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Abstract: Assessing the potential biomass yield is a key step in aquaculture site selection. This is 
challenging, especially for shellfish, as the growth rate depends on both trophic status and water 
temperature. Individual ecophysiological models can be used for mapping potential shellfish 
growth in coastal areas, using as input spatial time series of remotely sensed SST and chlorophyll-
a. This approach was taken here to estimate the potential for developing oyster (Crassostrea gigas) 
farming in the western Adriatic Sea. Industry relevant indicators (i.e., shell length, total individual 
weight) and days required to reach marketable size were mapped using a dynamic energy budget 
model, finetuned on the basis of site-specific morphometric data collected monthly for a year. Spa-
tially scaled-up results showed that the faster and more uniform growth in the northern Adriatic 
coastal area, compared with the southern one, where chlorophyll-a levels are lower and summer 
temperatures exceed the critical temperature limit for longer periods. These results could be used 
in planning the identification of allocated zones for aquaculture, (AZA), taking into account also 
the potential for farming or co-farming C. gigas. In perspective, the methodology could be used for 
getting insights on changes to the potential productivity indicators due to climatic changes. 

Keywords: Adriatic Sea; AZA; dynamic energy budget; modeling; thermal limits; primary produc-
tivity; satellite data 

 

1. Introduction 
Aquaculture could play a crucial role in meeting rising food demand [1–3]. To this 

end, bivalve shellfish culture is a sustainable option [4], as most commercial shellfish spe-
cies are fast growing, can be farmed at relatively high densities and have no needs for 
additional feed [5,6]. Moreover, shellfish farms can contribute to maintaining essential 
ecosystem functions [7] such as nutrient cycling [8], fitting both into UN SDG 2, the blue 
carbon initiative [9], and the EU blue growth strategy (COM494/2012). In the Mediterra-
nean region, the identification of allocated zones for aquaculture (AZA) is used to guide 
and sustain the development of the industry (GFCM/36/2012/1), and the science-based 
identification of proper areas for aquaculture within maritime spatial planning is per-
ceived as a priority among stakeholders [10]. 
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Crassostrea (Magallana) gigas is considered a cosmopolitan species, able to withstand 
a wide temperature range [11] This species has been recorded in Japan, Korea, Siberia, 
Australia, the United States and Canada. In North America, its geographical range spans 
from Southeast Alaska to Baja California, and in Europe from the British Isles to Portugal 
and the Mediterranean. While in Europe it is an invasive species, its cultivation is wide-
spread, and it can be now considered as ”naturalized” in many areas [12]. France is, by 
far, the largest European producer with 115,000 tons annually (FAO 2019). In the Medi-
terranean, cultivation of this species accounts only for 3% of the volume of shellfish pro-
duction [13], and the production of Ostrea edulis is negligible. An increase in oyster pro-
duction would benefit the local economy, as their wholesale price (3.5–6 €/kg) is around 
5.5 time that of mussels [14]. The Adriatic Sea is, at present, the most important Mediter-
ranean area in terms of mussel production in longline systems (22 metric tons in 2013, 
~33.6% of the Italian production, MiPAAF 2014), and represents an area for potentially 
developing oysters’ cultivation up to 6 km offshore [14]. However, the current oyster pro-
duction is still limited to small-scale farming, with ca. 53 tons produced in 2013 (FAO 
2019). 

Most modeling and field studies on oyster growth and survival have been focusing 
on Atlantic sites [15,16], which present water temperature and trophic levels markedly 
different from those in the Adriatic Sea. In particular, chlorophyll-a levels are significantly 
lower in the Adriatic Sea compared to other Atlantic coastal zones where this species is 
typically cultured [17]. Moreover, the water temperature rarely exceeds 21 °C in Atlantic 
waters, which is around C. gigas’ optimum, while summer temperature in the Adriatic Sea 
can reach 30 °C, near the identified critical upper thermal limit for this species of 32 °C 
[18,19]. Assessing the growth performance of this species in a region close to its thermal 
limit and with a lower primary productivity is therefore important to understand whether 
expanding oyster culture can be a viable option. 

