://www.browserstack.com/open-source

that can be maintained long term by 0.2-0.4 FTE.

The next major constraint was to automate testing to the extent possible. One flaw with FAIMS v2.x
was that updates required more than a week of manual testing. This manual workload rendered
regression testing expensive and performance testing or end-to-end tests impossible. As FAIMS3 is
designed to be self-service – frommodule generation to data export – automated end-to-end testing
was a fundamental requirement.

Testing responsibilities will be divided between the teams. Our programmers will be responsible for
writing unit tests in Jest. These Javascript unit tests will test low-level code functionality that does not
interact with the user interface. Our external QA team will be responsible for integration and end to
end testing. This higher level testing will ensure that all the components work together, that the user
interface is tested, and will make sure that features as specified in user stories are exercised. CSIRO
will also be responsible for double-checking our code documentation, to make sure it is informative
to someone without immediate access to the developers. This approach will create a project that will
ensure a level of professionalism and robustness that allows for deployment and operation at scale
– and may attract external developer contributions. This design decision, however, reduces feature
development due to the higher quality assurance demands placed on each feature. We believe that
the tradeoff is worth it for software being developed for a five-year lifespan.

2.4.2 Quality assurance

Unit testing will be written in Jest and run as part of a Github Actions pipeline. Unit tests will be
evaluated as a pre-commit hook, using GitHub actions on commit and pull requests. Unit tests will
also be discussed as part of sprint planning and demonstrated during sprint demos. One measure
of quality assurance is code coverage, how many lines of code are ‘exercised’ by Unit Tests. By mea-
suring code coverage of unit testing as one of our development goals, we can hopefully make sure
that we have a robust and comprehensive testing suite at all levels – suitable for five or more years
of maintenance. Unit testing, however, does not include UI testing, integration testing, regression
testing, or end-to-end testing. CSIRO will be responsible for developing the integration tests that
will provide assurance that all components fit together and deliver our intended outcome. One de-
sign goal is to ensure that these integrated tests can also function as part of an end-to-end testing
regimen so that the entire application can be exercised nightly. Unfortunately, test development
is time-expensive, so we anticipate some features to require manual regression testing despite the
planned end-to-end framework. Features that depend on external devices or sensors are especially
likely to require manual testing. Nevertheless, if we can minimise manual testing when shipping a
new version, we can release more often and with more confidence.

Macquarie University CC-BY 12

https://github.com/FAIMS/FAIMS3-Elaboration/blob/master/.github/workflows/node.js.yml
https://jestjs.io/docs/en/cli.html#--coverageboolean

2.4.3 CI/CD Pipeline

Github Actions will provide our fundamental continuous integration / continuous delivery pipeline,
compiling on commit, running Jest Unit Tests, using Capacitor, Fastlane, and Electron to build a PWA,
desktop installers, and producing signed code ready for deployment to Google Play and the Apple
AppStore. These binaries will then automatically upload to BrowserStack App Automate for integra-
tion tests and end-to-end testing.

We are using the generous Open Source options for both GitHub and Browserstack for this purpose,
which should provide sufficient build minutes to maintain a good testing pipeline at a very low cost.

Macquarie University CC-BY 13

3 Non-elaborated functionality

3.1 Anticipated but untested functionality

We did not test extended Capacitor functionality because we needed to prioritise basic data struc-
tures, language features, and map-showing functionality. Documentation, however, indicates that
the following required functionality exists as Capacitor plugins:

• Basic geolocation: https://capacitorjs.com/docs/apis/geolocation
• Basic file access: https://capacitorjs.com/docs/apis/filesystem
• Basic camera: https://capacitorjs.com/docs/apis/camera
• Save/play video: https://github.com/capacitor-community/media

If we choose to include Ionic as well as React in our dependencies, we would increase our depen-
dence on external vendors and libraries they choose to import, but wewould gain additional features
for little development time:

• A barcode scanner (CSIRO): https://ionicframework.com/docs/native/barcode-scanner
• RawBluetooth serial connections formobile printing (CSIRO): https://ionicframework.com/docs/native/bluetooth-
serial

• A document scanner (Oral history for PICF forms): https://ionicframework.com/docs/native/document-
scanner

• Audio capture (Oral history): https://ionicframework.com/docs/native/media-capture

