
ProDSPL: Proactive Self-Adaptation based on Dynamic Software Product
Lines

Inmaculada Ayalaa,b,∗, Alessandro V. Papadopoulosc, Mercedes Amora,b, Lidia Fuentesa,b

aDepartamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
bITIS Software, Universidad de Málaga, Spain

cMälardalens högskola, Sweden

Abstract

Dynamic Software Product Lines (DSPLs) are a well-accepted approach for self-adaptation at runtime.
In the context of DSPLs, there are plenty of reactive approaches that apply countermeasures as soon as
a context change happens, but they often imply making many reconfigurations, which makes the system
more unstable. In this paper we propose a proactive approach, ProDSPL, that exploits an automatically
learnt model of the system, which anticipates future variations of the system, and generates the best DSPL
configuration that can soften the negative impact of future events on the quality requirements of the system.
ProDSPL formulates the problem of the generation of dynamic reconfigurationas as a proactive controller
over a prediction horizon, which includes a mapping of the valid configurations of the DSPL into linear
constraints. Our approach is evaluated and compared against a reactive approach, DAGAME, based also on
a DSPL, which uses a genetic algorithm to generate quasi-optimal feature model configurations at runtime.
The evaluation with a mobile game and randomly generated feature models shows that ProDSPL gives good
results with regard to the quality of the configurations generated that tries to anticipate future events and
it always enforces the system to make the least possible reconfigurations.

Keywords: Dynamic Software Product Lines, Proactive Control, Self-Adaptation, Optimization, Linear
constraint

1. Introduction

The demand for self-adapting software systems
has risen sharply, specially motivated by the grow-
ing importance of Cyber-Physical Systems (CPS)
operating in complex and changing environments,
and the increasing ubiquity possibilities of Infor-
mation and Communication Technologies (ICT) [1].
Designing self-adaptive systems is a complex task,
and has been of great interest in the last years, spe-
cially in areas such as mobile computing, robotics or
ubiquitous computing. Runtime adaptation mech-
anisms sometimes are problematic since they tend
to be unstable, inefficient and unreliable [2]. There-
fore, in order to overcome some of these problems

∗Corresponding author
Email addresses: ayala@lcc.uma.es (Inmaculada

Ayala), alessandro.papadopoulos@mdh.se (Alessandro V.
Papadopoulos), pinilla@lcc.uma.es (Mercedes Amor),
lff@lcc.uma.es (Lidia Fuentes)

several approaches has been defined [3, 4, 5], be-
ing the Dynamic Software Product Lines (DSPL)
one of the most widely used. Dynamic Software
Product Lines (DSPL) are a systematic engineering
approach that uses SPLs (Software Product Lines)
artifacts to model the dynamic variability of a sys-
tem. DSPLs model the different adaptations of the
system to context changes, either internal or ex-
ternal, as variation points. Examples of context
variations that can trigger a system adaptation can
be, the continuous variation of resource availability
(e.g., battery or memory), the occurrence of system
or environment failures, and also the fluctuations of
user’s needs [6].

Adopting a DSPL approach requires to specify
the dynamic variation points as part of a variabil-
ity model, and a reconfiguration service that per-
forms the system adaptation when necessary. One
of the most popular variability models are the fea-
ture models (FMs), which, when used in the con-

Preprint submitted to The Journal of Systems and Software July 21, 2020



text of DSPLs, specifies the variability space model
of a single system at runtime, without needing to
enumerate all the possible system configurations.
The reconfiguration service determines if the sys-
tem needs to be adapted with the goal of satisfying
the quality requirements under different execution
contexts. Then, the reconfiguration service, con-
taining the DSPL artifacts, will be continuously
monitoring the context and finding out the best
possible configuration after each context change at
runtime. This new configuration should be the opti-
mal one with respect to an objective criterion (e.g.,
minimize battery consumption while maintaining a
prescribed quality of service). There are many rea-
soning techniques to select the suitable variant of a
system, considering the current configuration, the
context change and the DSPL artifacts.

Independently of the reasoning approach used to
find the new configuration, DSPLs approaches im-
plement decision strategies that are purely reac-
tive: during the system execution the context is
continuously monitored and when a context change
occurs, the reconfiguration service react to this
change by analysing if there is another configura-
tion that fits better the current conditions trying
to find an optimal or quasi-optimal solution for
the current context [7]. In cyber-physical systems
the strategy used to generate the new optimal or
quasi-optimal configuration should be implemented
at runtime, since the high number of unexpected
context changes makes impossible to pre-load all
possible reconfiguration plans. Dynamic strategies
then require the generation of a valid configuration
at runtime, and adapting the system accordingly,
which can be both time and resource (such energy,
memory, computation) consuming tasks that can
negatively affect system performance of battery-
powered systems.

Therefore, when analysing different DSPL alter-
natives, the adaptation cost should also be consid-
ered in terms of resources involved in reconfigura-
tion, such as energy consumption and also the time
it takes to analyse and perform an adaptation. In-
deed, in some scenarios, the adaptation process can
suppose a significant time and/or is a resource con-
suming task. For example, in Wireless Sensor Net-
works, where most of the devices have usually lim-
ited computational resources, the cost of the recon-
figuration is usually too high as it contributes to a
faster degradation of the device batteries. In medi-
cal applications, it is simply not acceptable to stop
the normal functioning of the system for a reconfig-

uration, or postponing it, specially if it is a serious
problem that should be fixed as soon as possible.
For this kind of scenarios, the preferred techniques
are those that minimize the number of reconfigu-
rations, but try to maintain a good quality of ser-
vice at the same time. Also, performing continu-
ous adaptations makes the system more unstable,
jumping from one configuration to another one, of-
fering erratic quality of service. Then, in these sit-
uations, it would be preferable to adopt a proactive
strategy in order to reduce the number of adapta-
tions, making the system more stable. Proactive
strategies do not only consider the current context,
but also the system expected evolution over time, so
their adaptation solutions tend to stay longer. But,
the price to pay when we apply a proactive strategy
is that sometimes the calculated application con-
figuration has a lower utility or quality comparing
to the optimal solution or to the solution provided
by some reactive approaches. Then, the big chal-
lenge is to find a proactive strategy that gives good
enough results, but still worthy just needing much
less adaptation cycles, so reducing the adaptation
costs and making the system more stable.

In this work, we propose ProDSPL that com-
bines a DSPL approach with a control-based proac-
tive decision strategy for dynamically generating
optimal configurations in a proactive way. Strate-
gies based on Proactive Controllers have been ex-
plored in the context of software systems adapta-
tion with successful results [8, 9], and in this work
we will explore how well it behaves in conjunction
with DSPL artifacts. ProDSPL formulates the
problem of dynamic reconfiguration as a proactive
controller (PC) that generates valid configurations
of a DSPL at runtime. In the control theory field,
this type of adaptation, which is known as Model
Predictive Control (MPC), relies on dynamic mod-
els learnt from the system observation, and comes
with a well-developed theory and myriads of suc-
cessful applications [10]. The main contribution of
this paper is the formulation of the DSPL recon-
figuration service, as a single-objective optimiza-
tion problem over a prediction horizon subject to
the linear constraints of the DSPL feature model
following a proactive approach. This formulation
is based on a mapping between extended feature
models and linear constraints, which is part of our
solution to combine proactive control with DSPL.
Although previous works have proposed this kind of
mapping [11, 12], they only consider basic feature
models. This kind of feature models does not sup-

2



port numerical features and they only consider sim-
ple cross-tree constraints (i.e., include or exclude),
so they cannot be applied in several real case stud-
ies.

Both the time required to generate the configu-
rations and the quality of the solutions found are
crucial aspects for the success of a DSPL driven re-
configuration at runtime. So, the performance and
quality of the results obtained by the proactive con-
troller ProDSPL are compared against DAGAME
[4], a reactive approach that uses a DSPL approach
with a genetic algorithm for the generation of fea-
ture model configurations at runtime. Taking into
account the concept of optimality [13] (i.e., the ratio
between the utility of the solution obtained by an
algorithm and the utility of the optimal solution ob-
tained using the exact method), DAGAME is able
to obtain solutions with an optimality higher than
87.4% with execution times between 20 and 100 mil-
liseconds. In this paper, ProDSPL performance is
evaluated using a simulator of a mobile app devel-
oped in Java, in order to make the experiments and
results reproducible by third parties. The compari-
son with the pure reactive approach shows good re-
sults with regard to the performance and the qual-
ity of the configurations generated. The obtained
results support in practice our initial hypothesis
about the use of a proactive approach. That is, our
solution is more sustainable as it contributes
to reduce the overall cost -in time and en-
ergy of reconfiguration and lead to more sta-
ble systems, while maintaining the quality of
the adaptation good enough.

The remainder of the paper is organized as fol-
lows: Section 2.1 provides background on DSPLs,
their the decision making process, and model pre-
dictive control. Section 3 overviews the main activ-
ities of our approach ProDSPL. Following section
4 illustrates how to apply our proposal using as a
case study a Mobile Game. The experimental re-
sults are presented, analyzed and compared with
DAGAME in Section 5. Section 7 discusses related
work. Finally, Section 8 presents some conclusions
to the paper.

2. Background

2.1. Dynamic Software Product Lines

DSPL is an approach for self-adaptation that
takes concepts from the domain of SPL, includ-
ing the management of variability through a model.

DSPLs redefine existing SPL engineering processes
by moving them to runtime, with the goal of adapt-
ing the system to the current environment by per-
forming reconfiguration autonomously. While SPLs
are able to generate several systems of the same
family at design time, a DSPL is able to adapt a
single system behaviour at runtime.

Variability of SPL can be specified using differ-
ent modeling languages being feature models [14]
the most popular. Since its conception, a lot of
notations and extensions have been defined for fea-
ture models [15]. A feature model contains a ex-
plicit representation of the configuration space by
means of features. A FM organizes features into a
tree, and includes the corresponding tree and cross-
tree constraints representing dependencies among
features. In DSPL, the system elements that can
be reconfigured are modeled as dynamic variation
points, while the set of selected features that fits the
current context is known as dynamic configuration.
In DSPLs, optional features will be included in the
system or not at runtime, depending on how the
context conditions affect the application during its
execution.

With this aim, and as part of a DSPL defini-
tion, the engineer must [16]: (i) identify the range
of potential adaptations supported by the system in
terms of architectural components; (ii) define an ex-
plicit representation of the valid configuration space
of the system that can be included as part of the
running system; (iii) identify the context changes
that may trigger an adaptation; (iv) identify the
set of possible reactions to context changes that
should be supported by the system; and, (v) de-
fine a decision making process (DMP) that fulfills
some optimization goals (one or many) by choos-
ing the best DSPL configuration that fits current
context.