Individual-based growth models can be used as tools to estimate a set of indicators, 
such as time to harvest and average size at harvest, in relation to site-specific time series 
of forcing functions: for shellfish the most important ones are water temperature and chlo-
rophyll-a, which is taken as a proxy of energy available to filter feeders. The above forc-
ings can be estimated over large coastal areas from remotely sensed data; therefore, po-
tential productivity indicators can be mapped and used in aquaculture site selection 
[15,20,21]. Dynamic energy budget (DEB) theory [22] has provided a framework for de-
veloping robust individual ecophysiological models [23], based on a limited set of as-
sumptions and applicable to a wide range of species, including farmed ones (e.g., [24]). 
The large amount of satellite data currently available allows one to run ecophysiological 
models in a spatially explicit manner [15,21]. 

DEB models were previously applied to investigate and predict C. gigas’ growth in 
both North East Atlantic [25,26] and Mediterranean regions [27,28] but, to our knowledge, 
they were not previously applied to the Adriatic. Even though the parameterization of 
DEB is robust and soundly based on well-established theoretical framework, their appli-
cation to new areas usually requires the finetuning of a parameter, namely the half-satu-
ration coefficient, which depends both on the species and its diet. For filter feeders, this 
parameter represents the concentration of feeding particles at which half of the maximum 
intake rate is reached [29,30]. In order to assess the potential productivity of C. gigas in the 
western Adriatic coastal areas, a comprehensive set of field data was collected and used 
for finetuning an individual model. The model was subsequently applied in mapping a 
set of indicators, using as input a decadal spatial time series of environmental forcings. 
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2. Methods 
2.1. Model Parameter Estimation 

The individual growth of C. gigas was simulated using the model presented in [31], 
which, besides the critical upper thermal tolerance limit for respiration of 32 °C [26], in-
cludes a critical ingestion upper limit (25 °C). This feature was considered more consistent 
with ecophysiological studies, which showed a decrease in feeding capacity at tempera-
tures above 25 °C, which is lower than the metabolic temperature limitation typically set 
at 32 °C [32]. DEB models include a set of parameters, which may require site-specific 
tuning, as the same species can show adaptation to different environmental conditions 
[33]. The estimation of site-specific parameters is, therefore, very relevant for subsequent 
application of the model to areas in which it was not previously tested. Based on the data 
presented in Section 2.2, the half-saturation coefficient (Xk), which depends on food qual-
ity, was estimated [30]. 

The estimation of the Xk parameter was performed with a bootstrap methodology 
[34], and using the mean squared error (MSE) as a goal function to compare estimates of 
oyster sizes obtained with different values of the parameters with empirical data: 

𝑀𝑆𝐸 = ⎝⎜
⎛ 𝑊 −𝑊𝜎 + 𝐿 − 𝐿𝜎𝑛 ⎠⎟

⎞
 (1)

where n is the number of sampling events, and Wm, and L represent, respectively, the val-
ues of meat wet weight and the shell length randomly extracted from a synthetic popula-
tion of 2000 individuals, 𝜎 , 𝜎 , are the standard deviations of the observed data, while 𝑊  and 𝐿  are the respective model predictions. The minimization of MSE was inde-
pendently performed on the 2000 synthetic growth curves, which were generated by ran-
domly extracting Wm, and L values from a probability density function which was as-
sumed to be normally distributed, with mean and standard deviation defined by the de-
scriptive statistics of the in situ observations at the n-different sampling events. 

The shape coefficient used in the model was in this study calculated from the data 
collected in situ, as V1/3/L. V was calculated assuming the oyster geometry to be made of 
two ellipsoid-based cones, one taller (3/4 height) and one flatter (1/4 height). The mean 
value and standard deviation were calculated, and the mean was then taken for use in the 
model (see Table 1). Total weight was calculated from wet meat weight through an al-
lometric relationship, with the coefficients estimated by performing a linear regression 
based on empirical oyster data (see Table 1). 

