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SUMMARY

COVID-19 is a systemic infection that exerts significant impact on the meta-
bolism. Yet, there is little information on how SARS-CoV-2 affects metabolism.
Using NMR spectroscopy, we measured the metabolomic and lipidomic serum
profile from 263 (training cohort) + 135 (validation cohort) symptomatic patients
hospitalized after positive PCR testing for SARS-CoV-2 infection. We also estab-
lished the profiles of 280 persons collected before the coronavirus pandemic
started. Principal-component analysis discriminated both cohorts, highlighting
the impact that the infection has on overall metabolism. The lipidomic analysis un-
raveled a pathogenic redistribution of the lipoprotein particle size and composi-
tion to increase the atherosclerotic risk. In turn, metabolomic analysis reveals
abnormally high levels of ketone bodies (acetoacetic acid, 3-hydroxybutyric
acid, and acetone) and 2-hydroxybutyric acid, a readout of hepatic glutathione
synthesis and marker of oxidative stress. Our results are consistent with a model
in which SARS-CoV-2 infection induces liver damage associated with dyslipidemia
and oxidative stress.

INTRODUCTION

SARS-CoV-2 is a highly transmissible virus described for the first time in Wuhan (Hubei Province, China) in

December 2019 (Zhu et al., 2020). Yet, there are evidences showing that SARS-CoV-2 emerged in Europe

earlier than thought, after the analysis of wastewater samples collected in Italy by December 2019 (La Rosa

et al., 2020) The virus shares sequence identity with other related coronaviruses such as SARS-CoV and

MERS-CoV (Zhou et al., 2020b). Upon viral infection, an incubation period ranging from 1 to 14 days (Lauer

et al., 2020) results in the onset of COVID-19 disease (Munster et al., 2020). Unfortunately, this mechanism is

very efficient and SARS-CoV-2 has rapidly spread worldwide, resulting in the ongoing coronavirus

pandemic. According to the World Health Organization, more than 26 million cases have been reported

worldwide, having thus far resulted in about 864.000 deaths (WHO, 2020).

There are a plethora of symptoms associated to COVID-19 including fever, non-productive cough, tired-

ness, sore throat, nasal congestion, diarrhea, conjunctivitis, headache, dyspnea, nausea/vomiting, and in

some cases loss of taste, loss of smell, or skin problems (Song et al., 2020; Tammaro et al., 2020; Wei

et al., 2020). In many cases the prognosis is favorable, but approximately 20% COVID-19 patients require

intensive care unit admission due to severe acute respiratory syndrome, which may be accompanied by

multiorgan failure (Richardson et al., 2020). Such patients also may develop neurological problems (Niazkar

et al., 2020) or hematological abnormalities (Liu et al., 2020) and suffer venous thromboembolism (Al-Ani

et al., 2020). The mortality rate is very high (ca. 17%) among the elderly or people with chronic diseases

(Zhou et al., 2020a).

The disease etiology is progressively being unraveled, but the underlying molecular mechanisms and the

associated metabolic alterations remain much more poorly understood. To the best of our knowledge,

there are only three public studies that analyzed the metabolism of patients with COVID-19 (Shen et al.,

2020; Thomas et al., 2020; Wu et al., 2020). The observed molecular changes in the sera of COVID-19 pa-

tients implied significant metabolic suppression as well as a dysregulation of the macrophage function,
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platelet degranulation, and the complement system pathway among others. These results are in line with

the mechanism observed for other viral infections like Ebola (Kyle et al., 2019) and highlight the systemic

characteristic of the disease that may affect further organs such as the liver. Yet, these conclusions were

mostly obtained from proteomics data and would demand complementary metabolomic analyses of

much larger cohorts.

The aim of this study was to investigate whether there is a specific metabolic and/or lipoprotein profile

associated with patients diagnosed with COVID-19 by a positive RT-PCR testing and showing clear mani-

festations of the disease. To that end, we have used NMR-based metabolomics that is particularly well

suited for the characterization of complex solutions like serum and is capable at the same time to quantify

and identify both, known and unknown metabolites. Mass spectrometry is also widely used for metabolo-

mics studies, because of its extreme sensitivity and ability to analyze amassive number of metabolites using

very small sample amounts. That said, NMR is fully quantitative and can also classify and quantify lipopro-

teins in a robust and reliable way, with higher resolution than ultracentrifugation (Chapman et al., 1981). We

have analyzed a cohort with 263 COVID-19-positive serum samples obtained from patients hospitalized af-

ter positive PCR testing for SARS-CoV-2 infection (information about the patients is shown in Tables S2 and

S3). As a control, we have analyzed the sera from 280 persons collected during 2018–2019, well before the

coronavirus pandemic started. Our results show that COVID-19 patients present a severe metabolic and

lipoprotein dysregulation, compatible with induced dyslipidemia and oxidative stress among other meta-

bolic factors.
RESULTS

SARS-CoV-2 Infection Significantly Rewires the Metabolome and the Lipoprotein

Composition

To investigate the metabolic and lipidomic changes induced by SARS-CoV-2 infection, we analyzed a

cohort of 263 COVID-19 patients by NMR spectroscopy (COVID). These individuals presented compatible

symptomatology that was confirmed by PCR testing upon admission to the hospital. A subset of 43 samples

from theCOVID cohort was tested for antibodies, where 21 (48%) were positive for IgG only and 11 (26%) for

IgG and IgM. This sub-cohort well represents theCOVID cohort in terms of gender and age. Hence, this set

of hospitalized individuals represents well the acute and severe symptomatic phases of the disease. As a

control, we employed a cohort of sera from 280 individuals of the working population from the same

geographical region, but collected in pre-COVID times (2018–2019) during a routine medical check-up

and with no other exclusion criteria than having suffered a serious illness like cancer or stroke within the

three months preceding the sample collection (preCOVID).