However, the way these issues are implemented
may greatly differ between different proposals. The
main difference lies in when the dynamic valid con-
figurations are computed. Some approaches com-
pute all the possible reconfiguration at design-time
[17] and upload all or a subset of them at runtime
[18]. Others approaches are able to generate these
configurations at runtime [16]. The main advantage
of the latter ones is all the possible configurations
are considered and not only a subset, but it is diffi-
cult to find a DMP capable of generating reconfigu-
ration plans efficiently in a acceptable computation
time at runtime.

3



2.2. Decision making process in DSPLs

Then, one of the key issues of DSPLs approaches
is the decision making strategy and the objective
optimization techniques applied to generate opti-
mal dynamic configurations. In [7] you can find
an overview of different DSPL approaches for self-
adaptation and their decision making processes.
According to the literature, the DMP for dynamic
reconfiguration approaches mainly can be classified
into three major optimization categories: (i) ran-
domized stochastic approaches; (ii) exact solution
approaches; and (iii) learning-based approaches. A
common feature of DSPLs approaches is that the
adaptation follows a reactive approach: during the
system execution, when the context changes occurs,
the reconfiguration service analyses whether this
change requires or not to replace the current con-
figuration by a new one fitting better to the current
context conditions. Then, in reactive approaches,
adapting the system to context changes should be
done after a change is detected. Hence, the recon-
figuration service needs a mechanism able to gener-
ate as fast as possible new optimal configurations at
runtime, which is a challenging task. Usually, the
input of a DMP takes as input the current configu-
ration, the event that triggered an adaptation, the
DSPL artifacts and an optimization goal according
to system and user requirements. All these infor-
mation from the past must be available at runtime.

2.3. Model Predictive Control

The idea of proactivity in the adaptation of soft-
ware systems has been explored in the past few
years by different approaches, ranging from hidden
Markov chains [19, 8] to dynamic systems [9], with
the aim to forecast the future behavior of the sys-
tem and of the environment. Model Predictive Con-
trol (MPC) [10][20] is an important advanced con-
trol technique for multivariable control problems
that make a explicit use of a reasonably accurate
dynamic model to predict the system output at fu-
ture time instants (prediction horizon). The model
is the main element of the controller as it has to cap-
ture the system dynamics to be able to calculate the
predictions. Model predictive control offers several
important advantages for supporting the decision
making strategy in DSPLs: (1) the process model
captures the dynamic and static interactions be-
tween input, output, and disturbance variables, (2)
constraints on inputs and outputs are considered in
a systematic manner, (3) the control calculations

can be coordinated with the calculation of optimum
set points, and (4) accurate model predictions can
provide early warnings of potential problems.

3. The ProDSPL approach

We propose ProDSPL to drive the decision
making strategy of a DSPL. ProDSPL is based
on the idea of using a proactive control approach,
and formulates the adaptation problem as an opti-
mization problem over a prediction horizon subject
to the linear constraints of the DSPL.

The proposed approach exploits an automatically
learnt model of the system, which captures how the
system reacts to different feature model alternatives
over time, in order to predict what is the impact
of the chosen dynamic configurations on the sys-
tem requirements, based on the available resources
(e.g., battery). A distinctive characteristic of our
approach is that, at any time, ProDSPL accounts
for the current effect and also predicts the future
impact of the reconfiguration on the behaviour of
the system for a specific period of time (i.e. a look-
ahead horizon). This might lead to decide whether
to adapt or reconfigure the DSPL by means of
solving an optimization problem to select the valid
product configuration that maximizes an objective
function over a finite look-ahead horizon.

A schematic overview of ProDSPL is shown
in Figure 1. ProDSPL is based on the iterative
solution searching of a finite-horizon optimization
problem. In first place, at design time, we need
to define the DSPL feature model including the
tree and cross-tree constraints. These constraints
among features should be taken into account in
the optimization problem, then we define a map-
ping between extended feature models and linear
constraints, which is part of our solution to com-
bine PC with DSPL. Afterwards, we use a learning
model to learn how the system behaves from sys-
tem execution logs or using some simulation data
in order to predict future behaviour. Also, we need
to decide the objectives of the DSPL in terms of
performance that ProDSPL will try to maximize
during system execution. At runtime the Decision
Making Strategy component determines if there is
a configuration that fits better the current context,
by solving the optimization problem periodically,
not just when a sudden change occurs, but as a con-
sequence of a variation in the performance indica-
tors, detected by the reconfiguration service. When

4



a better solution is found that maximizes the ac-
cumulated performance and fulfills the system con-
straints, then it calculates a plan to replace the cur-
rent configuration by the new one. The generated
plan includes the future actions to take within the
prediction horizon to maintain the system in the
desired performance objectives. The actions of the
plan are specified as a set of enabled features of the
DSPL FM.

The rest of this section describes how the learnt
model is calculated through a mathematical model,
and how the feature model is transformed into lin-
ear constraints. This is done once, at design time
before running the system. How the approach is
applied to a illustrative case study is described in
section 4.

3.1. Variability model design

The first phase is to design the variability
model of the DSPL in the form of an extended
feature model. In this work, to specify dynamic
variability we use extended feature models, which
are basic feature models with variables, cardinality
groups, and arithmetic and logical constraints. In
order to generate a new dynamic configuration, the
features of the feature model are resolved taking
into account its specific type (e.g. choices are se-
lected or not, values are given to variables,...). The
variability model, including cross-tree constraints,
defines what are the feasible reconfiguration solu-
tions. The use of feature models to specify dynamic
variation points will ensure that system adaptations
lead the system to a valid state, i.e., restrict the so-
lution space to runtime valid configurations. The
variability model is one of the two main artifacts
of ProDSPL (see right part of the design time of
Figure 1). Figure 2 in section 4.1 shows the feature
model of our illustrative case study.

3.2. Learning the system model

ProDSPL is a model-based approach that ex-
ploits a mathematical model of the system perfor-
mance, to capture how the system reacts to differ-
ent choices of the features over time. A manual
definition of such model can be hard to obtain, due
to the complexity in understanding mutual effects
of the selection of features in terms of performance.
Then, in this work, the mathematical model is ob-
tained automatically instead, by learning from ex-
perimental data collected from the system, while se-
lecting the enabled features. To learn such model,

we use a non-iterative subspace identification ap-
proach [21], widely adopted in the learning commu-
nity, and successfully used in control systems [22],
and implemented in Matlab with the ssest func-
tion.

To consider the current and anticipated adap-
tation needs of the system, ProDSPL learns a
model M (i.e., the MPC model) that captures the
dynamics of the system (see Figure 1). Consid-
ering that we are modeling the dynamic variation
points with extended feature models, the model of
the system has to capture how the features u =
{u1, u2, . . . , um} affect the relevant performance in-
dicators y = {y1, y2, . . . , yp}. This model can be ei-
ther manually designed, based on some prior knowl-
edge of the system, or automatically generated from
logged data obtained from the executions of the
software system, or from a simulator of the system.
The model can be computed by means of learn-
ing techniques [21]. In particular, we follow the
technique presented in [22], in which the identified
modelMt at a specific time instant t will be in the
form:

x(t+ 1) = Ax(t) +Bu(t), (1)

y(t) = Cx(t), (2)

where u is the vector of control parameters (i.e., the
features), and y is the set of performance indicators,
that highlights how the system is performing, and
A, B, and C are matrices learnt from the logged
data. The model is used to predict the future be-
havior of the system, by “unrolling” the different
equation (1) over H time steps (called prediction
horizon). For example, for time steps t = 1, 2:

x(1) = Ax(0) +Bu(0)

x(2) = Ax(1) +Bu(1) = A2x(0) +ABu(0) +Bu(1)

If the dynamic model is unrolled for a generic time
t = H [10], the unrolled dynamics can be expressed
as:

x(H) = AHx(0) +

H∑
i=1

AH−iBu(i− 1)

In such a way, one can compute what is the value
of all the future outputs y as a function of the cur-
rent state of the system (x(0)) and of the possi-
ble changes determined by the feature model u(0),
u(1), . . ., u(H − 1), which must be computed. This
computation is performed considering, the u =

5



Learning Model
Log data of Software system 

@Runtime (or simulation)

Transformation of FM 

into linear constraints

Variability Model 

[tree+constraints]

Reconfiguration Service

Core Functionalities

Compute Performance Indicators

Reconfiguration Service

Core Functionalities

Compute Performance Indicators

Plan of enabled 

features

Decision Making Strategy

Max Objective Function

Learnt Model Linear ConstraintsLearnt Model Linear Constraints

Subject to

Learnt Model Linear Constraints

Subject to

Max Objective Function

Learnt Model Linear Constraints

Subject to

Decision Making Strategy

Max Objective Function

Learnt Model Linear Constraints

Subject to

Maximize 

Accumulated 

Performance 

Indicator

Design Time

Runtime

Learnt Model

Provide Knowledge of the 

system

Performance Indicator 1

Performance Indicator 2

Figure 1: Overview of the ProDSPL approach.

{u1, u2, . . . , um} is the set of the m features in-
cluded in the DSPL, that are either binary or have
a numerical value. It is worth mentioning that the
identified learnt model can be adapted at runtime,
based on the current behavior of the system, so the
accuracy of this initial model does not have to be
necessarily very high. In fact, this model serves for
understanding the complex relationships between
the features u and the performance indicators y,
in order to take sensible decisions of what are the
features that must be included in the runtime con-
figuration.

3.3. Transformation of the variability model into
linear constraints

In order to compute a plan of what are the fea-
tures u that must be enabled during the prediction
horizon H, the description of the extended feature
model must be transformed into constraints that
can be used by a numerical solver (see left part of
design time of Figure 1). The feature model and the
cross-tree constraints are reformulated in terms of
a set of linear constraints C. This procedure has to
be done carefully, in order to introduce only linear
constraints, which are usually simpler to handle.

Even though the use of just linear constraints
seems to limit the applicability of the proposed ap-
proach, this is not true. Below, we present gen-
eral rules that can be used to transform complex
generic structures of extended feature models into
linear constraints. The transformation of a feature
model into a set of linear constraints has been ap-
proached in previous contributions [11, 12]. How-

ever, these works do not consider the transforma-
tion of extended feature models. They just con-
sider simple feature models, i.e., without numeri-
cal attributes, propositional constraints and groups
with customised cardinalities. The transformation
is performed from the following mapping between
feature models and linear constraints:

• Paternity: Let p be the parent and c the
child in parent-child relation, then the equiva-
lent constraint is uc ≤ up.