External GPS support (a common requirement) would require us to fork, adapt, and support a Cor-
dova plugin and Javascript library:

• https://github.com/heigeo/cordova-plugin-bluetooth-geolocation
• https://github.com/infusion/GPS.js/

Basic GIS analytics (Lake Mungo for finding grid squares) requires:

• https://turfjs.org/docs/#intersect

3.2 Functionality not yet elaborated

FAIMS 3 has many planned features that do not exist as libraries to include within our planned
Javascript framework, or that depend so strongly on infrastructure and architecture decisions that
anticipating a solution now would be premature. Functionalities that we anticipate but have not yet
elaborated include:

Macquarie University CC-BY 14

https://capacitorjs.com/docs/plugins/community
https://capacitorjs.com/docs/apis/geolocation
https://capacitorjs.com/docs/apis/filesystem
https://capacitorjs.com/docs/apis/camera
https://github.com/capacitor-community/media
https://www.smashingmagazine.com/2019/08/building-mobile-apps-ionic-react/
https://ionicframework.com/docs/native/barcode-scanner
https://ionicframework.com/docs/native/bluetooth-serial
https://ionicframework.com/docs/native/bluetooth-serial
https://ionicframework.com/docs/native/document-scanner
https://ionicframework.com/docs/native/document-scanner
https://ionicframework.com/docs/native/media-capture
https://github.com/heigeo/cordova-plugin-bluetooth-geolocation
https://github.com/infusion/GPS.js/
https://turfjs.org/docs/#intersect

• Offline Map loading and serving. One option is utilising something like the Shapefile Package
during module generation to convert vectors into GeoJSON, plus an offline tile server. Offline
maps, GIS, and map generation is a part of FAIMS 3 that could consume extensive resources
and it must be carefully managed. Both CSIRO and Lake Mungo require the display and man-
agement of vector and raster layers, but we have not yet explored trade-offs between options.
Leaflet has demonstrated that it can render offline maps and points, so our fallback will be to
run a ‘normal’ map tile server and then allow caching of maps on the device.

• UI elements (especially ‘dynamic’ UI). We have not yet explored interface elements like ‘tabs’ and
‘tab groups’, including the ability to dynamically alter input fields based on user interactions, as
used in FAIMS v2.x. Dynamic manipulation of HTML is an extremely mature technology.

• GUI module generator – depending on complexity, we will need to decide between schematic
representation (lists of elements) versus a more WYSIWYG editor. However, developing a stan-
dard web application which does not require offline support which can generate amodule spec-
ification through some means is not of concern.

• External data importers are not currently planned during this development cycle, but may be
implied by the round-trip functionality or, at minimum, developed as a later plug-in (accommo-
dated by the architecture discussed above).

• On-load Internationalisation is well demonstrated in FAIMS 2.6.

OSGeo integration. Use of GeoCouch, GeoTools, and GeoServer have implications for map-serving
and roundtrip capabilities.

Macquarie University CC-BY 15

https://www.npmjs.com/package/shapefile
https://www.npmjs.com/package/mapeo-server
https://react.i18next.com/

4 Team Composition and Development Plans
FAIMS 3 will be developed by three groups: FAIMS leadership, AAO, and CSIRO.

• FAIMS leadership will be responsible for planning and execution – development planning be-
fore each development period, assessing development via a demo after each period, providing
subject matter expertise, and writing user stories and appropriate acceptance criteria for the
stories. Leadership is also responsible for DevOps and ultimately ensuring that all the systems
work.

• AAO will be responsible for primary development – implementing agreed user stories each de-
velopment period, performing demos on a regular interval (every two weeks), writing unit tests,
and documenting their code so that external developers can contribute.

• CSIRO will be responsible for QA – writing integration and end-to-end tests against AAO’s user
stories and documentation. By shipping code across the country, requiring that a second team
understand, execute, and test the code, we hope to avoid testing situations where the testers
lean across the office corridor and ask the developers for help rather than documenting usability
or documentation deficiencies.

We will (mostly) follow an agile development methodology informed by the Rational Unified Process.
In short, each ’sprint’ will be preceded by a development planning meeting where user stories are
allocated and a general work consensus is achieved, ensuring that the plans are reasonable, with
time allocated for testing, documentation, and bug fixes. No formal point/time allocation per story
will be part of this process, only informal estimates to better calibrate expectations to development
pace. After each two-week work-block, each story worked on will be debriefed: working tests will be
demonstrated and problemswill be discussed as away of improving future planning. Where features
are interesting to the larger community, FAIMS Leadership will turn the demonstration/retrospective
into a regular blog post.