The NMR Carr-Purcell-Meiboom-Gill spectrum (Embade et al., 2016) filters out the lipoprotein fraction,

rendering the metabolic profiling of the serum. Already a visual inspection of such spectra revealed sub-

stantial differences, a notion that was further substantiated by an unsupervised principal-component anal-

ysis (PCA) of the 40 metabolites that can be routinely quantified from this type of spectrum (Figures 2A and

2B). In turn, a regular 1H NMR spectrum of serum also reveals the complex lipoprotein profile (Jiménez

et al., 2018), as shown in Figure 1 for representative examples of the COVID and preCOVID cohorts, where

21 main lipoprotein fractions, 74 lipoprotein subfractions, and other important serum parameters can

nowadays be identified and quantified by spectra deconvolution. Such set includes lipoproteins and their

respective subfractions (Table S5). The NMR spectrum also allows a detailed characterization of the

different lipoprotein subclasses, with the quantification of the total and free cholesterol, phospholipids,

triglycerides, Apo-A1, Apo-A2, and Apo-B. PCA shows a reasonable separation between COVID and

preCOVID cohorts (Figures 2C and 2D), suggesting that SARS-CoV-2 infection may also inflict changes

in the blood lipoprotein composition.

These differences observed by unsupervised analysis were also confirmed by orthogonal partial least-

squares discriminant analysis (OPLS-DA) for the full set of serum metabolites and lipoprotein subclasses

(Figure 2E), using one predictive and one orthogonal component. Not surprisingly, OPLS-DA showed a

high degree of separation between groups, also with very good predictability (AUROCvalidation = 0.977)

(Table 1) and statistical significance (p value < 0.01) (Figures S4 and S5). Remarkably, even when metabo-

lites and all the different lipid fractions were included as independent classes in an OPLS-DA, a reasonable

degree of clustering was achieved (Figure 2F).
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Figure 1. Representative Region of 1H NMR Spectra of COVID and preCOVID Sera

(A) Metabolite identification in sera spectrum from COVID positive and preCOVID. For instance, notice the increased amount of ketone bodies (3-

hydroxybutiric acid, acetoacetic acid, acetone) in the COVID-positive spectrum when compared with the preCOVID one.

(B) Overlapped nuclear Overhauser effect spectra from COVID-positive and preCOVID serum samples.
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As COVID-19 severity increases particularly for elderly people, a potential caveat is the substantial age dif-

ference between the COVID and the preCOVID cohorts. Yet, two sub-cohorts of 112 samples each, prop-

erly balanced for gender and age distribution, showed the same qualitative separation for metabolites and

lipoproteins in both, PCA and OPLS-DA (Figures S1 and S5, Table S4). These results rule out a bias due to

improper randomization of the control group.

Another concern is that, during the peak of the pandemic, collecting protocols could not be completely

abided, what could affect the results. However, the analysis of a second patient cohort from a different hos-

pital yielded the same results (Figure S2), which strongly suggests that technical handling aspects may not

decisively affect the outcome. Remarkably, the added cohort includes almost 400 patient samples, which,

to our knowledge, is the largest metabolomic analysis reported in COVID-19.

The pre-COVID cohort belongs to a collection of samples from healthy population that were collected in a

period of 2 years before COVID-19 outbreak. To evaluate the effect of storage of the samples, we per-

formed a PCA of a subset of the first samples collected (in 2016), compared with the last samples to be

frozen (in 2018). As shown in Figure S3, the two groups cannot be separated, indicating that the freezing

period does not significantly bias the cohort.
iScience 23, 101645, October 23, 2020 3



Figure 2. Summary of Multivariate Unsupervised (PCA) and Supervised (OPLS-DA) Analyses

(A and C) Score plots representing first two principal components from PCA of serummetabolites (A) and lipoprotein subclasses (C), colored by cohort. Each

axis indicates the percentage of total variability explained by the component.

(B and D) Loading plots from serummetabolites PCA (B) and lipoprotein subclasses PCA (D). They show the top 10 variables with the highest contribution to

the first two PCA components. Their direction indicates how their weight is distributed in both components, and the color is the percentage of contribution.
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Figure 2. Continued

(E) Score plot from OPLS-DA between COVID (green) and preCOVID (red) cohorts, using the full list of metabolites and lipoprotein subclasses. The plot

shows the main component versus the first orthogonal component.

(F) Loading plot from the previous OPLS-DA. Each type of variable (metabolites or the lipoprotein subclasses) is represented with different colors. For each

type, ellipses surround the area that includes 95% of their members. For each direction, the four variables that most contribute to the component are

labeled.
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Lipoprotein Profiling Unravels Increased Atherogenic Risk in COVID-19 Patients

It is instructive to analyze the changes observed upon SARS-CoV-2 infection in more depth because it is

already known that SARS-CoV-2, SARS-CoV-1, or MERS-CoV infection may affect the liver (Kukla et al.,

2020), eventually inducing long-term injury in some patients (Wu et al., 2017). The effect of SARS-CoV-2

infection on the different lipoprotein classes and subclasses, as analyzed by 1H NMR, is summarized in Fig-

ures 2D and 3 and Table S1. Our findings are consistent with a triglyceride (TG)-rich lipoprotein profile in

the COVID cohort: serum TG content and the mean concentration of TG-VLDL (VLDL, very low density li-

poproteins), TG-IDL (IDL, intermediate density lipoproteins), TG-LDL (LDL, low density lipoproteins), and

TG-HDL (HDL, high density lipoproteins) were significantly increased in COVID-19 patients. Among these,

the largest increase (by factor 2) was observed for TG-LDL (Figure 3). Inversely, the total cholesterol (TC)

and mean concentration of bound TC-LDL and TC-HDL (both are the main carriers of cholesterol) were

decreased in COVID-19 serum, most prominently for TC-HDL subfractions 4 and 3. In contrast, TC-VLDL

and TC-IDL levels were slightly, but significantly, increased. The concentrations of cholesteryl esters and

phospholipids in the main lipoprotein classes showed a profile similar to that observed for TG and TC.

All these observations suggest a remodeling of the lipoprotein particle phenotype in COVID-19 patients,

with a reduction of the mean HDL size, an enlargement of the mean size of LDL, and increased level of VLDL

subclasses with intermediate size.