• Mandatory: Let p be the parent and c the
child in a mandatory relation, then the equiv-
alent constraint is up ≤ uc.

• Groups: Let {u1, u2, . . . , uk} be a group of
features in a group relation which allows to
choose between n and m elements of the group,
being n ≤ k ≤ m, and p the parent feature of
this group, then the equivalent constraints are∑k

i=1 ui ≥ nup and
∑k

i=1 ui ≤ mup.

The mappings above cannot be applied when a
feature (e.g., printer) has associated a numerical
value. We consider these features as numerical fea-
tures that can be bound to a variable value (e.g., a
high resolution printer has a value that can range
from 100 to 300 ppi). If one of the features has a
positive value, then the inequality expressions will
not hold. In order to incorporate numerical fea-
tures in our decision making strategy, we follow a
two step solution. Firstly, we normalize the range
of values that can be taken for the numerical fea-
ture. This normalized range starts with 0, associ-
ated with the decision of not selecting the feature in

6



the resolution model (e.g., not selecting the printer
feature). Therefore, if the original range of values
of a variable is [LB,UB], the normalized range is
[0, UB − LB + 1].

Secondly, a binary value yi ∈ {0, 1} associated
with ui is introduced to decide if ui should be en-
abled, and to introduce “big M” constraints for the
groups of features. The mapping for variables with
normalized ranges will be as follows:

• Paternity: Let p be the parent and c the child
in parent-child relation. If the size of the range
of c is higher than the size of the range of p,
then the equivalent constraint is uc ≤ (UBc −
LBc + 1)up where LBc and UBc are the lower
and the upper bounds of c.

• Mandatory: Let p be the parent and c the
child in a mandatory relation. If the size of
the range of p is higher than the size of the
range of c, then the equivalent constraint is
up ≤ (UBp −LBp + 1)uc where LBp and UBp

are the lower and the upper bounds of p.

• Groups: Let {u1, u2, . . . , uk} be a group of
features in a group relation which allows to
choose between n and m elements of the group,
being n ≤ k ≤ m, then the equivalent con-
straints are u1 ≤ Mz1, u2 ≤ Mz2, . . ., uk ≤
Mzk, with

∑k
i=1 zi ≥ n and

∑k
i=1 zi ≤ m

where z1, z2, . . . , zk ∈ {0, 1} are auxiliary bi-
nary variables introduced for the formulation
of the linear constraints, and M is a constant
large number (ideally, M →∞).

Additionally, we can express propositional logic
constraints and arithmetic constraints using inte-
ger linear programming constraints. There are sev-
eral works that propose mappings between proposi-
tional logic and integer linear constraints [23, 24, 25,
26]. Table 1 summarizes some of these mappings.
Some kinds of extended feature models supports the
use of quantifiers (i.e., ∀ and ∃) for the definition
of cross-tree constraints. However, they are applied
to cardinality-based feature models whose use for
DSPL has not been explored. We intend to inves-
tigate this as future work.

3.4. Formulation of the decision-making strategy

The decision-making strategy (see left part of
runtime of Figure 1) is formulated as an optimiza-

tion problem that takes the form:

maximize
u(1),u(2),...,u(H)

H∑
i=1

F (u(i))

subject to Mt, t = 1, . . . ,H

Ct, t = 1, . . . ,H,

y(0) = ymeasured.
(3)

where the last constraint initializes the optimiza-
tion problem based on the last measured value of
the performance ymeasured, and F (u(i)) is an objec-
tive function that must be maximized over the given
prediction horizon. One can think of the function
F as the (instantaneous) utility function associated
with the selected features u(t) at time t. If no nu-
merical features are present, classical 0-1 program-
ming solvers can be used for solving (3) [27].

SinceMt is selected to be a linear model, and Ct
is a set of linear constraints introduced by the vari-
ability model, all the constraints of the optimization
problem are convex. Therefore, if F (u(i)) is chosen
to be convex with respect to the decision variables
u(i), then the formulated control problem is a con-
vex optimization problem [28]. The importance of
a convex formulation is related to the mathematical
guarantees on convergence, and the large availabil-
ity of optimized numerical solvers for this class of
problems [28]. In order to guarantee the convexity
of the formulated problem, the choice of a linear
dynamic model M as indicated (1)–(2) is needed.
Such a choice is quite common in control engineer-
ing application, since it describes a more rich input-
output relation than a simple linear (static) model
typically used in machine learning. Runtime learn-
ing of such model is also possible through subspace
identification methods [22], but this is beyond the
scope of this paper.

Notice that the proposed approach will converge
to the same solution, until the resource amount
is critic. For example, if there is enough battery
(e.g., greater than 20%), although it varies along
the time (e.g. 40%, ..., 25%,...60%) the proposed
approach will continuously select the same configu-
ration, even though the solution is recomputed peri-
odically. This is to make sure that the environment
does not provoke a sudden change in the controlled
system, and so the system execution is more stable,
one of the goals of our approach.

The output of the optimization problem is a long-
term plan over the prediction horizon H. ProD-
SPL applies the so-called “receding horizon princi-

7



Table 1: Variable transformation

Statement Constraint

¬P1 x1 = 0
P1 ∨ P2 x1 + x2 ≥ 1
P1 → P2 x1 ≤ x2
P1 6= P2 x1 + x2 = 1

at least k out of n are TRUE x1 + x2 + . . .+ xn ≥ k
exactly k out of n are TRUE x1 + x2 + . . .+ xn = k

ple”, i.e., only the first action u(1) of the long-term
plan is applied, and at the next control period a new
plan is generated by solving the new optimization
problem, initialized with the new measured output
ymeasured. In our case, the first reconfiguration ac-
tion of the plan is the runtime application config-
uration (including numerical features) that fits not
only the current context, but also the expected be-
haviour of the system.

4. ProDSPL in action

In this section, we illustrate how our proposal is
applied for adaptation at runtime using as a case
study, the strategy mobile game presented in [16].

4.1. Case study

Our illustrative case study is a video game for
a mobile phone taken from [16]. This application
can be adapted according to user preferences (e.g.,
2D or 3D graphics), to the availability of resources
(e.g., connectivity via LTE when WiFi connectiv-
ity is not available) or the amount of resources con-
sumed (e.g., use low level of detail when the battery
of the smart phone is low). In this paper we focus
on this last kind of reconfiguration.

Figure 2 shows the extended feature model of this
case study. We use two different kinds of features:
choices and variables. Choices, which are shown
in the figure as rectangles (e.g., Sound), are evalu-
ated as true or false. They correspond to features
ui ∈ {0, 1}. On the other hand, variables (e.g.,
frameRate), which are shown as ovals, can be eval-
uated as values of different types (e.g. numerical
values), and for this case study they are positive
integer numbers, i.e., ui ∈ N.

A feature can be bound to its parent by a solid
or a dashed line. In the first case, it means that in
the case that the parent has been selected (i.e. the
feature is true), a value has to be assigned for that
feature too. Secondly, a dashed line means that

if the parent has been evaluated as true, it is not
mandatory to decide a value for this feature. For
instance, if Sound is selected, it is not necessary to
decide a value for V ibration.

Feature models in general, and in particular
an extended feature model allows the specifica-
tion of cross-tree constraints in order to delimit
the degree of variability. These constraints are
defined as relationships between different features
of the feature model. The grey box of Figure
2 shows the constraints of our case study. For
instance, since having a global score board re-
quires to have a network connection, we include C1
that states that if GlobalScoreBoard is included
in the resolution model, it is mandatory to include
Network. It is possible to specify constraints in-
volving the values of a variable feature. For in-
stance, we include C4 which states that the value
of frameRate is between 40 and 60. Taking into ac-
count tree and cross-tree constraints, the presented
extended feature model has 1804194 possible con-
figurations. Note, that this is the number of the
possible configurations a system can take during
runtime, so this case study can be consider suffi-
ciently representative[4].

4.2. Linear constraint derivation

The feature model of the case study is used to
formulate the linear constraints C needed for the op-
timization problem taking into account the guide-
lines provided in Section 3.3. We introduce the con-
straints on the variables ui where i is the number
of the feature in Figure 2. Additionally, we have
to consider the special mappings for variable fea-
tures (i.e., the case of u11 and u14). Therefore, the

8



StrategyMobileGame 
(1)

Graphics 
(4)

Bluetooth 
(9)

EDGE 
(19)

HSPA 
(20)

LTE 
(21)

WIFI 
(22)

Connectivity 
(2)

[1..2]

frameRate:int 
(11)

Low 
(23)

Medium 
(24)

High 
(25)

2D 
(26)

3D 
(27)

Type 
(12)

[1..1]

DetailLevel 
(10)

[1..1]

Sound 
(5)

Vibration 
(13)

Network 
(8)

[1..1]

RealTime 
(15)

TurnBased 
(16)

GlobalScoreBoard 
(3)

Local 
(17)

Online 
(18)

GameMode 
(6)

[1..1]

MultiPlayer 
(7)

[1..1]

quality:int 
(14)

C1: GlobalScoreBoard → Network
C2: Local → Bluetooth V WIFI
C3: Online → HSPA V LTE V WIFI
C4: MultiPlayer → ¬ RealTime V LTE V WIFI
C5: 40 ≤ frameRate ≤  60
C6: 128 ≤ quality ≤ 256 

Figure 2: Feature model of the Mobile Game.

resulting paternity constraints are:

ui ≤ u1 i = 2, . . . , 7

ui ≤ u2 i = 8, 9

ui ≤ u4 i = 10, 12

u11 ≤ 21u4

u13 ≤ u5
u14 ≤ 129u5

ui ≤ u6 i = 15, 16

ui ≤ u7 i = 17, 18

ui ≤ u8 i = 19, . . . , 22

ui ≤ u10 i = 23, 24, 25

ui ≤ u12 i = 25, 27

(4)

The mandatory constraints are the following:

u1 ≤ ui i = 4, 6, 7

u4 ≤ ui i = 10, 11, 12

u5 ≤ u14
(5)

The group constraints are the following:

u2 ≤ u8 + u9 ≤ 2u2, u6 = u15 + u16,

u7 = u17 + u18,

u8 = u19 + u20 + u21 + u22,

u10 = u23 + u24 + u25, u12 = u26 + u27.
(6)

Finally, the cross-tree constraints are the following:

u3 ≤ u8 (C1)

u17 ≤ u9 + u22 (C2)

u18 ≤ u20 + u21 + u22 (C3)

u15 ≤ u21 + u22 (C4)

0 ≤ u11 ≤ 21 (C5)

0 ≤ u14 ≤ 129 (C6)

(7)

Constraints C5 and C6 are defined based on the
domain of u11 and u14 and the transformations of
bounds described in Section 3.3. Finally, when the
game application is running then u1 = 1. The set of
constraints is therefore C = {(4)

⋃
(5)

⋃
(6)

⋃
(7)}

that must hold true for every time instant in the
prediction horizon.