Everyone involved is very aware that agile development means that we spend money for a specified
period of time, rather than agree on a formal waterfall Software Development Life Cycle. Develop-
ment thus intends to achieve the design objectives stated above, though some descoping will likely
be required, as we are prioritising quality assurance over feature development.

Each external milestone will be preceded by User Acceptance Tests. These tests will be written
with input from FAIMS leadership, AAO, and CSIRO so that external assessors can work through the
features that best demonstrate development progress. Only when everyone is satisfied that the
tests have been passed will software be released to external users.

Macquarie University CC-BY 16

https://factorio.com/blog/

5 Future Decisions

5.1 Dependency hell is a place

The fundamental thing we need to decide is how much external code to use in the FAIMS3 ‘core’.
Inevitable external code dependencies exist in Bluetooth, data transport, and GIS libraries, but keep-
ing the core free of excessive Javascript packages will increase maintainability at the cost of longer
development time.

We could, however, decide to commit to React + Ionic (Community or Enterprise) + Capacitor + JSON
Forms + ‘all of the plugins’. This route gets us many more features at the cost of being beholden to
many different communities for maintaining their pieces of code.

We will almost certainly thread a needle between these extremes – but wish to acknowledge the
tradeoff explicitly. We need to deliver the required features, but avoid being trapped by an unsup-
ported package that exposes us to a security vulnerability or major component failure.

5.2 GIS Features

We need to determine what subset of GIS functionality is actually used in the field by our users
(as opposed to what users claim they need), and what external connections we need to support
desktop GIS applications. We developed many expensive GIS features in FAIMS 1.0-2.6 at the urging
of researchers that were never used in the field, an expensive error we must not repeat.

5.3 The Round Trip Problem

We need to figure out what users require from ‘data round trips’ and how much can be delivered
in-application versus exporting bundles of CSVs. There are some fundamental issues with data
round-tripping: denormalisation, preserving internal identifier row-associations, preserving vocab-
ulary keys, and preserving GIS-appropriate associations. We also need to be somewhat program-
agnostic, so that users can bring the programs they are used to working with to the field camp for
evening analysis. There is also a risk of building very technical bridges to specific programs that will
end up being ignored by users. Determining appropriate compromises to allow for bulk data review
and editing – tabular, multimedia, and geospatial – will be a significant challenge determined by our
data structure and development choices.

5.4 External Partner Support

FAIMS 3.0 must interact with some of our external partners’ infrastructure: OpenContext, tDAR, and
Cloudstor. At present we plan to deploy well documented APIs to access the FAIMS 3.0 application

Macquarie University CC-BY 17

https://www.theregister.com/2016/03/23/npm_left_pad_chaos/

and data in the CouchDB instance. We also plan to add API function calls as requested by our
partners to support a more interactive export style. One example could be that a user from one
of these external services enters a FAIMS 3.0 application URI and authenticates appropriately – and
then the service can prepare their data for export and ingest into their own system. Planning where
the bulk of data preparation will occur, however, requires a better sense of our final architecture
and conversations with our partners. We plan to begin an external service elaboration when FAIMS
3.0 enters its beta version User Acceptance Tests. At that stage we will explore scenarios with each
partner to accommodate user needs.

Macquarie University CC-BY 18

Bibliography
Ballsun-Stanton, Brian, Shawn A Ross, Adela Sobotkova, and Penny Crook. 2018. “FAIMSMobile: Flex-

ible, open-source software for field research.” SoftwareX 7 (January): 47–52.

Bureau of Reclamation. 2017. DataApp: A Mobile App Framework for Field Data Capture. https://www.
innocentive.com/ar/challengeWorkspace/challengeDetails/655716. Accessed: 2018-3-27.

Macquarie University CC-BY 19

https://www.innocentive.com/ar/challengeWorkspace/challengeDetails/655716
https://www.innocentive.com/ar/challengeWorkspace/challengeDetails/655716

6 Technical AdvisoryGroupComments andResponses
From Kate Robertson, email:

I’ve had a look at the document, no comments/changes etc from me, looks good- thor-
ough and well explained.