Among the apolipoproteins, both Apo-A1 and Apo-A2, the major apoprotein components of HDL, mark-

edly decreased in COVID-19 patient serum, although they maintained a normal Apo-A1 to Apo-A2 ratio,

indicating that SARS-CoV-2 infection did not alter HDL composition. The Apo-B to Apo-A1 ratio, a balance

between atherogenic and anti-atherogenic particles, markedly increased by about 2-fold indicating an

increased cardiovascular risk for COVID-19 patients.
Low-Molecular-Weight Metabolite Profiling Shows Indications of Liver Damage in COVID-19

Patients

Our analysis of low-molecular-mass metabolites NMR showed that ketone bodies (acetoacetic acid, 3-hy-

droxybutyric acid, and acetone) were markedly elevated in the serum of COVID-19 patients. Acetoacetic

acid increased from 1.14 3 10�2 to 5.54 3 10�2 mmol/L (p < 0.0001, 385%), 3-hydroxybutyric acid from

6.6 3 10�2 to 2.7 3 10�1 mmol/L (p < 0.0001, 302%), and acetone from 2.75 3 10�2 to 6.45 3 10�2

mmol/L (p < 0.0001, 134%) (Figure 4). It is known that ketone bodies are induced by fasting conditions

(Scott and Deuster, 2017), but we observed elevated ketone bodies for the patient’s cohort (collected un-

der uncontrolled fasting conditions) when compared with the pre-COVID cohort (collected under fasting

conditions). Therefore, the differences shown in the amount of ketone bodies can be only attributed to

the disease. Moreover, recent medical reports also suggest that COVID-19 implies ketone bodies accumu-

lation (Li et al., 2020). As ketone bodies are produced predominantly in the liver from fatty acid oxidation-

derived acetyl-CoA, the observed serum accumulation of TG and TG-VLDL in COVID-19 patients, shown in

Figure 3, may be due to a reduced hepatic capacity to oxidize acetyl-CoA in themitochondria, which is then

redirected to the synthesis of acetoacetic acid and 2-hydroxybutyric acid. The elevation of glucose in the

serum of COVID-19 patients (8.19 versus 4.89 mmol/L, p < 0.0001, 68%) (Figure 4) is consistent with this

model, because mitochondrial oxaloacetate is driven to the cytoplasm into gluconeogenesis, via the syn-

thesis of malic acid, when it cannot condensate with acetyl-CoA to feed the tricarboxylic acid cycle. The

increase in succinic acid, citric acid, glutamic acid, and pyruvic acid by 156%, 12%, 33%, and 67%, respec-

tively (Figure 4), may all be related to this dysregulation of hepatic central carbon metabolism in COVID-19

patients. In addition to the metabolic re-wiring that may result as a consequence of central carbon

metabolism dysregulation, the accumulation of succinic acid has been shown to create a pseudohypoxic

environment that facilitates cancer development and progression (Klukova et al., 2018). Moreover, the

reduction in the essential amino acids methionine, isoleucine, histidine, and lysine by 19%, 11%, 16%,

and 34%, respectively, together with the reduction of tyrosine and glutamine by 4%, and 19%, respectively,

two amino acids whose synthesis can be limited under special pathophysiological conditions, along with
iScience 23, 101645, October 23, 2020 5



Metric Training Validation

Value p Value Value p Value

AUROC 0.980 <0.01 0.977 <0.01

Accuracy 0.928 <0.01 0.923 <0.01

Sensitivity 0.874 <0.01 0.867 <0.01

Specificity 0.978 <0.01 0.975 <0.01

Table 1. Performance Metrics from OPLS-DA through a Repeated Double Cross-Validation Process

Value columns are the mean value; p value columns were obtained from permutation tests.
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substantially increased levels of phenylalanine (an essential amino acid precursor of tyrosine) and 2-hydrox-

ybutiryc acid (a readout of hepatic oxidative stress), which increased by 81%, and 628%, respectively (Fig-

ure 4), altogether suggests the existence of a general metabolic stress condition in COVID-19 patients.

DISCUSSION

We have here investigated the changes that SARS-CoV-2 infection may provoke in the metabolism, by

measuring the serum concentrations of various lipoproteins and metabolites using 1H NMR spectroscopy.

To that end we have investigated a large cohort of patients (n = 263) at the moment of hospitalization, all

with COVID-19-compatible symptomatology and 100% of them confirmed by RT-PCR testing. From the

antibody test, 75% of the patients also already developed IgG antibodies, and about a third of them,

also IgM antibodies. Importantly, these patients did not necessarily have previous health problems as

the only inclusion criterion was the SARS-CoV-2 infection. Taken together, this patient cohort is, on

average, representing the acute symptomatic phase of the disease, approximately between 14 and

21 days from onset. As a control cohort, we have used a pool of samples of similar size (n = 280), that be-

longs to healthy population and acquired before the advent of COVID-19. Although the two cohorts have

different average age, we have demonstrated that this is not a contributing factor to the observed differ-

ences (Figure S1).

One of the most striking differences arises from the lipoprotein distribution. Endogenous lipoproteins are

classified according to lipid and apolipoprotein composition in VLDL, IDL, LDL, and HDL (Feingold KR,

2018). HDL is classified as atheroprotective because it is involved in the transport of cholesterol to the liver.

Upon an excess of fatty acids and TC in the liver, these lipids are converted into TG and cholesteryl esters,

respectively; wrapped with apolipoproteins (mainly Apo-B), decorated with phospholipids; and placed into

circulation as VLDL where, via capillaries, they get in contact with the various tissues. Our NMR analysis

clearly reflects a scenario with a severe lipoprotein dysregulation toward increased TG and abnormal lipo-

protein particle distribution, with an increase of VLDL subclasses with intermediate size. These results are in

line with other observations using MS (Shen et al., 2020; Thomas et al., 2020), but our study, on a very large

cohort, adds granularity to the lipoprotein distribution and allows devising a detailed landscape of lipopro-

tein rearrangement upon SARS-CoV-2 infection. This acute dysregulation is obviously pathogenic, and,

when found in non-acute episodes such asmetabolic syndrome or non-alcoholic fatty liver disease, it would

fit well with increased atherosclerotic risk.