4.3. Formulation of the decision-making strategy

A model Mt is learnt from data logged from
the running system, where the features u =
{u1, . . . , u27} are the ones described in the pre-
vious section, and the performance indicators are
y = {y1, y2, y3}, where y1 is the current value of
the utility; y2 is the estimated battery level; and y3
is the current battery consumption. The objective
function of (3) is the utility F (u) = y1, and it is
computed as:

F (u) := y1 = fu11(u11) + fu14(u14)

+
∑

i/∈{11,14}

αiui(k)

with fu11
and fu14

being functions that increase the
utility as the quality of experience increases with

9



the enabled quantitative feature, and αi are weights
on the relevance of having the i-th feature enabled.

Finally, we can introduce additional constraints
related to the battery level, that should never be-
come negative, i.e., y2(t) ≥ 0 for all the points in
time.

5. Experimental results

The aim of experimentation is characterizing the
time and estimate the energy required to gener-
ate the configurations, the number of the recon-
figurations needed, and the quality of the proactive
ProDSPL solutions in comparison to a reactive
approach used in DSPL, DAGAME [4], which uses
a genetic algorithm for the generation of feature
model configurations at runtime. We have chosen
DAGAME because it has been proven to give quasi-
optimal solutions near to the optimal ones in mini-
mum time, it is a DSPL approach like ProDSPL,
and we have the original code, so that the compar-
ison is fair enough.

5.1. Objectives and Research Questions

The methodology of this study is defined accord-
ing to the goal-question-metric approach [29] as fol-
lows: “Analyze the feasibility of using proactive
control for DSPL and assess its weaknesses and
strengths”. To achieve this goal we set the following
research questions (RQ):

RQ1. How is the utility of the configura-
tions generated? This question studies the util-
ity of the configurations generated by the proac-
tive controller, taking into consideration different
prediction horizons. We compare our results with
static configurations of the system and with the
configurations generated by a reactive approach,
the genetic algorithm presented in [4].

RQ2. How good are the execution times of
the proactive control for DSPL? This question
explores the feasibility of applying our approach at
runtime, in terms of execution time, for contexts
with different response time requirements. Execu-
tion times around 1 second could be acceptable for
interactive apps (which require of user interaction),
but unfeasible for apps and contexts with real time
requirements. Additionally, we explore what is the
influence of the prediction horizon on the execution
time.

RQ3. When is it better the use of a proac-
tive strategy than a reactive strategy for a

given system? In order to answer this question,
we analyze the evolution of a given system when it
is controlled by our proactive strategy, and when
it is controlled by the reactive approach presented
in [4], paying special attention to the number of
reconfigurations required by both strategies. Also,
the size of the prediction horizon will be consid-
ered for the proactive strategy. We consider that a
strategy is better when it requires a fewer number of
reconfigurations than other, maintaining a similar
quality of the running system. We put the focus on
reducing the number of reconfigurations since they
involve the consumption of time and resources, and
make the system more stable.

5.2. Data collection

To answer the research questions proposed in the
previous section, we will study different aspects of
ProDSPL related with reconfiguration (i.e., execu-
tion time, utility and decision making strategy) for
the presented case study (i.e., the Strategy Mobile
Game), and also for DSPLs with variability mod-
els randomly generated for reactive and proactive
scenarios.

The ProDSPL reconfiguration actions are en-
abling or disabling a specific functionality, and
the tuning of parameters. Regarding the strategy
game, one possible solution to collect the informa-
tion to answer the RQs could be to implement it
with a specific interface for the ProDSPL to re-
configure the mobile application (i.e., to enable and
disable services and tuning sound and graphics pa-
rameters) and record the utility and power con-
sumption during the experiment. However, the use
of a real execution context hampers the possibility
of reproducing our experiments by third-parties. In
real execution contexts, even using the same mobile
phone, how the battery of the device degrades over
time is different from one device to another [30].
Additionally, there are silent services that interfere
and drain the battery, which are not under control
of ProDSPL. This implies that, even if we per-
form the experiments in the same device, we will
have different battery consumption for different ex-
ecutions of the same experiment. As the focus of
this contribution is analysing the quality of the solu-
tions provided by the proactive strategy compared
to a reactive one, we decided to perform our exper-
iments in a more controlled environment. So, we
have developed our own simulator of a mobile ap-
plication. In any case, moving the experiments to
a real mobile device would not be difficult because

10



our solution is implemented in Java, which can be
easily translated to Java for Android, and the man-
agement of computational resources in current mo-
bile devices allows the adoption of a self-adaptation
mechanism able to reconfigure app parameters.

The mobile application simulator consists of a set
of services that represent the services of the mobile
app that can be reconfigured due to self-adaptation.
The adapter, which is also part of the simulator and
performs the adaptation, takes as input the values
of utility and battery consumption. Utility mea-
sures how easy and satisfying to use is the appli-
cation (i.e. user experience) by taking real values
between 0 and 10 (being 0 the worst and 10 the best
mark for utility). Battery consumption models the
increase in battery consumption (measured in milli-
ampere) introduced by the features by taking val-
ues between 10 and 20. These values of utility and
battery consumption are randomly generated pre-
viously to the experiments according to a normal
distribution.

The services that can be configured as part of the
adaptation can be enabled or disabled at runtime,
and in each step of the simulation, the utility and
the battery consumption of the simulated mobile
application are registered. Our simulator can use
different strategies to maximize the utility of the
application or to minimize battery consumption: (i)
a static strategy; (ii) reactive strategy; (iii) proac-
tive strategy. First, it can adopt an static strategy
in which the application is in its optimal configu-
ration for utility (i.e. user experience), regardless
of the battery consumption, or it can choose the
configuration with the minimum battery consump-
tion, regardless of the utility. Second, it can use a
reactive strategy using the DAGAME genetic algo-
rithm. And third, it can use ProDSPL, the proac-
tive strategy presented in this paper. With regard
to this last option, it can consider different predic-
tion horizons.

We have performed the same test using the same
sets of utility and battery consumption values for
the different strategies considered, using the feature
model of our case study and also feature models
randomly generated using SPLOT1 that differ in
the number of features (between 20 and 100 fea-
tures). These models have been created with the
following proportions: 25% of mandatory features,
25% of optional features, 25% of alternative OR

1http://www.splot-research.org/

features and 25% of exclusive XOR features. With
regard to the branching factor, the minimum is 1
and the maximum is 6. The maximum size of the
groups is 6 and all the models are consistent. The
cross-tree constraints are 3-CNF formulas that con-
sider the 20% of features with a clause density of
1.

The simulator starts with the maximum battery
level that will be depleted by the services that are
enabled in each step of the simulation. When the
battery runs out, the simulator stops and registers
the history of the execution. After conducting these
experiments, we realized that the results were very
similar for small models, so in this work we report
the results for larger models of 20 (2268 possible
configurations and battery capacity of 1200 mAh),
40 (867840 possible configurations and battery ca-
pacity of 2400 mAh), 50 (85953600 possible con-
figurations and battery capacity of 4800 mAh) and
100 (impossible to compute the number of configu-
rations and battery capacity of 12000 mAh). As we
have models of different sizes, they will work with
devices with different battery capacity. Note, that
we consider the number of the possible configura-
tions a system can take during runtime, consider-
ing only the dynamic variation points. The global
variability space modeled at design time of SPLs
is usually much more greater than in DSPLs that
only consider runtime variability so the variability
space considered in the experiments can be consider
sufficiently large [4].

As a proof of concept, our proactive strategy has
been implemented using Matlab and connected to
our simulator using the Matlab API for Java2. The
implementation of the proactive strategy is based
on the Matlab Optimization toolbox3, exploiting
the optimproblem and solve functions. The gen-
eration of the configurations is implemented as an
optimization problem whose constraints are derived
from the feature model.

Although reactive strategies can be implemented
using exact or genetic algorithms, we have chosen
the second option because they are more appropri-
ate for problems in which the solution space is very
wide, which is the case of DSPLs of more than 20
features, when it is not feasible to evaluate all of
the possible solutions in a short time frame [13].

2https://www.mathworks.com/help/matlab/

matlab-engine-api-for-java.html
3https://www.mathworks.com/products/optimization.

html

11

http://www.splot-research.org/
https://www.mathworks.com/help/matlab/matlab-engine-api-for-java.html
https://www.mathworks.com/help/matlab/matlab-engine-api-for-java.html
https://www.mathworks.com/products/optimization.html
https://www.mathworks.com/products/optimization.html


Genetic algorithms use heuristic search to find so-
lutions for optimization problems. This kind of al-
gorithms are able to provide nearly optimal solu-
tions for optimization problems without having to
explore the solution space. The execution of a ge-
netic algorithm distinguishes three phases: (i) gen-
eration of a population of random solutions to the
problem; (ii) combination and mutation of the pop-
ulation of initial solutions; and (iii) selection of the
solution that returns the highest value for the ob-
jective function. Normally, these three phases are
executed periodically, and if the current solution
is worse than the new generated solution, the new
configuration is applied to the system.

The reactive strategy implemented in our simu-
lator uses the genetic algorithm DAGAME [4]. The
selection of DAGAME facilitate us to compare the
reactive and proactive strategies in similar condi-
tions: As ProDSPL, DAGAME generates at run-
time the configurations of a DSPL implemented us-
ing a variability model taking into account the util-
ity and the contextual information (i.e., the battery
level). DAGAME also works with extended feature
models, and makes use of a fit function (i.e., ob-
jective function) to drive the configuration process,
which is an unusual characteristic. Finally, the so-
lutions generated by DAGAME have an optimal-
ity higher than 87.5% compared with the optimal
solution. The policy implemented by the reactive
strategy considers two situations for reconfiguring
the system. If the battery of the mobile phone is be-
tween 80% and 100% of its capacity, DAGAME will
look for configurations that maximize utility. But,
once the battery level is lower than the 20% of the
battery capacity, it tries to minimize the battery
consumption to extend the lifetime of the system.

Both the proactive and reactive strategy of our
experiments use models of the system to drive their
behaviour. In the case of ProDSPL, it uses the
model learnt from the system traces at design time
(i.e., the aforementioned the model M) explained
in Section 3). Meanwhile, DAGAME needs a model
of the system to compute its fit function, because
it needs to know the relationship between features
and, utility and battery consumption. For these
experiments, it works with the random values gen-
erated for the simulations about the system be-
haviour. This implies that DAGAME uses perfect
information to generate the successive dynamic con-
figurations at runtime, while the quality of the con-
figurations generated by ProDSPL depends on the
accuracy of the learnt model M.

