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Text S1 (with Fig. Al): detailed description of the deep learning approach followed in present
study.

Fig. S2: (a) Cross-entropy loss function evolution with number of epoch calculations. One epoch
corresponds to 1000 iterations where 12 random images from the training dataset pass inside the
model at each iteration. While the validation loss might be thought to increase from about 19
epochs, it starts increasing in a more steady fashion from about 44 epochs. (b) the Mger prediction
at 19 epochs (sub-figure d) is less accurate than that at 44 epochs (sub-figure c). We have thus
stopped the training at 44 epochs.

Fig. S3: Tversky index for the models Ma; to Ma7. The two horizontal lines in (a) are the TI
values for Mger with respect to basic or refined mapping.



Fig. S4: Comparison of predictions in site A calculated with Mas; (b) (two filters only in first
layer), and with Mger (d) (64 filters in first layer). The Mger predictions better compare to the
refined mapping (c) and the image (a). Red square in (a) locates Figs. 5, 6, 8.

Fig. S5: Comparison of predictions in site A calculated with M7 (b) (32 filters in first layer), and
with Mger (d) (64 filters in first layer). Figure S5A shows entire validation zone, while Fig. S5B
shows a zoom highlighting the small features. The Mg.s predictions better compare to the refined
mapping (c) and the image (a). Red square in Fig. S5Aa locates Figs. S5B, 5, 6, 8.

Fig. S6: Tversky index for the models Mr; to Mr7. Mg is equivalent to Mges. The two horizontal
dotted lines are the TI values obtained with Canny edge filter and GVG detector algorithms.

Fig. S7: Impact of training data size: Entire validation zone of site A is shown. (a) and (b) as in
Fig. 5. (d) shows predictions from Mg.r (i.e., 100% of the available training data), while (e)-(i)
show predictions with decreasing amount of training data (from 75 to 5%), and (c) predictions
with additional training data (from site C). See text for details. Red square in (a) locates Figs. 5,
6, 8.

Fig. S8: Impact of training data size: zooms from validation zone of site A. Same as in Fig. S7.

Fig. S9: Comparison of predictions in site A when Mger is trained with refined mapping (shown
in ¢) which produces model Mg, (shown in b), or with basic mapping (shown in d) which
produces model Mq, (shown in e). The predictions of Mg, are richer than those of Mg, and
recover fine tectonic features, some are indicated (R: relay zone, E: en echelon segments, I: inner
damage). Red square in (a) locates Figs. 5, 6, 8.

Fig. S10: ROC curves (Receiving Operating Characteristic) for all calculated models. The ROC
metric compares the “False positive rate” (predicted fault/fracture location not present in the
ground truth) to the “True positive rate” (predicted fault/fracture location present in the ground
truth) at increasing probability thresholds. With this metric good model performance is
characterized by a low False positive rate and a high True positive rate.

Fig. S11: Mg predictions (c) in site B (entire site, ground photogrammetry), compared to basic
mapping ground truth (b), and to Canny edge (e¢) and GVG detector (f) results. Thinned
predictions (probability > 0.9) are also shown (d). Red square in (a) indicates Fig. 12.

Fig. S12: Model predictions in entire site E (drone photogrammetry shown in a), with
comparison between Mger trained only on sites A and B (b), and Mgr enriched with a few
transfer learning from site D with drone photogrammetry (c). The transfer learning improves the
predictions. A zoom of the figure is shown in Fig. 15.

Fig. S13: Model predictions in entire site G (Pléiades satellite image shown in a), with
comparison between Mger trained only on sites A and B (b), and Mgr enriched with a few
transfer learning from site F with Pléiades data (c). The transfer learning improves the
predictions.



Fig. S14: Model predictions in entire site C (ground photogrammetry shown in a), when Mger is
trained with topography (c) and without topography (d). Red square in (a) indicates Fig. 14
(training with topography).

Fig. S15: Model predictions in entire site E (drone photogrammetry shown in a), when Mger is
trained with topography (b) and without topography (c).



Mattéo et al. - Supplementary Text S1

Deep Learning and its associated Artificial Neural Networks (ANNs) represent a class of Machine
Learning algorithms that provide an approximate mapping f from an input y to an output ¥,
parametrised by a sets of “weights” and “biases” (jointly denoted by 8), i.e. y: ¥ = fy(y). In a
supervised setting, the goal is to optimise some arbitrarily defined cost function £ of the model

output y and a ground truth y, for the parameters 9, i.e.:

N
0" = argmin ) LG fa(31)
i=1

Where the summation is performed over N input-ground truth pairs (y;, J;) in the data set. An ANN
is represented as a stack of layers [;,j € [1..m], such that fy = L;; o ,,_1 ©...o l;. In turn, each layer
is usually a simple parametrised operation, commonly taken as a matrix multiplication and addition:
l(x) = Wx + b, with W being a matrix of “weights”, and b the “bias” vector (though in principle W
and b can be of arbitrary rank). This multiplication is followed by a non-linear function called the
“activation function” to enable fy to represent non-linear mappings. Various activation functions
have been proposed, but most often a piece-wise linear function, the Rectified Linear Unit (ReLU), is
adopted: ReLU(y) = max (0, y). Since all operations in the ANN are differentiable, 8* can be

obtained through gradient-based optimisation of Eq. (1).

One of the most basic configurations, the Multi-Layer Perceptron (Rosenblatt, 1957), features a
dense weight matrix W that relates every entry of the input vector y to every entry in the layer
output vector L. For this reason, Perceptron layers are sometimes referred to as “fully-connected” or
“dense” layers. However, in many data types, such as time series and images, the data are only
locally correlated, rendering distant data points (e.g. pixels that are situated at the far ends of the
image) essentially independent of each other. Convolutional Neural Networks (CNNs; Fukushima,
1980; LeCun et al., 2015) leverage this property by only performing the multiplications within a small
window called the “kernel”. The same kernel weights are re-used for every location in the data set,
which can be envisioned as convolving the input data with a kernel of fixed size. This convolution (or
more precisely: cross-correlation) operation is represented by a matrix multiplication, effectively
rendering W into a structured and sparse matrix (see Fig.Al below). Moreover, W may comprise
multiple kernels (or “features”), such that each kernel produces a “feature map” that is proportional
in spatial extent to the input. After passing through an activation function, subsequent convolutional
layers takes these feature maps as an input, so that the original input (e.g. a 3-channel R/G/B image)

is transformed into a complex output with an arbitrary number of channels. Typical kernel sizes that



are used in image analysis are 3x3 or 5x5 pixels (see Fig. A1), which implies that each individual

kernel only has a narrow perceptive field (i.e. it sees only a small part of the input data). Fortunately,

by stacking numerous convolutional layers, the perceptive field gradually expands throughout the

CNN, so that deep CNNs exhibit a sufficiently wide perceptive field for e.g. object localisation and

identification.

To further enhance the model’s perceptive field, and to reduce the number of computational

operations, the input data is often gradually down-sampled through “pooling” operations (see Fig.

A1l below). The output of a convolutional layer is similar in spatial extent as the layer input, which

can be reduced by e.g. taking the maximum value of each group of 2x2 pixels. The resulting output

of the pooling operation is then only half in extent in each dimension, and this down-sampled output

serves as the input to the next convolutional layer.
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Cross Entropy loss
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Site A Fig. S5A
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Fig.S12
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