The metabolic profile of COVID-19 patients, also obtained by NMR spectroscopy, agrees well with the lip-

idomic analysis. The excess of ketone bodies (acetone, acetoacetic acid, and 3-hydroxybutyric acid) sug-

gests that they are being used as an alternative energy source due to a sort of diabetic ketoacidosis.

Consistently, glucose levels are also elevated, but this has to be taken with extreme caution because sam-

ples were not collected at fasting conditions. Some other metabolites such as succinate and pyruvate

among others are consistent with impaired central metabolism and/or mitochondrial dysfunction. We

have recently observed that thrombocytopenia in COVID-19 patients (Connors and Levy, 2020) ultimately

results in elevated porphyrin levels, in a similar way as observed in porphyria, a family of diseases that al-

ways imply oxidative stress, mitochondrial impairment, and liver damage.

Furthermore, the analysis of low-molecular-weight metabolites reveals the presence of general metabolic

stress in COVID-19 patients, as indicated by the increase in 2-hydroxybutiryc acid (hepatic oxidative stress
6 iScience 23, 101645, October 23, 2020



Figure 3. Average Effect of COVID-19 for Each Lipoprotein Subclass

Horizontal axis is the number of standard deviations that a variable is on average increased (or decreased) when an

individual is positive for COVID-19. Circles are positioned in the specific mean increase (decrease) value, whereas

horizontal black bars are the 95% confidence interval. Statistically significant differences (p value < 0.05) are represented

with filled circles.
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marker), and the reduction in essential amino acids, tyrosine, and glutamine. In summary, herein we provide

an observational report of the comprehensive serummetabolome of a very large cohort of COVID-19-pos-

itive patients in the acute phase of the disease. Our results evidencemassive changes in the lipoprotein and

metabolomic profiles consistent with the observed blood alterations in COVID-19 patients, highlighting

the systemic character of the disease.
Limitations of the Study

The cohort is limited to the same world region, which may partially compromise the generality of the con-

clusions due to geographical biases. Freezing the samples may alter the metabolite concentrations, even

though the two control groups (Figure S3) suggest that this problem does not significantly affect the con-

clusions of the present study. Samples that were collected before the pandemic (preCOVID) may have not

used the same protocol as the COVID cohorts. All the samples correspond to the acute phase of the dis-

ease, and the study would benefit from the study of samples from patients at different stages of the SARS-

CoV-2 infection.
Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Oscar Millet (omillet@cicbiogune.es).
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Figure 4. Average Effect of COVID-19 for Each Metabolite

Horizontal axis is the number of standard deviations that a variable is on average increased (or decreased) when an

individual is positive for COVID-19. Circles are positioned in the specific mean increase (decrease) value, whereas

horizontal black bars are the 95% confidence interval. Statistically significant differences (p value < 0.05) are represented

with filled circles.
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

All parameter values, datasets, and used in the model are included in the Supplemental Information.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101645.
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Supplemental Figures 
 

 
 
Figure S1. Analysis of balanced sub-cohorts and their comparison to full cohorts, Related 
to Figure 1. A-B) Score plots, from multivariate unsupervised (PCA), representing first two 
principal components from PCA of serum metabolites (A) and lipoprotein subclasses (B), colored 
by sub-cohort. Each axis indicates the percentage of total variability explained by the component. 
(C) Score plot from OPLS-DA between COVID (green) and preCOVID (red) sub-cohorts using 
the full list of metabolites and lipoprotein subclasses. The plot shows the main component vs. the 
first orthogonal component. (D) Comparison of effect of COVID-19 over the different 
metabolites/protein subclasses analyzed with full cohorts and with balanced sub-cohorts. Blue 
line is the linear model between both analyses, while red line is the identity. Those samples with 
an absolute difference bigger than 0.5 between both analyses are labeled. 
 
 
 



 

 
 
Figure S2. Validation cohort analysis, Related to Figures 3 and 4. Average effect of COVID-
19 for each lipoprotein subclass and metabolite in both patient cohorts against preCOVID cohort. 
Main cohort represent samples from the first hospital and Validation cohort represent samples 
from the second hospital. Horizontal axis is the number of standard deviations that a variable is 
on average increased (or decreased) when an individual is positive in COVID-19. Circles are 
positioned in the specific mean increase (decrease) value, while horizontal black bars are the 
95% confidence interval. Statistically significant differences (p-value < 0.05) are represented with 
filled circles. 
 

 
 



 

 
 
Figure S3. PCA for two subset of control samples with a difference in 400 days of freezing 
period, Related to Figure 1. 
 
 

 
 



 

Figure S4. Permutation test for the main cohort, Related to Figure 1. Results of 100 
permutation tests compared to real values for each metric obtained from repeated double cross 
validation. 
 
 

 
 
Figure S5. Permutation test for the balanced subcohort, Related to Figure 1. Results of 100 
permutation tests compared to real values for each metric obtained from repeated double cross 
validation in balanced subcohort.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Supplemental Tables 
 
 
Table S1. Concentrations of metabolites and lipoproteins, Related to Figures 3 and 4. The 
Table has been deposited in Mendeley Data: 
 
Millet, Oscar (2020), “SARS-CoV-2 infection dysregulates the metabolomic and lipidomic 
profiles of serum. Bruzzone et al.”, Mendeley Data, V1, doi: 10.17632/3h96n97xrb.1 

 
 
Table S2. Metadata from the Individuals Analyzed. Related to Figures 1-4. 
 