Table 1. Dynamic energy budget (DEB) parameters used in this study. In bold are the parameters estimated from the 
experimental data. *: Cultivated oysters are triploid. In this study sterility is assumed. 

Parameter Value Reference 
Arrhenius temperature TA 5800 K [35] 

Rate of decrease at lower boundary (TAL) 75,000 K [35] 
Rate of decrease at upper boundary (TAH) 30,000 K [35] 

Critical lower limit (TL) 276 K [31] 
Critical ingestion upper limit (TH) 298 K [31] 

Critical respiration upper limit (TH1) 305 K  [31] 
Half-saturation coefficient (XK) 12.6 This study 

Max. surface area-specific ingestion (JXm) 560 J/cm2 d [35] 
Assimilation efficiency (ae) 0.75 [35] 

Volume-specific maintenance costs (p_M) 24 J cm3/d [35] 
Max. reserve density (Em) 2295 J/cm3 [35] 

Cost for growth (Eg) 1900 J/cm3 [35] 
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Energy content of reserve (mu E) 17,500 J/cm2 [36] 
Allocation fraction to somatic tissue (k) 1 *  

Volume at puberty (Vp) n/a [35] 
Reproduction efficiency (KR) 0 * 
Gonadosomatic index (GSI) 0 * 

Shape coefficient (δm) 0.225 ± 0.03 This study 
Wet meat weight to dry meat weight converter 0.2 [37] 

Dry meat weight to total weight equation 23.8 Wmd + 6 This study  

2.2. Mapping Indicators 
Three growth-performance indicators used by the producers, namely shell length (L), 

total weight (W) and the number of days required to reach the marketable size of 6 cm 
(TTM—time to market), were selected [38,39]. 

In order to obtain robust estimates of the above indicators, which take into account 
the interannual variability in temperature and primary production, the model was run for 
nine 28 month-long “grow-out” cycles, (see Section 2.3), spanning from 2008 to 2019. The 
simulated domain covered a distance from the coastline corresponding to the 40 m iso-
bath, extending from Friuli Venezia Giulia up to Puglia region, with a 1 km2 resolution. 
The DEB model was forced at each cell of the grid, using time series of SST and chl-a data 
estimated from satellite data, as described in Section 2.4. Marketable size was not always 
achieved, thus for the TTM indicator, the median and interquartile ranges were calculated 
by considering only those years in which the final length of 6 cm was achieved. Cells of 
the grid in which the marketable size was achieved in all the 9 grow-out periods were 
named “persistently suitable growing area”, and marked on the maps. 

All model runs were performed in MATLAB 2020b [40]. Statistical analyses on the 
sampled data were performed using R [41] and maps were generated using QGIS 3.12.2 
[42]. 

2.3. In Situ Data Collection 
In order to estimate the parameter Xk, time series of shell length, width, height (thick-

ness), total wet weight and meat wet weight were collected in situ during part of a grow-
out cycle of triploid oysters, Crassostrea gigas, in an oyster farm located in the southern 
Adriatic Sea, located near the Capoiale estuary, Cagnano Varano, Foggia, Italy (41°56.469′ 
N, 15°41.539′ E). Farm specifications and data collection are described below. The grow-
out cycle started in December with individuals of a T4 size (0.6 cm) and ended after 28 
months, following procedures from the sampled farm (see below). This was similar to 
other studies and areas (e.g., [37,41,42]). 

The dataset was collected at a farming site managed by the cooperative Varano La 
Fenice (Cagnano Varano, Foggia, Italy). This company employs SEAPA baskets (dimen-
sions: 650 × 400 mm2; volume: 24 L) in polyethylene copolymer (model MP650) in piles of 
four baskets each, held at a depth of 6 m. C. gigas seed (size T4–T6) imported from France, 
was stocked in December 2016. Stocking density at the beginning of the sampling was 201 
oysters/basket. The same number of individuals (60 specimens) was collected every 
month from each of the four baskets, from March 2018 to February 2019. Eleven surveys 
were carried out, as weather conditions were adverse in November 2018. The initial sam-
ple size, 60 specimens, was reduced to 40 from August 2018, to limit the effects of sam-
pling on stocking density (Table A1 in Appendix A). The following biometric parameters 
were determined on a subset of 15 individuals: shell length, width, height (thickness), total 
wet weight and meat wet weight. Mortalities were recorded when oysters appeared 
empty or remained permanently open. 
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2.4. Forcing Functions 
The DEB model requires as inputs daily time series of (i) water temperature, (ii) and 