5.3. Answers to research questions
RQ1. How is the utility of the configu-

rations generated? That is, how good is the
quality of ProDSPL solutions. In order to answer
this question, we compare the accumulated utili-
ties of ProDSPL and DAGAME, a pure reactive
approach that gives quasi-optimal solutions (90%
of the optimal solution). As we explained in Sec-
tion 3, the proactive strategy generates a plan over
a prediction horizon subject to the constraints de-
rived from the DSPL. Our hypothesis is that the
wider the prediction horizon is, the better the accu-
mulated utility of the plan and the accumulated util-
ity of the overall system. Therefore, we include the
prediction horizon of the proactive strategy in our
analysis. The maximum value of prediction horizon
considered is the one that allows the strategy to pro-
vide a plan in a reasonable time, i.e., in the average
iteration should be below ∼ 2 seconds. Hence, this
corresponds to a value of 10 for the feature model
of our case study and the feature model with 20
features. For the rest of the models used, the max-
imum value of the prediction horizon is 8. Addi-
tionally, as DAGAME is a randomized stochastic
approach that gives different results each time is
executed, we consider the average of 20 executions
of the experiment, the best case with regard to the
accumulated utility and the worst case. Figure 3
and Tables 2, 3 and 4 summarize the results of our
experiments.

Figure 3 shows the evolution of the util-
ity and the accumulated utility of the Mobile
Game case study for the different adaptation
strategies supported by our simulator : static
for maximum utility (max-utility), static for mini-
mum battery consumption (min-bc), the three cases
considered for the DAGAME (genetic-avg, genetic-
best and genetic-worst) and the proactive strategy
for different prediction horizons (H = i, i = 1..10).
According to these plots, the proactive strategy
H = 10 reaches the highest accumulated utility af-
ter min-bc. Indeed, it provides a solution with an
utility higher than the min-bc, which elongates the
lifetime of the system more than the other strategies
used. On the other hand, the reactive strategy max-
imizes the utility of the configuration in the first
phase of the simulation reaching a sub-optimal (see
genetic-best and genetic-avg). When the battery
level is lower than the 20%, the reactive strategy
adapts the system to minimize battery consump-
tion. However, this strategy does not reach an ac-
cumulated utility higher than the proactive strategy

12



0 100 200 300 400 500 600 700 800 900 1 000 1 100 1 200 1 300 1 400 1 500
0

100

200

300

400

t

Utility

max-utility min-bc genetic-avg genetic-best genetic-worst H = 1

H = 2 H = 4 H = 5 H = 6 H = 8 H = 10

0 100 200 300 400 500 600 700 800 900 1 000 1 100 1 200 1 300 1 400 1 500
0

100 000

200 000

300 000

t

Accumulated Utility

Figure 3: Comparison of utility (top) and accumulated utility (bottom) for ProDSPL with different prediction horizons (solid
lines), DAGAME (dotted lines) and static strategies (dashed lines).

Table 2: Summary of the experiments for ProDSPL.

FM H Accumulated
Utility

Steps Number of Re-
configurations

Min.
Utility

Max.
Utility

Average
Utility

Std. Dev.
of Utility

20

1 21505 571 4 15 44 37.59 11
2 20455 1327 3 15 32 15.41 1.28
4 20469 1327 3 15 32 15.41 1.28
6 20482 1327 3 15 45 15.42 1.45
8 20499 1327 3 15 45 15.42 1.45
10 21480 571 3 15 44 37.61 11.01

40

1 48591 469 4 26 121 103.38 26.81
2 48641 469 4 26 147 103.49 26.88
4 42171 1391 3 26 114 30.29 13
6 42076 1391 3 19 69 30.22 12.81
8 48554 469 4 26 121 103.3 26.88

50

1 126380 763 4 78 188 168.41 35.85
2 138660 1700 2 78 108 81.56 9.71
4 138376 1700 3 76 108 81.56 9.7
6 138743 1700 3 78 108 81.56 9.7
8 138817 1700 3 78 157 81.6 9.87

100

1 270424 1400 4 14 233 193.02 57.37
2 277752 4106 3 61 385 67.41 19.85
4 274040 4064 3 61 408 67.41 20.31
6 269269 1360 4 61 233 197.84 53.1
8 273508 1402 4 61 336 194.7 55.29

13



Table 3: Summary of the experiments for DAGAME.

FM Experiment Accumulated
Utility

Steps Number of Re-
configurations

Min.
Utility

Max.
Utility

Average
Utility

Std. Dev.
of Utility

20
Best 29004 528 16 26 65 54.87 13.9

Worst 24833 483 17 26 65 51.25 13.25
Average 26307 535 1.3 65 48.99 18.11

40
Best 46440 395 37 29 161 117.41 55.43

Worst 45207 388 36 16 161 116.36 56.61
Average 45919 397 1.45 161 115 57.28

50
Best 144046 1377 13 93 187 104.53 27.04

Worst 133443 1306 11 87 214 102.09 34.63
Average 139144 1382 4.75 202.75 100.61 34.5

100
Best 291737 1359 25 80 360 214.51 56.99

Worst 264024 1277 26 99 404 206.59 70
Average 277142 1318 0.075 398.7 203.78 79.44

and even, genetic-average does not improve the ac-
cumulated utility of max-utility. This behaviour is
similar to the proactive strategy with H = 1 (nearly
reactive), which reaches an utility higher than the
genetic-best and an accumulated utility higher than
the genetic-avg.

The results obtained for the random fea-
ture models are shown in Tables 2 and 3.
For ProDSPL we highlight in bold the highest
results of the accumulated utility for each horizon
(Table 2). Additionally, Table 4 shows the percent-
age difference of these results between the ProD-
SPL experiment with the highest accumulated util-
ity for each feature model (in bold in Table 2) and
the average case of DAGAME. Looking at the re-
sults shown in Tables 2 and 3, we can see that
the Accumulated Utility of the system during all its
lifetime are remarkably similar for ProDSPL and
DAGAME (nearly the same for feature models with
50 and 100 features, with a difference of -0.23% and
+0.21% as shows Table 4). For the smallest model
of 20 features the results are better for DAGAME
(20% as Table 4 shows), but for the model of 40 fea-
tures are slightly better for ProDSPL (almost 6%).
However, note that the proactive strategy makes
the system live longer in all the scenarios (see Steps
column that refers to number of simulation steps).
For the model of 100 features, the system lives with
ProDSPL during 4106 steps, and with DAGAME
only lives 1318 steps (the percentage difference is
around 100%). Another very important difference
is how stable the system is during its lifetime in
each case, i.e., the approach which needs the least
number of reconfigurations to achieve a given ac-

cumulated utility, is the best one. Taking a look
to the results we can see that to obtain similar
accumulated utility as commented above, ProD-
SPL always requires a lower number of reconfigura-
tions (see column Number of reconfigurations). The
proactive approach makes 3 or 4 reconfigurations,
and the reactive one makes much more, from 11 to
37 reconfigurations, being the percentage difference
for this value between ProDSPL and DAGAME
higher than 120% for all the experiments.

With regard to the descriptive statistics, we will
analyze the utility of each configuration generated
by both strategies. The configurations generated by
ProDSPL have minimum values of utility higher
than the ones of DAGAME (see column Min. Util-
ity). However, these configurations do not reach
values of utility as high as the configurations gen-
erated by DAGAME (see column Max. Utility).
With regard to the average utility (see column
Average utility), DAGAME obtains better results
for all the experiments, but the higher number of
steps of ProDSPL experiments makes possible for
ProDSPL to accumulate similar values of utility.
Finally, the standard deviation of the utility (see
column Std. Dev. of Utility) is lower for ProD-
SPL. This illustrates the capacity of this strategy
to keep the system more stable, because the utility
offered by the system during the whole lifetime is
similar, and do not vary a lot, so the user experience
will be less stressful. We consider these results are
positive because, as DAGAME is able to generate
configurations with about 90% optimality, and the
utility of the solutions obtained using ProDSPL
is very similar, it means that ProDSPL is able

14



to generate configurations with also approximately
90% of the optimal configuration that would be ob-
tained using an exact algorithm.

Finally, regarding the influence of the prediction
horizon, we observe great similarities in the accu-
mulated utility obtained when predictions horizons
are 1 (almost reactive) or 8/10. The interpretation
that we made of this result is for this kind of mod-
els the best strategy (even in the long term with
prediction horizon 8/10) is to maximize the utility
as much as possible in each step of the simulation.
This will also explain the similarities found between
ProDSPL and DAGAME for these experiments.

Taking into account the results of our experi-
ments, our answer for RQ1 is the accumulated
utility of the proactive strategy is very good,
since it is comparable with the accumulated
utility of the reactive strategy that tries to
maximize utility in every step. Also, the
proactive approach makes the system to live
longer, needs much less reconfigurations to
keep a certain quality, so the system execu-
tion will be more stable from the points of
view of the user utility. Which strategy scores
better depends on the size and attributes of the
specific feature model. As future work, it would be
interesting to explore which kind of feature models
are better for each strategy.

RQ2. How good are the execution times
of the proactive control for DSPL? In order
to answer this question, we have measured the exe-
cution time of ProDSPL for different prediction
horizons (see Table 5). We stopped our experi-
ments when the response time of the algorithm be-
come unacceptable for the reconfiguration of an ap-
plication that requires user interaction. We have
reached this limit with a prediction horizon of 8
for some experiments and 10 for others. To ad-
dress the self-adaptation of real time applications,
ProDSPL can be adjusted to reduce the worsts ex-
ecution times. Related to this, the real-time com-
munity has explored different options [9] that in-
cludes to exploit simple properties of interior point
algorithms, to execute the next proposed step by
the proactive strategy instead of compute a new
plan, or to reduce the complexity of the problem.
We will explore this issue as future work. The an-
swer to this questions is that, the execution
times of the proactive strategy are in the or-
der of milliseconds on average. However, in
the worst case it could be around some min-
utes, so we plan to explore some strategies to

reduce these times. In any case, these results
makes our approach suitable for user inter-
action when the prediction horizon is not so
high.