From Richard Adams, email:

Just a few specific points -

1) We’ve found react.js to be excellent in our project and we are committing to refactoring
all our UI code to use react. It has such a vast usage that it’s extremely unlikely to get
abandoned over the next 5 years or so. The problems it solves such as easy reuse of
components enabling a more standard UI has made a vast difference to the appearance
and behaviour of our application, and even if initially slower to get started with, bears
fruit over time as new pages can often be composed of existing components

2) The API - not sure if this API is an ‘internal’ API for instances of the app to communicate
and exchange data with each other/ or the local server, or a public API for 3rd party
software to access the data. If the latter, have you considered having an intermediate
data layer so that the API isn’t tied to the underlying data structures in CouchDB, and the
API and the internal data structures can evolve independently of each other? This would
help with maintaining stability of the API for 3rd-party developers

3) Testing and QA

Always a thorny issue. For RSpace, we initially wrote manual test scripts for all features,
then employed someone to automate them as much as possible using Selenium. This
is an enormous effort to maintain; the tests can be fragile and with over 300 of them
the false failure rate is difficult to keep to acceptable levels. For a new module we are
instead doing more exploratory testing as means to identify defects; performing manual,
unscripted testing for fixed periods of time. If the defect rate increases, we do more
testing; as the defect rate falls we do less testing. Expected behaviour is defined in the
use-cases and requirement specs; we use decision tables and statematrices to formalise
key behaviours and states. We found this cuts down a lot of duplication of writing out
requirements, then writing a largely similar testing document.

The aim is to do ‘just enough testing but no more’ ie- how little acceptance testing can
we do, before we get an unacceptable defect rate? So far, results are encouraging. Also,
for software designed to be used by humans, manual testing by humans is essential,
and actually beneficial due to insights into user-experience that automated testing would
ignore.

Macquarie University CC-BY 20

Having said that, there is some scope perhaps for a small number of automated inte-
gration ‘smoke tests’ that can detect egregious defects on a nightly build. We recently
evaluated Cypress.io and liked it as a possible successor to Selenium for test automa-
tion; I understand they are developing a component-testing framework as well.

Code coverage is OK for catching gaping holes in test coverage - for example finding
whole files or components; but a coverage tool has to be able to indicate branches and
statements covered as well as just lines, in order to make sure that infrequently-called
blocks are also tested (for example exception/failure handling code).

Are you planning to do code-reviews as part of your Git workflow, e.g before merging a
feature branch tomainline? Wehave found these useful; people really improve their code
if they know their colleagues are going to comment on it; and it also implicitly spreads
knowledge around the team and helps conventions to become established. Obviously
this depends on the size of the team, but even in our tiny team of 2 front-end and 2
backend devs, code quality and consistency has markedly improved since we started
requiring manual code review before merge.

You mention that performance testing will be possible with this new process but it’s not
elaborated further - are some performance goals going to be established? I expect a
mobile app in the field, efficient power usage is essential to maximise battery life, is that
a design goal at all?

4) Devops

This all sounds great. Automation of the build and deployment as much as possible is
definitely the way to go. As opposed to manual testing, there are almost no benefits to
be obtained from manual builds.

5) Project schedule

Re the agile approach - are these going to be internal sprints, doing a number of iterations
before public release, or have you considered doing very early alpha releases and inviting
keen users to try out the software, even before reaching Minimum Viable Product stage?
We’ve been trying this approach for a new product. It takes some time to coordinate
the volunteers, manage expectations and organise the feedback but we’ve found several
benefits - important features that we had missed out on were detected; user experience
on a variety of devices; public visibility that the project is making progress.

6) General questions

How does data collected by FAIM[S] get linked to non-field related data for a project?
For example, for an archaeological project, there will be the field data and also perhaps
laboratory data examining the artefacts - would all this be put in FAIM[S] database or
would a research team use other data management software too? My interest here is if
an ELN could be used to tie everything together.

Macquarie University CC-BY 21

7) This sounds like a fascinating project. I’d be particularly keen on helping out or testing
any external APIs to work with FAIM[S]-acquired data, and of course happy to follow up
with more information on any of the testing/ PM ideas I mentioned above.