        preCOVID        COVID      p-value  N  
         N=280          N=263                 

Main info 
     Gender (female) 146 (52.14%)  116 (45.14%)    0.124  537 
     Age (years) 48.89±11.00    64.81±16.64   <0.001  537 
     Total hospitalization days -   13.72±19.60   - 257 
     Days in ICU -   5.12±16.52    - 257 
     Smoker 45 (16.07%)    17 (6.61%)     0.001  537 
     Pneumonia:                              - 248 
         unilateral -      33 (13.31%)   -     
         bilateral -     173 (69.76%)   -     
     Death -      24 (9.34%)    - 257 
Signs at admission 
     Temperature (ºC) -        36.47±0.91    -    249 
     Breathing freq. (n x min.) -        22.29±7.98    -    65 
     Heart rate (n x min.) -        90.82±17.36   -    250 
     Systolic blood pressure (mm Hg) -       135.72±23.08   -    250 
     Diastolic blood pressure (mm Hg) -        78.24±12.73   -    251 
Commorbidities 
     Cardiovascular -      68 (26.46%)   -    257 
     Cerebrovascular -      18 (7.00%)    -    257 
     Diabetes  18 (6.43%)    64 (24.90%)   <0.001  537 
     EPOC -      29 (11.28%)   -    257 
     Hypertension 50 (18.12%)   116 (45.14%)   <0.001  533 
     Immunodeficiency -      11 (4.28%)    -    257 
     Liver failure -       4 (1.56%)    -    257 
     Neoplasm -      31 (12.06%)   -    257 
     Renal insufficiency -      21 (8.17%)    -    257 
Symptoms 
     Clouding of conciousness -      20 (7.78%)    -    257 
     Conjunctival congestion -       2 (0.78%)    -    257 
     Diarrhea -      75 (29.18%)   -    257 



 

     Disorientation -      11 (4.28%)    -    257 
     Dry cough -     135 (52.53%)   -    257 
     Fatigue -     148 (57.59%)   -    257 
     Fever -     177 (68.87%)   -    257 
     Headache -      49 (19.07%)   -    257 
     Hemoptysis -       1 (0.39%)    -    257 
     Lymphadenopathy -       3 (1.17%)    -    257 
     Myalgia -      75 (29.18%)   -    257 
     Nasal congestion -      11 (4.28%)    -    257 
     Nausea Vomiting -      38 (14.84%)   -    256 
     Odynophagia -      31 (12.06%)   -    257 
     Oropharyngeal congestion -       1 (0.39%)    -    257 
     Productive cough -      58 (22.57%)   -    257 
     Shaking chills -      55 (21.40%)   -    257 
     Skin rash -       3 (1.17%)    -    257 
Blood test 
     Albumin (g/dL) -         3.69±0.42       .    136 
     ALT (U/L) 22.26±11.90    34.09±26.08   <0.001  528 
     APTT (s) -        24.27±4.83       .    252 
     Bilirubin (mg/dL)  0.50±0.23      0.74±0.46     0.002  164 
     C-reactive protein (mg/L) -        77.32±71.33      .    255 
     Creatinine (mg/dL)  0.82±0.16      1.06±0.81    <0.001  535 
     Creatine phosphokinase (U/L) -       158.26±331.91     .    233 
     D-dimer (ng/mL) -      2508.72±9149.53    .    248 
     Ferritin (ng/mL) 47.29±49.13   670.80±772.35  <0.001  254 
     Glucose (mg/dL) 88.26±16.07   136.09±87.94   <0.001  535 
     Interleukin 6 (pg/mL) -        19.50±24.78   -    12 
     Lactate dehydrogenase (U/L) -       318.70±205.66  -    247 
     Leukocytes (10^9/L)  6.91±1.81      7.58±5.15     0.050  534 
     Lymphocytes (10^9/L)  2.41±0.77      1.20±1.30    <0.001  534 
     Monocytes (10^9/L)  0.63±0.19      0.42±0.24    <0.001  535 
     Neutrophils (10^9/L)  3.59±1.37      6.02±6.02    <0.001  534 
     Platelets (10^9/L) 237.43±45.86  218.03±109.86   0.009  534 
     Procalcitonin (ng/mL) -         0.37±0.78    -    130 
     Protein (g/dL) -         6.35±0.57    -    145 
     Prothrombin activity (%) -        87.85±21.82   -    234 
     Urea (mg/dL) -        44.20±29.86   -    255 

 
 
 
Table S3. Metadata from the Individuals Analyzed (balanced subcohort), Related to 
Figure 1. 
 

        preCOVID        COVID      p-value  N  
         N=112          N=112                  

Main info 
     Gender (female) 59 (52.68%)    59 (52.68%)   1.000 224 



 

     Age (years) 49.86±10.66    49.86±10.66   1.000 224 
     Total hospitalization days -        8.77±13.41    -    112 
     Days in ICU -         2.63±9.13    -    112 
     Smoker 20 (17.86%)    13 (11.61%)    0.258  224 
     Pneumonia:                              -    109 
         unilateral -      19 (17.43%)               
         bilateral -      69 (63.30%)               
     Death -       2 (1.79%)    -    112 
Signs at admission 
     Temperature (ºC) -        36.42±0.74    -    109 
     Breathing freq. (n x min.) -        21.26±6.14    -    23 
     Heart rate (n x min.) -        94.53±15.43   -    108 
     Systolic blood pressure (mm 
Hg) -       136.31±22.68   -    109 

     Diastolic blood pressure (mm 
Hg) -        82.37±11.87   -    109 

Commorbidities 
     Cardiovascular -      10 (8.93%)    -    112 
     Cerebrovascular -       3 (2.68%)    -    112 
     Diabetes  7 (6.25%)     12 (10.71%)    0.337  224 
     EPOC -       8 (7.14%)    -    112 
     Hypertension 20 (18.02%)    25 (22.32%)    0.526  223 
     Immunodeficiency -       6 (5.36%)    -    112 
     Liver failure: No -     112 (100.00%)  -    112 
     Neoplasm -       6 (5.36%)    -    112 
     Renal insufficiency -       5 (4.46%)    -    112 
Symptoms 
     Clouding of conciousness -       2 (1.79%)    -    112 
     Conjunctival congestion -       1 (0.89%)    -    112 
     Diarrhea -      44 (39.29%)   -    112 
     Disorientation: No -     112 (100.00%)  -    112 
     Dry cough -      74 (66.07%)   -    112 
     Fatigue -      63 (56.25%)   -    112 
     Fever -      85 (75.89%)   -    112 
     Headache -      36 (32.14%)   -    112 
     Hemoptysis: No -     112 (100.00%)  -    112 
     Lymphadenopathy -       1 (0.89%)    -    112 
     Myalgia -      45 (40.18%)   -    112 
     Nasal congestion -       7 (6.25%)    -    112 
     Nausea Vomiting -      20 (18.02%)   -    111 
     Odynophagia -      19 (16.96%)   -    112 
     Oropharyngeal congestion -       1 (0.89%)    -    112 
     Productive cough -      17 (15.18%)   -    112 
     Shaking chills -      25 (22.32%)   -    112 
     Skin rash -       3 (2.68%)    -    112 
Blood test 
     Albumin (g/dL) -         3.89±0.36    -    64 