RQ3. When is it better the use of a proac-
tive strategy than a reactive strategy for a
given system?. In accordance with the results of
our experiments, the ProDSPL is able to gener-
ate configurations with an accumulated utility sim-
ilar to DAGAME and making the system living for
longer. Additionally, we have shown with our
experimental results that ProDSPL is able
to provide more stable configurations of the
system, requiring less reconfigurations and
maintaining a good and regular quality of
service . In these experiments, we do not consider
the cost of reconfiguring the internal architecture
of the system, but of course it introduces an im-
portant overhead in resource consumption (e.g., en-
ergy, cpu time), while it could interrupt user work
during reconfiguration [31]. So, we consider that re-
configuration strategies that minimize the quantity
of system adaptations required are very advanta-
geous. As we have already commented above, the
number of reconfigurations performed in our exper-
iments (see column Number of Reconfigurations in
Tables 2 and 3), shows that the system adapted by
DAGAME required between 11 and 37 reconfigu-
rations of the system, while ProDSPL required
to reconfigure the system only between 3 and 4
times, depending on the prediction horizon consid-
ered. The number of reconfigurations performed
by the genetic algorithm is the expected because
these algorithms are always looking for a solution
that improves the quality of current configuration
and they use pseudo-random approaches (see Sec-
tion 5.2). Therefore, it is very likely that during the
execution of the experiment it reconfigures the sys-
tem many times (i.e., any time it founds a solution
better than the current one). On the other hand,
ProDSPL has a plan with the best possible config-
uration taking into account its learnt model of the
system, which models the probable behavior of the
system in a future term and can be taken into ac-
count. Then, it usually maintains the system in the
same configuration, unless a sudden change in the
context, or reaching some boundary requiring im-
mediate reconfiguration happens. Notice that ex-
periments take as input the same set of values of
utility and battery consumption as contextual in-
formation.

Minimizing the energy consumption of adapta-

15



Table 4: Percentage differences between ProDSPL and DAGAME.

FM Accumulated
utility

Steps Number of re-
configurations

Min.
Utility

Max.
Utility

Average
utility

Std. Dev.
Utility

20 -20.087% 7.82% -121.95% 168.09% -38.53% -26.33% -48.84%
40 5.75% 16.62% -160.49% 178.87% -9.09% -10.53% -72.24%
50 -0.23% 20.63% -120% 177.03% -25.43% -20.86% -111.02%
100 0.21% 100.53% -157.89% 199.5% -3.49% -100.57% -120.03%

Table 5: Times statistics in milliseconds for ProDSPL.

FM H Min Max Avg. Std. Dev.

20

1 115 1987 236 99
2 142 2600 625 226
4 138 2824 703 256
6 153 4225 785 339
8 175 4041 839 408
10 363 4357 653 208

40

1 232 3060 469 183
2 232 3553 784 249
4 263 4496 882 292
6 295 4776 1005 335
8 567 5358 805 257

50

1 303 4789 510 180
2 325 3645 951 253
4 355 4580 1103 304
6 355 5194 1221 365
8 375 434148 1578 10497

100

1 615 3884 1073 314
2 508 398719 1732 7863
4 540 399373 1949 7915
6 910 308411 1675 8327
8 951 309379 2087 8234

tion is specially important in battery powered de-
vices, like mobile phones. In [31, 32] it is shown
that although the benefit of applying reconfigura-
tion services is always worthy to maintain the good
quality and health of the system, it introduces an
energy consumption overhead that should be con-
sidered when choosing a self-adaptation strategy.
Indeed, the authors of these papers compare three
different mechanisms to execute a reconfiguration
plan in Android phones, and the energy cost of
monitoring and executing the plan goes from 0.68%
to 2.30% ([32], Figure 6) of the total cost (the de-
cision making considered here is the most simplest
one, rules based on if-clauses). So, this study sug-
gests that executing a reconfiguration plan 37 times
(the worst case of the reactive strategy) could intro-
duce a substantial energy consumption overhead,
comparing to the 3 or 4 times of ProDSPL. On
the other hand, the energy consumption in mobile
phones is not only important for the battery life-
time, but also from the sustainability point of view.
Any decrease in energy consumption of an app,
would significantly mitigate the greenhouse effect of
ICT technologies, when it is executed in thousand
or millions of mobile phones. However, consider-
ing the energy consumption of software in mobile
phones is very difficult to measure accurately [31],
more experiments should be performed to achieve
forceful conclusion, and this is beyond of the scope
of this paper.

The other important issue is the response time.
DAGAME is able to provide a solution in millisec-
onds [4], while the average time of ProDSPL is
between 236 milliseconds and 2 seconds, which are
acceptable times that do not affect user interaction.

An interesting feature of the proactive strategy
is that we can guarantee how the system will
behave, because of the stability of the con-
figurations and the number of solutions pro-
vided is deterministic. This is not the case of
the genetic algorithm, where each execution gives
different solutions. For instance, for the model with

16



20 features, the average of the accumulated utility
is 26307, but in the best case is 29004 and in the
worst case is 24833. Additionally, for the same fea-
ture model, there is a difference of 52 simulation
steps, for the same system conditions. This is not
the case of the proactive strategy, which has the
same behaviour for each execution.

In conclusion, ProDSPL is advantageous for
scenarios without hard real time constraints (our
system provide solutions with an accuracy near to
90% of the optimal solution) and in which the re-
configuration of the system has a great cost in terms
of computational resources (energy, memory and
computation), and when a system reconfiguration
is noticeably by the user, leading to her/his dissat-
isfaction.

6. Threats to validity

This section discusses briefly the internal valid-
ity, construct validity and external validity of our
study [33]. The internal validity intends to ex-
plore whether the results obtained are influenced
or not by other factors. Threats to construct valid-
ity are concerned to the completeness of our study,
as well as any potential bias. Finally, external va-
lidity analyses whether the results obtained in the
experiments can be generalized or not.

One important threat for the internal validity is
the accuracy of the results provided. This is spe-
cially important in experiments with real devices
because measuring tools usually focus on the en-
tire device (i.e., not in the specific application) and
introduce an additional error. In order to avoid
this threat, we have focused on simulated scenarios,
which prevent for possible errors introduced by this
kind of measuring tools. Additionally, our experi-
mental setting facilitates the reproduction of our
results.

The first construct validity identified is related
with the algorithms used to compare the work
of ProDSPL. Once the use of exact algorithms
for DSPL was discarded because, according to the
literature [7], they only work with small feature
models (i.e., around 20 features), we decided to
compare our solution with an stochastic approach.
In this area, there are a lot of relevant works
[13, 4, 16, 34, 35] but, to avoid the introduction
of additional bias, we focus on those algorithms
that work with extended feature models, and the
source code developed by the authors is available.

These conditions are fulfilled by FEMOSAA4 and
DAGAME5. Finally, we settle on DAGAME be-
cause it shares two main points with our work: it is
single objective and takes into account battery con-
sumption of features to generate the dynamic con-
figuration of the feature model. This means that
it is not possible to generate a configuration with
a battery consumption higher than the remaining
battery level of the device.

Threats to construct validity could be also re-
lated to the stochastic nature of genetic algorithms
which can influence the measurements. We have
addressed this threat by doing five repetitions of
each experiments. Additionally, we have summa-
rized the results for the best case, the worst case
and the average case.

An important threat to the external validity is
the selection of the feature models used in the ex-
periments. We have addressed this threat by select-
ing the same feature model used for the evaluation
of DAGAME in [4] and some randomly generated
feature models. However, we are aware that there
could be issues with a particular combination of the
FM size, the variability degree and the number of
cross-tree constraints for which the results obtained
in our experiments could be different.

We consider the number of features of feature
models used in the experiments as a threat to the
external validity. When the number of features in-
creases, the number of possible configurations of the
feature model increases too, and it is more difficult
for the algorithms to generate a solution. In this re-
gard, we take into consideration scenarios in which
the number of features is high enough to pose a
challenge for the algorithms. According to the lit-
erature, this limit is around to 20 features [7]. On
the other hand, we have to consider an upper bound
for the number of features. In the case of mobile
apps, as our case study, this upper bound is set
around 20 features [16], while for general applica-
tions, some works suggest an upper bound of 100
[36], and other works consider 1000 features [34].
However, in our opinion, an application that could
change 1000 features at runtime is unrealistic. So,
our bound ranges between 20 and 100 features, con-
sidering in this range 4 different sizes of features
model to have enough variety.

4https://github.com/JerryI00/

Software-Adaptive-System
5http://www.lcc.uma.es/~gustavo/mo-dagame.html

17

https://github.com/JerryI00/Software-Adaptive-System
https://github.com/JerryI00/Software-Adaptive-System
http://www.lcc.uma.es/~gustavo/mo-dagame.html


7. Related work

7.1. Decision making process in DSPLs

There are several works that rely on randomized
stochastic approaches, mainly genetic algorithms,
to generate the configuration of the feature model
[13, 4, 16, 34, 35]. The main advantage of these ap-
proaches is that they can provide quasi-optimal so-
lutions that can be generated during the execution
of the system, in a reasonable time. The quality
of the solutions obtained is evaluated using fitness
functions. However, the use of genetic algorithms
and feature models requires tackling with three im-
portant challenges: (i) to avoid the exploration of
not valid feature model configurations; (ii) to make
an homogeneous exploration of the search space;
and (iii) the management of numerical features.

One of the first approaches to consider the combi-
nation of DSPL and genetic algorithms is GAFES
[13], which considers the generation of configura-
tions taking into account resource constraints of the
system to be configured. This approach considers
feature models without numerical features and the
selection of configurations is based in the operator
FesTransform, which is able to fix an invalid con-
figuration.

DAGAME [4] and MODAGAME [16] are ap-
proaches for the self-adaptation of mobile devices
applications using genetic algorithms. The decision
strategy used is a combination of fitness functions
and ECA rules. When the fitness of the system is
below a threshold the DSPL request a new config-
uration to the algorithm. These approaches used a
fix operator to repair non valid configuration gener-
ated by the genetic algorithm, and make it valid. In
[16] authors explore the solution space by applying
different Multi-Objective Evolutionary Algorithms
(MOEA) using the Hyper Volume metric. The con-
clusion is that, depending on the size of the model,
MOEA algorithms exhibit a significantly different
behaviour. It is remarkable the case of the algo-
rithm MCHC, which shows the best results for big
feature models (i.e. more than 500 features) and the
worst results for small feature models (i.e. less than
25 features). In these works numerical features are
modeled using XOR groups whose members are all
the possible values that the numerical feature can
take. This solution complicates the definition of
cross-tree constraint involving numerical features.

FEMOSAA [34] is a framework that explores
the synergy between feature models and a given
MOEA to optimize systems at runtime. In order

to avoid the exploration of incorrect FM configu-
rations, it uses an special encoding of the feature
model into chromosomes. This encoding consid-
ers the core features of the feature model, distinct
elitist features, and dependency operators to drive
the search space exploration to avoid incorrect FM
configurations. Regarding the numerical features,
FEMOSAA considers a solution similar to the one
used by DAGAME, but defining also numeric de-
pendencies.