chlorophyll-a (chl-a) concentration, as a proxy for living phytoplanktonic cells that can be 
cleared and digested by shellfish. In this study, these forcing variables were estimated 
from time series of satellite remote sensing (SRS) daily data at 1 km2 spatial resolution, 
obtained from the Copernicus Marine Environment Monitoring Service (CMEMS; 
https://marine.copernicus.eu/ accessed on 15 January 2020) EU program. Daily sea surface 
temperature (SST) Level 4 (i.e., continuous spatiotemporal data resulting from model out-
puts) and chl-a Level 3 (i.e., data mapped on uniform spatiotemporal grid but with gaps 
due to clouds presence), were used. The chl-a dataset was linearly interpolated, in order 
to fill unequally spaced parts of the time series, thus obtaining two matrices of daily chl-
a and SST data of equal size. For the model calibration, the chl-a and SST relative to the 
point coordinates of the farm were taken for the grow-out cycle related to the sampling 
(December 2016–March 2019). Subsequently, the median and interquartile range (IQR) of 
both SST and chl-a were mapped in order to evaluate their variability within the 9 grow-
out cycles (28 months from December to March, in the 11-year time series spanning from 
2008 and 2019). Moreover, considering the SST forcing, we calculated the number of days 
in which the temperature exceeded the critical upper ingestion limit (TH > 298 K). 

3. Results 
3.1. Parameter Estimation 

Sea surface temperature and chl-a time series at the farm site, for the grow-out time 
period 2016–2019, corresponding to the time of the in situ data collection, are shown in 
Figure 1. SST ranged from 9.5 to 29.1 °C and chl-a from 0.14 µg/L to 7.85 µg/m with peaks 
in winter and spring months (December to March), and lowest values during the summer 
months. During the grow-out cycle, SST outside the respiration tolerance range of oysters, 
i.e., above 32 °C and below 3 °C, were not observed. However, SST exceeded the ingestion 
rate upper tolerance limit of 25 °C for 71 days in 2017 and 98 days throughout the summer 
of 2018 (Figure 1). 
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Figure 1. Temperature (°C) and chl-a µg/L for the 2016–2019 grow-out period, at the study site, used as forcing functions 
in the DEB model. Horizontal solid lines represent lower and upper critical thermal limits. Horizontal dotted red line 
represents thermal limits for feeding. 

All model parameters are summarized in Table 1. The calibration of the half-satura-
tion coefficient, Xk, gave a value of 12.6 ± 1.3 (µg chl-a L−1, median ± iqr, Figure 2). 
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Figure 2. Histograms of Xk resulting from the bootstrap simulation. Solid red line represents me-
dian, dashed line represent interquartile ranges of the value. 

The model output for the whole grow-out period using the median value of Xk (esti-
mated within this study) is compared with the observations at the Cagnano–Varano farm 
in Figure 3, which shows the comparison between simulated and observed length and 
meat wet weight (Figure 3a,b) and the estimated and observed total weight (Figure 3c). 
Overall, the model fits the growth patterns, providing accurate predictions (model line 
falling well within the observation standard deviations) of all variables from the start of 
sampling in March (15 months from seeding) up to December (24 months from seeding) 
but underestimates the growth in terms of weights from January (month 25) to March 
(month 27) 2019 (Figure 3b,c). 
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Figure 3. Output of DEB model and observations, (a) shell length (cm), (b) wet soft-tissue weight (g), and (c) the estimated 
total weight (g) from beginning December 2016 to end of July 2019. Dots represent sample means and error bars represent 
sample standard deviations. 