 

     ALT (U/L) 21.67±11.32    37.82±26.75   <0.001  220 
     APTT (s) -        23.23±2.68    -    111 
     Bilirubin (mg/dL)  0.55±0.27      0.74±0.41     0.160  72 
     C-reactive protein (mg/L) -        52.48±58.37   -    112 
     Creatinine (mg/dL)  0.82±0.17      0.89±0.47     0.144  224 
     Creatine phosphokinase (U/L) -       162.12±407.84  -    108 
     D-dimer (ng/mL) -      1319.18±6822.22 -    110 
     Ferritin (ng/mL) 47.29±49.13   579.11±710.03  <0.001  117 
     Glucose (mg/dL) 89.25±15.33   126.21±105.66  <0.001  224 
     Interleukin 6 (pg/mL) -        21.50±26.85   -    10 
     Lactate dehydrogenase (U/L) -       298.60±253.94  -    110 
     Leukocytes (10^9/L)  6.87±1.63      6.53±2.70     0.264  223 
     Lymphocytes (10^9/L)  2.45±0.75      1.25±0.70    <0.001  224 
     Monocytes (10^9/L)  0.61±0.17      0.39±0.18    <0.001  224 
     Neutrophils (10^9/L)  3.56±1.20      5.38±7.80     0.016  223 
     Platelets (10^9/L) 239.20±51.42  220.15±114.36   0.110  224 
     Procalcitonin (ng/mL) -         0.14±0.15    - 45 
     Protein (g/dL) -         6.48±0.48    -    65 
     Prothrombin activity (%) -        96.79±11.65   -    103 
     Urea (mg/dL) -        31.79±19.04   -    112 

 

 
 
Table S4. Metrics for the statistical analysis, Related to Figures 1-4. Performance metrics 
from OPLS-DA through a repeated double cross-validation process, using balanced subcohort. 
Value columns are the mean value. p-value columns were obtained from permutation tests.  

 

Metric Training Validation 
Value p-value Value p-value 

AUROC 0.980 <0.05 0.967 <0.05 
Accuracy 0.925 <0.05 0.911 <0.05 
Sensitivity 0.896 <0.05 0.881 <0.05 
Specificity 0.955 <0.05 0.941 <0.05 

 

 
 
 
Table S5. Raw spectroscopical data, Related to Transparent Methods and Figures 1-4. 
The Table has been deposited in Mendeley Data: 
 
Millet, Oscar (2020), “SARS-CoV-2 infection dysregulates the metabolomic and lipidomic 
profiles of serum. Bruzzone et al.”, Mendeley Data, V1, doi: 10.17632/3h96n97xrb.1 

 
 
 
 



 

 
 
Transparent methods 
 

Patient Recruitment.  

All serum samples were provided by the Basque Biobank for research (BIOEF). According to the 
Declaration of Helsinki principles, all participants in the study provided informed consent to clinical 
investigations, with evaluation and approval from the corresponding ethics committee (CEIC-E 
20-26, 1-2016). All data was anonymized to protect the confidentiality of participants. 

The patient cohort (COVID; n = 263) presented different symptoms compatible with COVID-19, 
and had been diagnosed as SARS-CoV-2 positive on nasal swab samples by a RT-PCR assay 
targeting viral RNA regions encoding the envelope protein E and RNA-dependent RNA 
polymerase (RNase P). RNA was extracted from samples with the MagNa Pure 96 system 
(Roche, Penzberg, Germany). As regard the Real-time reverse-transcription PCR a 25 μL 
reaction contained 5 μL of RNA, 12.5 μL of 2 x reaction buffer provided with Superscript III one 
step RT-PCR system with Platinum Taq Polymerase (Invitrogen, Darmstadt, Germany; containing 
0.4 mM of a 50 mM magnesium sulphate solution (Invitrogen), and 1 μg of nonacetylated bovine 
serum albumin (Roche). All oligonucleotides were synthesised and provided by Tib-Molbiol 
(Berlin, Germany). Thermal cycling was performed at 55°C for 10 min for reverse transcription, 
followed by 95°C for 15 s, 58°C for 30 s using the Applied Biosystems ViiA7 instrument (Applied 
Biosystems, Hong Kong, China). The patients were in the hospital urgency room at the moment 
of sample collection and all were hospitalized after that, so the hospital diet is not a confounding 
parameter. The serum samples of the control cohort (preCOVID; n = 280) were collected in 
2018/2019 in overnight fasting conditions, well before start of the current COVID pandemia, by 
Osarten Kooperatiba Elkartea (Mondragon Cooperative) as extra aliquots during the routine 
annual medical tests of their employees in the Basque Country by OSARTEN. Further patient 
data was also registered, including serum biochemical parameters (Tables S2 and S3) and life 
style habits (data not shown). Both cohorts were collected within the same geographical region 
(Basque Country) and handled by the same biobank (Basque Biobank). The procedures, mainly 
temperature, clotting tube and clotting time, were in principle the same. However, since the patient 
cohort were collected during the peak of the pandemia, it cannot be assured that all these 
protocols could be completely abided by the clinicians. For this reason, a second patient cohort 
(135 additional samples), coming from a second hospital, was analyzed. Since the two hospitals 
are totally autonomous, the two cohorts represent a perfect set to investigate the variability in 
terms of sample handling. 