The work presented in [35] follows the same ideas
of the previous works, but it is based on a depen-
dency operator that drives the generation of chro-
mosomes. This algorithm demonstrates a better
response time compared to [16]. However, this pro-
posal does not consider numerical features and the
completeness of the solution space explored is not
evaluated.

The use of exact solutions in DSPL approaches is
not very common due to their computational com-
plexity. However, for some specific domains, and
depending on the number of the number of FM
configurations, this kind of decision strategy can
be adopted. The work in [3] presents an adaptation
strategy for the self-healing of service compositions.
This work models the self-healing as a pseudo-
boolean optimization problem that is resolved us-
ing a SAT solver. For feature models with less than
2.000 possible configurations, the adaptation pro-
cess requires around 300 ms. A Branch&Bound
algorithm is used in the work [5] for the dynamic
adaptation of Multi-Cloud Applications. This algo-
rithm is able to generate the optimal configuration
of the application in 2 milliseconds for feature mod-
els with less than 60 configurations. In the context
of mobile applications, Braatas et al. [37] propose
an extension of the MUSIC framework to adapt
mobile applications taking into account utility and
power consumption. The goal of MUSIC [38] is
to reconfigure dynamically at runtime component-
based applications to react to context changes and
to maintain the application utility in a dynamic en-
vironment.

Approaches supported by learning, such as [2,
39], use artificial intelligence techniques to learn the
influence of a configuration of the feature model on
one or more goals that the DSPL should maintain.

FUSION [2] is an approach that uses learning to
determine the influence of the activation of features
in the non-functional goals of a system. This infor-
mation is captured in an analytical model of the sys-
tem. The definition of goals in fusion comes with

18



a threshold that establishes when it is acceptable
for the user or not the accomplishment of a goal.
If the accomplishment of a goal is unacceptable,
an adaptation process is launched that affects only
to the features that influences the goal and the fea-
tures that are linked with those features. One of the
contributions of this proposal is an on-line process
which is able to update the analytical model of the
system at runtime. If there is a discordance between
the expected utility of the system and the current
utility, an induction process is launched that up-
dates the analytical model of the system.

Other approach based on learning is the work
presented in [39]. This approach is based on con-
text feature models and it is able to adapt the DSPL
to pursue different goals depending on the context.
As FUSION and our approach, it is able to learn
an analytical model (i.e., a performance influence
model) of the influence of the features in goals using
system traces at design time. These performance-
influence models encode the relationship between
context, system features and optimization goals.
The DMP strategy of this proposal incorporates to
this model consistency and nonfunctional influences
to generate optimal and consistent configurations at
runtime using SAT and MILP solvers.

ProDSPL could be classified in the class of ap-
proaches supported by learning. The approaches
mentioned above share with ProDSPL the formal-
ization of the feature model as a mixed integer lin-
ear program. However, they do not support ex-
tended feature models as we do, which limits the
applicability of these proposals. They do not prop-
erly consider group with variable number of mem-
bers (i.e., not just OR, AND or XOR), complex
cross-tree constraints and numerical features. On
top of that, the main difference between ProDSPL
and these approaches is that they are reactive ap-
proaches, so they react to specific situations (e.g.,
the violation of a goal) and try to provide the opti-
mal or the nearly optimal configuration in a given
context for some specific goals. We do not claim
that proactive adaptation is the best option for all
scenarios, but this is the main difference between
our approach and these approaches.

7.2. Reconfiguration based on proactive control

All the solutions presented above in this section
are characterized for being reactive, i.e., the sce-
nario that triggers the decision making process is
when the execution context changes.

Although the use of proactive control in DSPL
as a decision making strategy is relatively new, re-
cent proactive self-adaptation mechanisms applying
ideas from control theory, such as MPC [10], can
be found. There are approaches that apply predic-
tive control in different domains, such as cloud com-
puting, to guarantee non-functional properties [40],
on a Denial of Service (DoS) attack scenario [41],
or Meeting-Scheduling System [9]. The work in
[8] compares two approaches, which are inspired
by MPC, using the same benchmark system. The
main conclusion is that the improvement that can
be obtained with each type of proactive approach
is scenario-dependent.

8. Conclusions

In this work we have presented ProDSPL, a
combination of Proactive control with DSPL for the
self-adaptation of software system. Usually, deci-
sion making strategies for DSPL are based on reac-
tive approaches that tries to optimize the configura-
tion of the system for the present situation. How-
ever, in some scenarios a reactive strategy could
lead to a faster depletion of system resources, and
even to a unstable behaviour of the system, as each
time the configuration is adapted implies a cost in
terms of computational resources or time. Our ap-
proach supports the adoption of a proactive strat-
egy instead of a reactive one, which manages to
reduce the number of adaptations. This is because
the adaptation involves proposing a new configu-
ration considering not only the current context of
the system, but also the system expected evolution
over time, which maintains the system in a valid
and stable configuration for a longer time.

Experimentation has showed the feasibility of
ProDSPL, which has been surveyed by the anal-
ysis of the utility of the configurations obtained,
the number of reconfigurations needed, the last-
ing of the system, and the response time. Also,
ProDSPL has been compared with DAGAME,
a genetic algorithm that generates nearly optimal
configurations of a DSPL. In the comparison, in
terms of response time, our approach shows slightly
higher times, but still reasonable, comparing to
DAGAME. In contrast, ProDSPL shows better re-
sults for the accumulated utility of the system, be-
ing able to generate system configurations near to
the optimal ones. Additionally, ProDSPL gener-
ates configurations of the system more stable, which
minimizes the number of reconfigurations required.

19



In our ongoing work, the goal is to optimize
ProDSPL to reduce the response time, the re-
sources used (e.g., cpu, memory) to consume less
energy, while improving the quality of solutions.
Another line of future work is to explore the use of
this proactive strategy for multi-objective DSPL.

Acknowledgements

This work is supported by the projects TASOVA
MCIU-AEI TIN2017-90644-REDT, by the projects
co-financed by FEDER funds LEIA UMA18-
FEDERJA-15, MEDEA RTI2018-099213-B-I00
and Rhea P18-FR-1081, by the Swedish Founda-
tion for Strategic Research under the project “Fu-
ture factories in the cloud (FiC)” with grant num-
ber GMT14-0032, and by the post-doctoral plan of
the University of Málaga.

References

[1] J. Tavčar, I. Horváth, A review of the principles of
designing smart cyber-physical systems for run-time
adaptation: Learned lessons and open issues, IEEE
Transactions on Systems, Man, and Cybernetics: Sys-
tems 49 (1) (2019) 145–158. doi:10.1109/TSMC.2018.

2814539.
[2] A. Elkhodary, N. Esfahani, S. Malek, Fusion: A frame-

work for engineering self-tuning self-adaptive software
systems, in: Proceedings of the Eighteenth ACM SIG-
SOFT International Symposium on Foundations of
Software Engineering, FSE ’10, ACM, New York, NY,
USA, 2010, pp. 7–16. doi:10.1145/1882291.1882296.
URL http://doi.acm.org/10.1145/1882291.1882296

[3] M. Bashari, E. Bagheri, W. Du, Self-adaptation of ser-
vice compositions through product line reconfiguration,
Journal of Systems and Software 144 (2018) 84 – 105.

[4] G. G. Pascual, M. Pinto, L. Fuentes, Self-adaptation of
mobile systems driven by the common variability lan-
guage, Future Generation Computer Systems 47 (2015)
127 – 144.

[5] A. Almeida, F. Dantas, E. Cavalcante, T. Batista, A
branch-and-bound algorithm for autonomic adaptation
of multi-cloud applications, in: 2014 14th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, IEEE, Piscataway, USA, 2014, pp. 315–
323. doi:10.1109/CCGrid.2014.25.

[6] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dy-
namic software product lines, Computer 41 (4) (2008)
93–95. doi:10.1109/MC.2008.123.

[7] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés,
M. Hinchey, An overview of dynamic software product
line architectures and techniques: Observations from
research and industry, Journal of Systems and Software
91 (2014) 3 – 23.

[8] G. A. Moreno, A. V. Papadopoulos, K. Angelopoulos,
J. Cámara, B. Schmerl, Comparing model-based predic-
tive approaches to self-adaptation: Cobra and pla, in:
12th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS),

SEAMS ’17, IEEE, Piscataway, USA, 2017, pp. 42–53.
doi:10.1109/SEAMS.2017.2.

[9] K. Angelopoulos, A. V. Papadopoulos, V. E. S. Souza,
J. Mylopoulos, Engineering self-adaptive software sys-
tems: From requirements to model predictive control,
ACM Transactions on Autonomous and Adaptive Sys-
tems 13 (1) (2018) 1:1–1:27. doi:10.1145/3105748.

[10] E. Camacho, C. Bordons, Model Predictive Control,
Advanced Textbooks in Control and Signal Processing,
Springer London, 2007.

[11] M. Noorian, E. Bagheri, W. Du, Toward automated
quality-centric product line configuration using inten-
tional variability, Journal of Software: Evolution and
Process 29 (9) (2017) e1870. doi:10.1002/smr.1870.

[12] J. Li, X. Liu, Y. Wang, J. Guo, Formalizing feature
selection problem in software product lines using 0-1
programming, in: Y. Wang, T. Li (Eds.), Practical Ap-
plications of Intelligent Systems, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012, pp. 459–465.

[13] J. Guo, J. White, G. Wang, J. Li, Y. Wang, A genetic
algorithm for optimized feature selection with resource
constraints in software product lines, Journal of Sys-
tems and Software 84 (12) (2011) 2208 – 2221.

[14] K. C. Kang, J. Lee, P. Donohoe, Feature-oriented prod-
uct line engineering, IEEE Software 19 (4) (2002) 58–65.
doi:10.1109/MS.2002.1020288.

[15] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated
analysis of feature models 20 years later: A literature
review, Information Systems 35 (6) (2010) 615 – 636.
doi:https://doi.org/10.1016/j.is.2010.01.001.
URL http://www.sciencedirect.com/science/

article/pii/S0306437910000025

[16] G. G. Pascual, R. E. Lopez-Herrejon, M. Pinto,
L. Fuentes, A. Egyed, Applying multiobjective evolu-
tionary algorithms to dynamic software product lines
for reconfiguring mobile applications, Journal of Sys-
tems and Software 103 (2015) 392 – 411.