Response to Richard Adams

1. Thanks for the advice regarding React. We plan to have some sort of consistent UI
framework. Steve has explored a version of the elaboration prototype without react
and has reported some significant size/complexity reductions. However this will be
dictated by what specific components React offers us. The dependencies required
by react are a non-trivial cost.

2. Right now the plan for the API is to be external-facing, as we are trying to avoid need-
ing to code and maintain a ”server” on top of everything that FAIMS 3 will already be.
Some light data abstraction layers, or at least data-format-consistency is desirable
and will likely be requested by our external partners. How we’re going to achieve
that data consistency is not yet determined.

3. We unfortunately have had the opposite problem with testing and QA. My goal for
this testing regimen is to avoid after-hours, emergency tech support over poor in-
ternet connections to projects in the field. Again. The risks of data-loss and the
costs of patching are much higher for an offline system like ours. Beyond that, hu-
man costs while testing are one of the reasons why FAIMS 2 aged so poorly, as we
were not able to sustain maintenance development with the week-plus regression
tests needed. Conversely, we recognise the costs inherent to the proposed QA ap-
proach. My goal is to automate asmuchQA as we can afford – tominimise data-loss
and emergency tech support to offline (or marginally online) projects in remote ar-
eas. This challenge is somewhat different from supporting users who have normal
access to their servers and infrastructure.

(a) Yes, we also desire code-reviews. The specific pragmatics of the situation have
yet to resolve.

(b) The performance goals are mostly in relation to data capacity and access.
FAIMS 2, due to the append-only datastore, had issues with high numbers
of complex records. Automated performance testing (which we hope to im-
plement again) allowed us to estimate when performance would drop off (i.e.,
at how many records) and plan projects appropriately. We hope the use of
a noSQL database and other changes will mitigate these performance issues,
but want to make sure, since we can’t rely on online storage or processing
during data collection and are constrained by device capability. In our require-
ments for FAIMS 3, we target ‘ten times the number of records than in FAIMS

Macquarie University CC-BY 22

2’ – tens to hundreds of thousands of rows.
For mobile battery, the primary consumer of the battery is the screen (some
optimisation may be possible here, but is probably outside of our budget).
With the partial exception of tracklogs (i.e., constant GPS use, especially under
canopy) on some devices, we had very few problems with battery life in FAIMS
2 and do not expect any to arise (user testing should reveal any such problems
early on).

4. That is also our understanding (little or no benefit from manual builds), and why I
will personally be responsible for automating DevOps as much as possible.

5. We currently anticipate internal sprints. Our project governance arrangement in-
cludes ‘ad hoc user panels’ who will advise about features and also complete UATs.
We think it will be possible to involve them in pre-alpha testing of discrete compo-
nents of the system as they become minimally operational, offering an opportunity
for early feedback. We did something similar for FAIMS 2 and it was very valuable.
The user panels will certainly be involved in alpha testing. We will be open about
progress and feedback, with a public road map (as per Rory Macneil’s recommen-
dation, see below).

6. Data interoperability is important to us, see discussion around ‘external round-trip’
as one of our design goals for this version. We would love for an ELN to be one of
our partners and to explore interoperability. In terms of dividing data capture and
management between pieces of software, we are focusing heavily on data capture
in field contexts, and assume that researchers would use more appropriate tools
for other data capture scenarios. We then want to provide a capacity for data ex-
port in a way that will make the data as easy to reconcile (either by ingest into the
other system, or into a third system for combining data). To address your example,
artefact analysis is something that we’ve considered a ‘core’ activity that we’d do in
FAIMS (since some of that analysis happens in the field / offline). Other analysis
that usually happens in a lab (say, palynological analysis, radiometric dating, stable
isotope analysis, etc.) would be better covered by an ELN built more for that pur-
pose. If the environmental samples for such analysis were recorded using FAIMS,
we could connect the data by (for example) assigning a persistent identifier (PID) in
the field (e.g., an IGSN), printing a bar or QR code with the PID to include with the
sample, scanning in that code in the lab, completing the analysis, and then reuniting
the field and lab data based on the PID. Or, if it were easier, we could export the field
data for ingest into the ELN as sample metadata. We’re focusing on doing one thing
- offline data capture - as well as possible, and then federating with other systems
to do other things. Relating back to your API question, we are aiming for an API that

Macquarie University CC-BY 23

3rd-party apps can interact with, and would like to pursue interoperability with an
ELN to allow integration of field and lab data. Ideally this interoperability would go
both ways - it can be useful to have lab results when out in the field on subsequent
fieldwork. As Brian mentioned, we’re trying something analogous with Cloudstor
(OwnCloud) interoperability (to allow online viewing / editing of data in OpenRefine
or a GIS).