3.2. Spatial Distribution of Indicators 
The environmental variables used to run the DEB models for the whole Italian Adri-

atic basin are mapped in Figure 4. SST presented the highest median values in the south-
ern part of our study area, with a marked latitudinal gradient (Figure 4A), and the highest 
temporal variability within the 11 years considered, in the northern part, in the Veneto 
and Emilia Romagna regions (Figure 4B). Chl-a had the highest median values and varia-
bility recorded in the area surrounding the Po river outlet (3 ± 2.6 mg m−3), with values 
decreasing moving from this area and the lowest values recorded on the coasts around 
the Apulian region (0.9 ± 0.7 mg m−3) (Figure 4C,D). Chl-a values decreased moving off-
shore (down to 0.2 ± 0.1 mg m−3). 
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Figure 5 shows the number of days in which temperatures exceed the upper ingestion 
limit set by Bourlés et al. (2009), which shows a latitudinal gradient with increased num-
ber of days moving south (from less than 670 days up to 978 in the 2008–2019 period). 

 
Figure 4. Environmental variables: (A) median, (B) sea surface temperature (SST), interquartile range, (C) chl-a median, 
(D) chl-a interquartile range. 
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Figure 5. Number of days during the entire period considered (2008–2019) with temperature > TH. and area extension 
(km2) for each day’s class. 

Figure 6 shows the spatial distributions of the median and the IQR of the growth 
indicators: L, W and TTM. The median length at the end of each grow-out cycle ranged 
from 2.75 (±0.04) to 18.96 (±5.18) cm. Oysters were longer in the areas affected by the Po 
River discharge, with a tendency to be shorter moving offshore (down to 3 cm). This area 
was also characterized by the largest IQR variability between grow-out periods (up to 2.9 
cm) while the lowest length values and lowest variability were predicted in the Apulian 
region (6 cm near the coast) (Figure 6A,B). 

The median total weight reached at the end of the simulated grow-out cycle, and its 
variability, are mapped in Figure 6C,D. This value showed a pattern similar to the length 
one, with the highest median values and variability (up to >150 ± 43 g) recorded near the 
Po River outlet, and a decreasing tendency moving offshore (down to <1 g). 

TTM median and interquartile ranges (Figure 6E,F) present the lowest values (138 
days) in the northern inshore areas, while in the southern and offshore parts it took a 
greater number of days (475 southern inshore and 812 offshore) to complete the grow-out 
cycle. TTM predicted by the model in the area where the sampling was conducted was 
422 (median over the nine grow-out periods), which was consistent with 458 days found 
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during the sampling. The TTM largest IQR was found in the offshore area nearby the Po 
River outlet (325 days). The “persistently suitable growing area”, is shown in the maps (Figure 
6E,F), and was spread all over the domain considered, from the Venice lagoon down to 
the Puglia region. 

 
Figure 6. Oyster farming indicators: median length (A) and interquartile range (B); total weight 
median (C) and interquartile range (D); days to reach the marketable size median (E) and inter-
quartile range (F). 
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4. Discussion 
This study aimed to apply a DEB model at a basin scale to inform spatial planning 

on expanding oyster culture in the Adriatic Sea. This was pursued via the application of 
an individual-based model, reparametrized for the trophic conditions at the basin scale 
using remote-sensing data. The results from this study provide some useful advances to 
the field, including much needed updated information on oyster growth dynamics for a 
coastal zone such as the Adriatic Sea, where spring and summer water temperatures are 
increasing at a faster rate compared to those in other areas of the Mediterranean Sea 
[18,43,44]. 