 

Serum sample preparation for NMR measurements.  

Samples were stored at -80 °C until measured. The delivered frozen serum sample (500 �L) were 
individually left to thaw at room temperature during several minutes. NMR samples were then 
prepared by a SamplePro Tube (Bruker Biospin) robot system for liquid handling with integrated 
temperature control. Briefly, every sample was automatically mixed with phosphate buffer 
(containing trimethylsilylpropionic acid-d4 sodium salt, TSP 0.1 mM, and 10% D2O) at a 1:1 (v/v) 
ratio and 600 µL were then filled into a 5 mm NMR tube. After manually shaking every sample for 
several seconds, the NMR tubes were stored at 5 °C inside a tempered SampleJet automatic 
sample changer mounted on a 600 MHz IVDr spectrometer (Bruker Biospin, Germany). 

 



 

Production of recombinant RBD and ELISA.  

RBD (aa 319-541) was codon-optimized for expression in human cells. The construct was 
synthesized by GenScript and subcloned into the pHLsec vector (addgene) at cloning site AgeI 
and KpnI. In order to enhance the affinity purification, a His6× tag was added at the C terminus 
of the construct. HEK293F suspension cells (Thermo Fisher Scientific) were transiently 
transfected and split into 200 ml culture flasks at 0.7 × 106 cells per ml. DNA was filtered and 
mixed (1:1) with transfection reagent FectoPRO (Polyplus Transfections) for 10 min at RT and 
added to the cells. After incubation at 37 °C, 180 rpm, 8% CO2 in a Minitron Pro shaker (Infors 
HT) for 7 days, cell cultures were harvested by centrifugation at 4000×g for 30 min, and 
supernatants were collected and filtered with a 0.22 µm System filter (Corning). Supernatants 
were passed through a HisTrap Ni-NTA column (GE Healthcare) at 4 ml min−1. Washing was 
performed with a 10-column volume of 20 mM Tris pH 9.5, 200 mM NaCl, and 4% of elution Buffer 
(20 mM Tris pH 9.5, 200 mM NaCl, 500 mM imidazole). Fractions containing RBD were eluted, 
collected, concentrated and separated on a Superdex 200 Increase size exclusion column (GE 
Healthcare) at 0.7 ml min−1 in 20 mM Tris pH 8.0, 200 mM NaCl buffer. 

The ELISA protocol was adapted from a previously established immunoassay. Briefly, 96-well 
ELISA plates (Nunc Maxisorp) were coated overnight at 4°C with 50 μl of RBD protein at 2ug/ml 
in PBS (Gibco). Next day, the coating solution was removed and plates were blocked with 3% 
non-fat milk in PBST (PBS plus 0.1% Tween 20) for 1 hour at RT.  Serum samples were 
inactivated (heating at 56°C for 1 hour) and diluted (1:50) in 1% non-fat milk in PBST, and added 
to the plates for 2 hours at RT. After three washes with 250 μl PBST in a plate washer (Biotek), 
the wells were incubated with anti--human IgG-horseradish peroxidase (HRP) conjugated 
secondary antibody (GenScript) diluted 1:5000 for 1 hour at RT. Plates were washed thrice with 
PBST, 100 μl of TMB (Thermo Scientific) substrate were added in each well for 3-6 min and the 
reaction was stopped with 100 μl of Stop Solution (Thermo Scientific). The optical density (OD) 
was measured at 450 nm in a multimode plate reader (Victor Nivo, PerkinElmer). 

 

Serum NMR measurements.  

Before start of the measurements, aliquots (600 μL each) of pooled serum (Inovative Research, 
Inc) were frozen at -80°C.  On each measurement day, 3 of these pooled serum samples were 
included for quality control (QC). The NMR spectrometer was calibrated daily following strict 
Standard Operation Procedures (SOPs) to ensure highest spectral quality and reproducibility. 
Every morning three different calibrations tubes were acquired to check the spectrometer was in 
optimal conditions. First a temperature calibration tube containing a 99.8% deuterated methanol 
(MeOD) standard sample in a sealed 5 mm NMR tube was used to calibrate the temperature to 
ensure that serum samples were run at exactly 310 K. The MeOD NMR tube was inserted into 
the Sample Track robot and allowed 5 min to equilibrate. After that, an automatically tune and 
matching was performed, locked to deuterated methanol and automatically shimmed. A standard 
90°proton parameter set was used to run an experiment with 2 scans using a pulse length of 1 
μs. When the experiment was processed with a line broadening of 3.0 Hz the real probe 
temperature was able to be calculated by measuring the distance in Hz between the two methanol 
peaks, The second calibration tube is a standard 2 mM sucrose sample to optimize the water 
suppression. Different experiments were performed evey day. For all of them the sample was 
locked to 90% H2O+10% D2O. The lock and shimming were done using the automated routine. 
The first experiment was done to optimize the offset (O1) by using a 1D NMR experiment with 
presaturation, a long relaxation delay and 1 scan. After that the water suppression performance 
is evaluated where the signal-to-noise value must be higher than 310 and (measured on the 
anomeric proton of sucrose), the splitting lower than 15 % and the water hump measured at 50% 
not bigger than 30 Hz and measured at 10% lower than 50 Hz. Using a second experiment was 
calculated the optimal 90° pulse for the sample. The result is optimal when half height of the TSP 