7. Thanks! When we have APIs for user acceptance testing, we will make sure to let
you know.

From Jeff Good

I read through the document and found it to be very well explained and thorough. The
choices seem well justified to me (though I can’t speak to direct knowledge of many of
the technologies).

From Nathan Reid

I have read through and am happy with the document. The flow makes sense and I
understand why certain options were chosen.

From Jonathan Smillie:

1. ‘The code and platform should last for at least five years, assuming regular mainte-
nance’. [Is this an] expectation, or requirement?

2. Is ‘server’ here a central server per-end-user deployment? Or a single central server
hosted by the FAIMS platform project itself? (Or are app instances acting as dis-
tributed peer-to-peer servers?)

3. [Is] Export via app, or direct from server-side CouchDB instance?

Response to Jonathan Smillie:

1. Design expectation. A 5-year build time is based on our experience with FAIMS 2
and the pace of change in mobile technology. We have geared our business plan
towards this expectation.

2. The ‘server’ represents a client’s main datastore. Our hope is that each instance of
the app can act as a ‘server’ (since that will mean that we only need to code one

Macquarie University CC-BY 24

app). While we will be offering hosted (online) ‘servers’ for clients as part of our
sustainability plan, being able to deploy offline to local hardware is essential for off-
the-grid research teams.

3. We have not yet specified export mechanism. The answer, we suspect, is ‘all of the
above’ – We are likely to use one or both of the approaches you suggest, plus our
plugin architecture implies that data-manipulation javascript can be loaded as part
of the client. Partner organisations like AARNet and the data repositories will also
be working with us on export capabilities.

From Rory Macneil, email and conversation (excerpted / paraphrased):

1. Ensure that development is market-led / customer-led rather than technically led by
involving users or clients at every stage of testing, getting feedback early and often
(and responding to it).

2. UI/UX is everything (for uptake and ultimate success). Invest in it appropriately.
UI/UX can serve as a bridge between the development team and the commercial or
client-facing side of the operation. Do detailed documentation as you develop each
feature, involving the dev team. Publicise development early, providing a roadmap.
Make short videos about new features. Alongside involving users in testing, these
activities can build a community of interested people who are potential customers.

3. Investigate tools for customer engagement. we use Intercom (statistics on users
and usage), Simpo (on-boarding tool for non-technical users), HelpDocs (documen-
tation), noting that these tools integrate with one another.

4. During development, RSpace (specifically referring to the Inventory Hub product)
provides:

• Two-minute videos covering key features in each release.
• An easy-to-understand Roadmap (on Trello NOT github because our users are
not developers).

• Full user documentation of all features as they are developed.
• Professionally designed and delivered user testing sessions.
• Sandbox instance where anyone can try out the latest version.

5. Design your permissions system early; SSO integration is painful (but necessary for
enterprises).

Response to Rory Macneil

Macquarie University CC-BY 25

Thank you! Wehave consciously attempted to ensure our development ismarket/customer-
driven, but this reminder is timely. We have also used some of these approaches in the
past, but not all of them, especially as part of a ‘package’ like you suggest. We will work to
incorporate these suggestions, although some will require additional resourcing (which
we are currently seeking).

Macquarie University CC-BY 26

	Design objectives
	Technologies
	Programming language and datastore
	Programming language
	Datastore

	Framework, essential packages, and toolchain
	Framework
	Packages and native runtimes

	Application Programming Interfaces (APIs)
	Datastore access
	Application API
	`Round trip' functionality
	Data exporters

	DevOps, QA, CI/CD
	DevOps Philosophy
	Quality assurance
	CI/CD Pipeline

	Non-elaborated functionality
	Anticipated but untested functionality
	Functionality not yet elaborated

	Team Composition and Development Plans
	Future Decisions
	Dependency hell is a place
	GIS Features
	The Round Trip Problem
	External Partner Support

	Technical Advisory Group Comments and Responses