The suitability and ubiquity of DEB model applications for C. gigas was already 
demonstrated for multiple Atlantic sites, where SST ranges between 6 and 24 °C [25], i.e., 
within the thermal tolerance ranges for both ingestion 3–25 °C and for respiration (3–32 
°C; Bourlés et al., 2009). While a DEB was previously used at a Mediterranean site located 
in the Southern Tyrrhenian Sea (e.g., [27]), and also in the Adriatic [28], the model was not 
previously recalibrated to take into account the site specificity of Xk [29]. The result of the 
finetuning of Xk indicates that the Southern Adriatic has a food quality slightly lower than 
that in other Mediterranean areas with similar average chl-a levels (e.g., Xk = 9.5 µg L−1 
used in [27]). The area with the highest chlorophyll-a levels, in the northern Adriatic, was 
also the area with the best growth, in which the higher production areas of C. gigas, Emilia 
Romagna and Veneto, are also located [43]. The Adriatic Sea was found to have a highly 
irregular variance in chl-a concentration compared to other Mediterranean regions in 
which the phenology of phytoplankton blooms followed more regular patterns [44]. In-
terannual variability in inorganic seston quantity and quality should also be considered, 
for example due to differences in riverine nutrient inputs between wet and dry years [45], 
and within our study area for the nine simulated grow-out cycles, from 2008 to 2019, there 
was a high spatial variability in chl-a concentrations observed, with median values com-
prised between 0.13 and 5.34 µg L−1, with a variability of 0.07 to 5.14 µg L−1 . This is in line 
with the results obtained in a previous study [28] and may represent a key decisional point 
for allocation of coastal zones to different activities. 

It is important to mention that intra-annual variability in food quality, which has not 
been taken into account using this approach, may occur. This may be one of the factors 
explaining some of the discrepancies seen in the second winter (January–March 2019) be-
tween observed and predicted weights in the model calibration. Food quality might dis-
play a seasonal variation that is caused by a succession of plankton species (e.g., [46]). C. 
gigas is able to filter most phytoplankton particles, aside from pico-particles [47], however, 
studies on the energy obtained by different planktonic functional groups are limited. The 
seasonality in the lower Adriatic Sea results in the greatest abundance during the winter 
months (January–February), with a dinoflagellate-dominated community in winter, tran-
sitioning through a mixed assemblage of phytoflagellates and diatoms in spring and sum-
mer, and returning to a mixture of phytoflagellates and dinoflagellates in autumn [48]. 
Moreover, in the short term, water density and mixing, which depend on temperature and 
meteorological conditions (Mediterranean Basin: [49]), can also affect plankton vertical 
distribution, contributing to its interannual variability. Plankton cell densities [31], or 
planktonic carbon [45], would certainly be better proxies of the energy available to shell-
fish and may result in a better fit in the last section of the grow-out cycle. Models based 
on DEB theory could be thus potentially improved through the addition of a seasonal term 
that takes into account the variability in food availability, uptake and energy reserves. 
Current research efforts in the field of remote sensing are aimed at identifying main plank-
tonic groups, however, to date, chl-a is the only proxy which can be used in site selection 
studies, as it can be reliably estimated from satellite data [50–52] and, therefore, used for 
mapping the growth potential at large spatial scales. 

The area showing the greatest chl-a concentration and variability is also the area 
which showed by the highest SST variability (see Figure 2), and this is where the highest 
variability in growth parameters was recorded. Therefore temperature may also play an 
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important role for the successful farming of this species. Considering that C. gigas in the 
Adriatic Sea lives near its critical thermal limits, even a small increase in water tempera-
ture can have direct effects on the growth and survival of this species. Considering the 
length achieved at the end of the simulated rearing cycle, the areas with the highest vari-
ability (Figure 6) almost overlapped with the area characterized by temperature values 
often exceeding the critical ingestion upper limit (TH) (Figure 5). No growth, or even de-
crease in wet weight, was observed at the sampling site between July and September 2018, 
when water temperatures often exceeded the 25 °C threshold identified by [31]. This result 
is consistent with that presented in [53], who compared two grow-out cycles: the first one 
characterized by summer temperatures >25 °C, in which individual growth stopped, and 
a second one with temperatures lower than 22 °C, in which oysters continued growing 
throughout the summer. Nonetheless, our results are not entirely consistent with previous 
work on oyster growth in the Adriatic Sea, since [54] observed maximum weight incre-
ment between July and October. However, compared to the present study, temperatures 
were markedly lower (24.5 ± 1 °C vs. 26.2 ± 0.79 °C in July down to 16.4 ± 1 °C vs. 20.4 ± 
1.7 °C in October), which may explain the discrepancies. This could be related to the flow 
of freshwater from the rivers, mainly the Po, located in the northern portion of the basin 
[55]. Indeed, comparing the flow annual mean values with the number of days with SST 
> TH there was an opposite trend, but the extent of the impact of this mechanism needs to 
be further investigated in a dedicated study. 