[17] T. Dinkelaker, R. Mitschke, K. Fetzer, M. Mezini, A
dynamic software product line approach using aspect
models at runtime, in: First Workshop on Composi-
tion and Variability, Technische Universität Darmstadt,
Darmstadt, Germany, 2010, pp. 1–8.

[18] M. Rosenmüller, N. Siegmund, M. Pukall, S. Apel, Tai-
loring dynamic software product lines, in: Proceedings
of the 10th ACM International Conference on Genera-
tive Programming and Component Engineering, GPCE
’11, ACM, New York, NY, USA, 2011, pp. 3–12. doi:

10.1145/2047862.2047866.
URL http://doi.acm.org/10.1145/2047862.2047866

[19] G. A. Moreno, J. Cámara, D. Garlan, B. Schmerl,
Proactive self-adaptation under uncertainty: A prob-
abilistic model checking approach, in: Proceedings of
the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, ACM, New York, NY,
USA, 2015, pp. 1–12. doi:10.1145/2786805.2786853.

[20] D. Seborg, T. Edgar, D. Mellichamp, F. Doyle, Process
Dynamics and Control, 4th Edition, Wiley, 2016.
URL https://books.google.es/books?id=

-8aPDQAAQBAJ

[21] L. Ljung, System Identification: Theory for the User,
Prentice Hall PTR, Upper Saddle River, NJ, USA,
1999.

[22] M. Maggio, A. V. Papadopoulos, A. Filieri, H. Hoff-
mann, Automated control of multiple software goals
using multiple actuators, in: Proceedings of the 2017

20

http://dx.doi.org/10.1109/TSMC.2018.2814539
http://dx.doi.org/10.1109/TSMC.2018.2814539
http://doi.acm.org/10.1145/1882291.1882296
http://doi.acm.org/10.1145/1882291.1882296
http://doi.acm.org/10.1145/1882291.1882296
http://dx.doi.org/10.1145/1882291.1882296
http://doi.acm.org/10.1145/1882291.1882296
http://dx.doi.org/10.1109/CCGrid.2014.25
http://dx.doi.org/10.1109/MC.2008.123
http://dx.doi.org/10.1109/SEAMS.2017.2
http://dx.doi.org/10.1145/3105748
http://dx.doi.org/10.1002/smr.1870
http://dx.doi.org/10.1109/MS.2002.1020288
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://dx.doi.org/https://doi.org/10.1016/j.is.2010.01.001
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://www.sciencedirect.com/science/article/pii/S0306437910000025
http://doi.acm.org/10.1145/2047862.2047866
http://doi.acm.org/10.1145/2047862.2047866
http://dx.doi.org/10.1145/2047862.2047866
http://dx.doi.org/10.1145/2047862.2047866
http://doi.acm.org/10.1145/2047862.2047866
http://dx.doi.org/10.1145/2786805.2786853
https://books.google.es/books?id=-8aPDQAAQBAJ
https://books.google.es/books?id=-8aPDQAAQBAJ
https://books.google.es/books?id=-8aPDQAAQBAJ
https://books.google.es/books?id=-8aPDQAAQBAJ
http://doi.acm.org/10.1145/3106237.3106247
http://doi.acm.org/10.1145/3106237.3106247


11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2017, ACM, New York, NY, USA,
2017, pp. 373–384. doi:10.1145/3106237.3106247.
URL http://doi.acm.org/10.1145/3106237.3106247

[23] E. Hadjiconstantinou, G. Mitra, Transformation of
propositional calculus statements into integer and
mixed integer programs: An approach toward auto-
matic reformulation, Tech. rep., U.S. Army’s European
Research Office (1991).

[24] R. G. Jeroslow, Lecture 5: Propositional logic and
mixed integer programming, in: Logic-Based Decision
Support, Vol. 40 of Annals of Discrete Mathemat-
ics, Elsevier, Amsterdam, Netherlands, 1989, pp. 79
– 102. doi:https://doi.org/10.1016/S0167-5060(08)
70527-2.

[25] G. G. Brown, R. F. Dell, Formulating integer linear
programs: A rogues’ gallery, INFORMS Transactions
on Education 7 (2) (2007) 153–159. doi:10.1287/ited.
7.2.153.

[26] H. Williams, Logic applied to integer programming and
integer programming applied to logic, European Jour-
nal of Operational Research 81 (3) (1995) 605 – 616.

[27] P. Hansen, Methods of nonlinear 0-1 programming,
in: P. Hammer, E. Johnson, B. Korte (Eds.), Dis-
crete Optimization II, Vol. 5 of Annals of Discrete
Mathematics, Elsevier, 1979, pp. 53 – 70. doi:https:

//doi.org/10.1016/S0167-5060(08)70343-1.
URL http://www.sciencedirect.com/science/

article/pii/S0167506008703431

[28] S. Boyd, L. Vandenberghe, Convex optimization, Cam-
bridge university press, Cambridge, United Kingdom,
2004.

[29] V. R. Basili, Software modeling and measurement: The
goal/question/metric paradigm, Tech. rep., University
of Maryland at College Park, College Park, MD, USA
(1992).

[30] L. He, K. G. Shin, How long will my phone battery
last?, arXiv preprint arXiv:1711.03651.

[31] A. Cañete, J. Horcas, I. Ayala, L. Fuentes, Energy ef-
ficient adaptation engines for android applications, Inf.
Softw. Technol. 118.

[32] A. Cañete, J. Horcas, L. Fuentes, Mecanismos de re-
configuración eco-eficiente de código en aplicaciones
móviles android, SISTEDES, JISBD.
URL https://biblioteca.sistedes.es/submissions/

descargas/2018/JISBD/2018-JISBD-071.pdf

[33] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, A. Wesslén, Experimentation in software
engineering, Springer Science & Business Media, 2012.

[34] T. Chen, K. Li, R. Bahsoon, X. Yao, Femosaa:
Feature-guided and knee-driven multi-objective opti-
mization for self-adaptive software, ACM Trans. Softw.
Eng. Methodol. 27 (2) (2018) 5:1–5:50. doi:10.1145/

3204459.
[35] A. Alidra, M. T. Kimour, Adapting large pervasive and

context-aware systems. a new evolutionary-based ap-
proach, International Journal of Knowledge-based and
Intelligent Engineering Systems 21 (2) (2017) 103–121.

[36] N. Siegmund, M. Rosenmüller, M. Kuhlemann,
C. Kästner, S. Apel, G. Saake, Spl conqueror: Toward
optimization of non-functional properties in software
product lines, Software Quality Journal 20 (3) (2012)
487–517. doi:10.1007/s11219-011-9152-9.

[37] G. Brataas, S. Jiang, R. Reichle, K. Geihs, Performance
property prediction supporting variability for adaptive

mobile systems, in: Proceedings of the 15th Interna-
tional Software Product Line Conference, Volume 2,
SPLC ’11, ACM, New York, NY, USA, 2011, pp. 37:1–
37:8.

[38] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hall-
steinsen, J. Lorenzo, A. Mamelli, U. Scholz, Mu-
sic: Middleware support for self-adaptation in ubiqui-
tous and service-oriented environments, in: B. H. C.
Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee
(Eds.), Software Engineering for Self-Adaptive Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009,
pp. 164–182. doi:10.1007/978-3-642-02161-9_9.

[39] M. Weckesser, R. Kluge, M. Pfannemüller, M. Matthé,
A. Schürr, C. Becker, Optimal reconfiguration of dy-
namic software product lines based on performance-
influence models, in: Proceedings of the 22nd Inter-
national Systems and Software Product Line Confer-
ence - Volume 1, SPLC ’18, Association for Comput-
ing Machinery, New York, NY, USA, 2018, p. 98–109.
doi:10.1145/3233027.3233030.

[40] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy,
G. Jiang, Power and performance management of vir-
tualized computing environments via lookahead con-
trol, Cluster Computing 12 (1) (2009) 1–15. doi:

10.1007/s10586-008-0070-y.
[41] J. Cámara, W. Peng, D. Garlan, B. R. Schmerl, Rea-

soning about sensing uncertainty and its reduction in
decision-making for self-adaptation, Sci. Comput. Pro-
gram. 167 (2018) 51–69. doi:10.1016/j.scico.2018.

07.002.
URL https://doi.org/10.1016/j.scico.2018.07.002

21

http://dx.doi.org/10.1145/3106237.3106247
http://doi.acm.org/10.1145/3106237.3106247
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70527-2
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70527-2
http://dx.doi.org/10.1287/ited.7.2.153
http://dx.doi.org/10.1287/ited.7.2.153
http://www.sciencedirect.com/science/article/pii/S0167506008703431
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70343-1
http://dx.doi.org/https://doi.org/10.1016/S0167-5060(08)70343-1
http://www.sciencedirect.com/science/article/pii/S0167506008703431
http://www.sciencedirect.com/science/article/pii/S0167506008703431
https://biblioteca.sistedes.es/submissions/descargas/2018/JISBD/2018-JISBD-071.pdf
https://biblioteca.sistedes.es/submissions/descargas/2018/JISBD/2018-JISBD-071.pdf
https://biblioteca.sistedes.es/submissions/descargas/2018/JISBD/2018-JISBD-071.pdf
https://biblioteca.sistedes.es/submissions/descargas/2018/JISBD/2018-JISBD-071.pdf
https://biblioteca.sistedes.es/submissions/descargas/2018/JISBD/2018-JISBD-071.pdf
http://dx.doi.org/10.1145/3204459
http://dx.doi.org/10.1145/3204459
http://dx.doi.org/10.1007/s11219-011-9152-9
http://dx.doi.org/10.1007/978-3-642-02161-9_9
http://dx.doi.org/10.1145/3233027.3233030
http://dx.doi.org/10.1007/s10586-008-0070-y
http://dx.doi.org/10.1007/s10586-008-0070-y
https://doi.org/10.1016/j.scico.2018.07.002
https://doi.org/10.1016/j.scico.2018.07.002
https://doi.org/10.1016/j.scico.2018.07.002
http://dx.doi.org/10.1016/j.scico.2018.07.002
http://dx.doi.org/10.1016/j.scico.2018.07.002
https://doi.org/10.1016/j.scico.2018.07.002

	Introduction
	Background
	Dynamic Software Product Lines
	Decision making process in DSPLs
	Model Predictive Control

	The ProDSPL approach
	Variability model design
	Learning the system model
	Transformation of the variability model into linear constraints
	Formulation of the decision-making strategy

	ProDSPL in action
	Case study
	Linear constraint derivation
	Formulation of the decision-making strategy

	Experimental results
	Objectives and Research Questions
	Data collection
	Answers to research questions

	Threats to validity
	Related work
	Decision making process in DSPLs
	Reconfiguration based on proactive control

	Conclusions