 

peak is < 0.7 Hz with no line broadening). A third tube called Quant Ref was run for quantification 
purposes and was based on an external reference created by an electronic device. The sample 
consists several standard metabolites commonly found in biofluids that are stable over the time. 
A 1D NOESY experiment was performed also every morning using the same parameters used 
for the samples and the values obtained had to be always into the same range (Dona et al., 2014). 
All 1H-NMR spectra were measured at 310 ± 0.05 K to identify different lipoprotein subfractions 
parameters because its success in various epidemiological studies with very large study sizes 
(Jiménez et al., 2018). The NMR spectrometer was equipped with a BBI probehead with a z-
gradient coil and BOSS-III shim system. Four different 1H NMR experiments were recorded per 
sample: a standard one-dimensional (1D) 1H spectrum (pulseprogram: noesyphpr1d) with water 
presaturation, a (1D) 1H CPMG experiment (pulseprogram: cpmgpr1d) implementing a T2 filter to 
suppress the broad signals of proteins and other macromolecules, a two-dimensional (2D) J-
resolved experiment (pulseprogram: jresgpprqf) and, for selected samples, also a 2D 1H TOCSY 
experiment (60 ms DIPSI2 mixing) to assist in metabolite identification. The list of quantified 
metabolites and lipoprotein subclasses was obtained automatically by B.I.QuantPS 2.0 and B.I.-
LISA (Bruker BioSpin), respectively. Quantification of lipoproteins was based on the integration 
of their bulk–CH3 and –CH2– group signals at 0.8 and 1.25 ppm, respectively that appeared in 
the 1D 1H NMR spectrum and fitting them using 105 lipoprotein and lipoprotein subclass related 
parameters (Jiménez et al., 2018). The small metabolites were identified in the one-dimensional 
spectra using The Human Metabolome Database (HMDB) Version 4.0 and the ChenomX NMR 
Suite (Chenomx Inc., Edmonton, Canada). 

 

Detection of multivariate outliers.  

Each CPMG 1H-NMR spectrum, after automatic processing by Topspin (Bruker Biospin, 
Germany), was bucketed into consecutive bins of fixed 0.03 ppm width over the region from 0.5 
to 9.5 ppm, were the pertaining bin integrals (bin intensities) were obtained as average sums (i.e. 
by dividing the total bin integral by the number of points in the bin).  The spectral region between 
4.7 and 5.0 ppm (containing the residual water signal) was excluded, leaving a total of 290 bins 
([9.5 – 0.5 – (5.0 – 4.7)] ppm / 0.03 ppm) for analysis. All bin intensities were normalized relative 
to the total spectrum intensity in order to minimize the effect of different concentrations. After 
pareto scaling, multivariate DBSCAN (Density-Based Spatial Clustering of Applications with 
Noise) clustering was used with bin intensities as input variables (Ester et al., 1996). Briefly, this 
clustering algorithm detects groups of high density (large number of neighbors) considering a 
multivariate space (bins), where groups with low density or isolated samples are marked as 
extremes. As further input parameters for the algorithm we set eps = 10 (size of the epsilon 
neighborhood) and minPts = 5 (number of minimum points in the eps region), and used the 
dbscan R package (version 1.1-2). DBSCAN was independently applied to the two COVID and 
preCOVID groups, where 6 detected outliers from COVID cohort were discarded but no one 
forpreCOVID group.  

 

Statistical analysis.  

Principal Component Analysis (PCA) was used as dimensionality reduction method to facilitate a 
general overview over both groups (COVID and preCOVID) via the first and second principal 
components in score plots, while loadings provided insight into the weights of variables in each 
component. Separate PCA were performed for the serum metabolites and lipoprotein subclasses. 
In both cases, the variables were first mean-centered and then divided by their standard 
deviation. To assess the capacity of metabolomics data in distinguishing COVID-19, an 
Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) was performed for the full 
set of serum metabolites and lipoprotein subclasses, after normalizing their values. A repeated 
double cross validation process (rdCV) (Filzmoser et al., 2009) was used to select the number of 



 

orthogonal components and validate the predictive capacity. Several metrics were averaged 
through 100 repetitions: Area Under the Receiver Operating Characteristics (AUROC), accuracy, 
sensitivity and specificity. The outer loop of rdCV performed a 4-fold cross validation process. 
The inner loop selected the number of orthogonal components (from 1 to 5) based on AUROC in 
a new 7-fold cross validation process. If AUROC was not improved in at least 5% adding a new 
orthogonal component, then no more components were added. To measure the statistical 
significance of calculated metrics, a permutation test (Szymańska et al., 2012) was performed for 
the whole process. The number of permutations was set to 100. Then, for each permutation, new 
values for the metrics were obtained. The thresholds for p-values were calculated as the 
proportion of permuted results that reached a value at least as high as the real one (those 
obtained from rdCV without permuted labels). In order to visualize OPLS-DA results, a final model 
was built with all samples and a score plot between the predictive and the orthogonal components 
was generated. Loadings from OPLS-DA were used to determine those variables with a bigger 
contribution to the cohort separation. To quantify the metabolic effect of COVID-19, a 
multivariable linear model was built for each metabolite and lipoprotein subclass, using the 
metabolite or lipoprotein as dependent variable and the COVID-19 status (positive or control) as 
independent variable, adjusted by gender and age because metabolism is deeply affected by 
those confounding factors (Darst et al., 2019; Rist et al., 2017; Wang et al., 2020). Coefficients 
and p-values associated with a COVID-19 positive variable were extracted from models. For each 
p-value, the 95% confidence interval was also calculated. Coefficients and intervals were 
normalized by their standard deviation in the control group to make them comparable between 
metabolites or lipoproteins. The statistical significance threshold was set to a = 0.05 and p-values 
were adjusted with the False Discovery Rate (FDR) method to control for Type I errors due to 
multiple comparisons. Individual metabolite or lipoprotein subclass analyses were summarized in 
forest plots, where each variable is represented by its mean value and 95% confidence interval. 
All analyses were performed using the R statistical software, version 3.6.0 (http://cran.r-
project.org/) and the following R packages: ade4 (version 1.7-15), factoextra (1.05), ggforestplot 
(0.1.0), ropls (1.16.0), and tidyverse (1.3.0). 

 
Data and Software availability 
 
Table S1 (Concentrations of metabolites and lipoproteins, Related to Figures 3 and Figure 4) and 
Table S5 (Raw spectroscopical data, Related to Transparent Methods and Figures 1-4), have 
been deposited in Mendeley Data: 
 
Millet, Oscar (2020), “SARS-CoV-2 infection dysregulates the metabolomic and lipidomic profiles 
of serum. Bruzzone et al.”, Mendeley Data, V1, doi: 10.17632/3h96n97xrb.1 
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