The model recalibrated in this study was adapted to take account of the triploid na-
ture of the cultivated oyster. Triploidy induction in shellfish aims to obtain faster growth 
and sterility of reared individuals, and in this study we assumed full sterility as no gam-
etogenesis. However, this is not necessarily always the case, as some individuals may still 
be producing gametes [56]. Furthermore, triploidy may lead to further biological changes 
beyond reproduction, for example, differences in the seasonality of immune responses 
[57] but also differences in net energy balance [58], which may explain some of the dis-
crepancies between the model and the observations in the final period of cultivation, and 
should be taken into account with ad hoc studies complemented by further biological un-
derstanding. 

5. Conclusions 
This study provides a showcase of existing resources supporting spatially explicit 

approaches for the designation and management of aquaculture areas [59]), combining 
satellite data and ecophysiological models, supported by in situ sampling. Moreover, the 
present application could provide a relevant contribution in the broader framework of 
maritime spatial planning—MSP directive 2014/89/EU implementation [60]. Timely and 
science-based aquaculture zoning is relevant not only for guaranteeing an effective inte-
gration among different sectors considered in MSP (e.g., providing the knowledge base 
for comparing different scenarios of use), but also from the perspective of land–sea inter-
actions. In fact, shellfish aquaculture depends on the input of energy and materials from 
the land (e.g., [61]); it can limit local eutrophication [62] but, on the other hand, is sensitive 
to potential sources of pollution directly related to land originated drivers [63]. Along 
with local drivers, climate change is expected to have an influence on the environmental 
conditions of cultivation areas. In this respect, an increased frequency of heatwaves in the 
Mediterranean Sea [64] could represent a good example of climate change effect, which 
should be considered carefully when designing areas and addressing risks for oyster cul-
tivation in the Adriatic Sea [65] considering the predicted temperature increase for the this 
basin [66]. We believe that the increasing availability of models, such as the one applied 
in the present study, able to combine nonlinearly the effects of water temperatures and 
trophic conditions, will represent a key resource for predicting future changes in produc-
tivity associated with modified water biogeochemical characteristics (e.g., induced by 
modified thermal conditions coupled with changes in plankton phenology). The variabil-
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ity in growth indicators within the time frame analyzed in this study provides an indica-
tion of the robustness of model results, which should be taken into account in the future 
design of allocated areas, and site selection processes aimed at maximizing resource use, 
thus ideally prioritizing areas of cultivation where returns are higher and consistent. In-
deed, the average growth index among the nine time periods gave only preliminary in-
formation about the performance of this organism in the Adriatic Sea, which should be 
complemented with the collection of further oyster growth data under a range of con-
trasting environmental conditions experienced by the Adriatic Sea waters. 
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Appendix A 

Table A1. Sampling schedule during the monitored grow-out. Month of sampling, number of oysters present before sam-
pling, number of oysters removed, number of dead oysters, number remaining, average number of oyster in each of the 
four baskets, approximate volume of water per oyster. 

Month Number before 
Sampling 

Oysters 
Taken  

Mortali-
ties 

Number after 
Sampling 

Number in  
Each Basket (Average) 

Volume of Water 
per Oyster (L) 

March  864 60  804 201 0.119 
April  804 60  744 186 0.129 
May  744 60  684 171 0.140 
June 684 60  624 156 0.153 
July 624 60  2 562 140.5 0.170 

August 562 40  20 502 125.5 0.191 
Septem-

ber 
502 40  67 395 98.75 0.243 

October 395 40  9 346 86.5 0.277 
Decem-

ber 346 40  306 76.5 0.313 

January 306 40  266 66.5 0.360 
February 266 40  226 56.5 0.424 
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