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PUBLISHABLE SUMMARY 

There are large opportunities to use the massive amount of observational data in Europe for personalized 
decision-making. However, the lack of inter-operability of the data sources makes this a challenging task. The 
differences in structure (syntactic inter-operability) and terminology systems (semantic inter-operability) 
make the development of standardized analytical pipelines cumbersome. The European Health Data and 
Evidence Network (EHDEN) project is addressing this by standardizing a large amount of European data 
sources to the OMOP Common Data Model (CDM). The goal of WP3 “Personalized Medicine” is to establish 
a standardized process to enable personalized decision-making that can be utilized for multiple outcomes of 
interest and can be applied to observational healthcare data from any patient subpopulation. 

In the first report on WP3 activities, we introduced the analytical pipelines for Patient-Level Prediction and 
Population-Level Effect Estimation. Furthermore, we discussed our initial work for the development of a 
pipeline for Risk Stratified Effect Estimation to assess heterogeneity of treatment effect.  

The current second report provides an update on the work done in the second year. This includes an overview 
of use cases in which the analytical pipelines have been applied and describes the advances made in 
methodological research, the start of a natural language processing pipeline, and work done to develop a 
pipeline for disease trajectories. 

This work falls under Task 3.2. “Development of an integrated patient-level prediction pipeline” (M6-M60), 
Task 3.3 “Development of an integrated risk-effect estimation pipeline” (M6-M60), and Task 3.4 
“Development of a pipeline for disease trajectory analysis” (M12-M36). 
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1. INTRODUCTION 

As discussed in depth in D3.1 “First Report on the implementation of the analytical pipeline for personalized 
medicine”, the goal of WP3 is to build analytical pipelines that can utilize all the data in the OMOP Common 
Data Model (CDM) for patient-level prediction (PLP), population-level effect estimation (PLE), heterogeneity 
of treatment effect (HTE), and disease trajectory analyses. In D3.1 we focused on PLP and PLE, and presented 
some preliminary work on heterogeneity of treatment effect. In this deliverable we start by describing some 
use cases in which the PLP and PLE methods have been applied successfully. In addition, we describe the 
advances made with HTE and disease trajectory analysis, and present methodological work done by the WP3 
team. 

 

2. USE CASES 

We start by presenting multiple use cases in which prediction models have been developed and then give an 
example of population-level effect estimation. These use cases have been developed and executed in close 
collaboration with WP1 “Evidence Workflow Development”, and with the Observational Health Data Sciences 
and Informatics (OHDSI) global data network. 

2.1 Patient-Level Prediction 

We first give a quick refresher on the prediction problem as described in more depth in D3.2 and  
https://ohdsi.github.io/TheBookOfOhdsi/PatientLevelPrediction.html. 

 

Figure 1: The prediction problem. 

 

Figure 1 illustrates the prediction problem. Among a population at risk, we aim to predict which patients at a 
defined moment in time (t = 0) will experience some outcome during a time-at-risk. Prediction is done using 
only information about the patients in an observation window prior to that moment in time. 

As shown in Table 1, to define a prediction problem we have to define t=0 by a target cohort, the outcome 
we like to predict by an outcome cohort, and the time-at-risk. We define the standard prediction question as: 

Among [target cohort definition], who will go on to have [outcome cohort definition] 

within [time-at-risk period]? 

Furthermore, we have to make design choices for the model we like to develop and determine the 
observational datasets to perform internal and external validation. 
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Table 1: Main design choices in a prediction design 

Choice Description 

Target cohort How do we define the cohort of persons for whom we wish to predict? 

Outcome cohort How do we define the outcome we want to predict? 

Time-at-risk In which time window relative to t=0 do we want to make the prediction? 

Model 
What algorithms do we want to use, and which potential predictor variables do 
we include? 

 
For more information see the R Package at https://github.com/PatientLevelPrediction, and the PLP 
framework paper [1]. 
 

2.1.1 COVID-19 Prediction Model (COVER)  
 
Table 2. Problem definition COVER study 

Choice Definition 

Target cohort Patients with initial COVID-19 infection 

Outcome cohort Hospitalisation, Hospitalisation with intensive services, fatality 

Time-at-risk 30 days 

Model LASSO logistic regression with custom covariates 

 
Background  
The majority of pandemic response planning has focused on population-level effects of likely disease spread 
and contain no information on how an individual’s risk impacts their likely morbidity and mortality if they 
were to contract the virus. The WHO Risk Communication Guidance [2] distinguishes two categories of 
patients at high risk of severe disease: those older than 60 years and those with “underlying medical 
conditions” which is non-specific. Using general criteria to assess the risk of poor outcomes is a crude risk 
discrimination mechanism as entire patient groupings are treated homogeneously ignoring individual 
differences. Research has shown that COVID-19 does not impact all ages and sexes equally and as such a 
more personalised risk assessment can aid in improving outcomes. In a recent BMJ editorial [3], the authors 
conclude that the COVID-19 response “is about protecting lives and communities most obviously at risk in 
our unequal society”. Quantifying a patient’s risk of developing severe or critical illness when infected with 
COVID-19, could be used to help countries plan strategies to shield the most vulnerable patient populations. 
This is essential during the planning of de-confinement strategies. If a more personalised risk assessment 
were possible, then governments and healthcare authorities could advise based upon this and create a 
subtler lockdown procedure that reduces the personal and economic impact whilst continuing to keep 
healthcare utilisation at manageable levels. 
 
In this research we aimed to develop COVID-19 Estimated Risk (COVER) scores to quantify a patient’s risk of 
hospital admission (COVER-H), requiring intensive services (COVER-I), or fatality (COVER-F) due to COVID-19 
using the OHDSI PLP framework. In order to allow for rapid development and to overcome the shortcoming 
of using small data for development, we made use of the abundant data from patients with influenza or flu-
like symptoms to develop the models and then we tested whether the models transport to COVID-19 
patients. Given the symptomatic similarities between the two diseases we hypothesized that the developed 
models will be able to transport between the two problem settings.  
 

https://github.com/PatientLevelPrediction
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Methods  
In this study, we analyzed a federated network of electronic medical records and administrative claims data 
from 14 data sources and 6 countries. We developed and validated 3 scores using 6,869,127 patients with a 
general practice, emergency room, or outpatient visit with diagnosed influenza or flu-like symptoms any time 
prior to 2020. The scores were validated on patients with confirmed or suspected COVID-19 diagnosis across 
five databases from South Korea, Spain and the United State. Outcomes included i) hospitalization with 
pneumonia, ii) hospitalization with pneumonia requiring intensive services or death, and iii) death in the 30 
days after index date.  

 

Results  
Overall, 44,507 COVID-19 patients were included for model validation. We identified 7 predictors (history of 
cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney 
disease) which combined with age and sex discriminated which patients would experience any of our three 
outcomes. The models achieved high performance in influenza. When transported to COVID-19 cohorts, the 
AUC ranges were: COVER-H: 0.69-0.81, COVER-I: 0.73-0.91, and COVER-F: 0.72-0.90. Calibration was overall 
acceptable.  

 

Conclusions  
A 9-predictor model performs well for COVID-19 patients for predicting hospitalization, intensive services 
and fatality. The models could aid in providing reassurance for low-risk patients and shield high risk patients 
from COVID-19 during de-confinement to reduce the virus' impact on morbidity and mortality (Figure 2). 

 

 
Figure 2: COVER scoring system 

 
Published Outputs:  

Seek COVER: Development and validation of a personalized risk calculator for COVID-19 outcomes in an 
international network [4]. 

Results explorer (shiny app): http://evidence.ohdsi.org:3838/Covid19CoverPrediction/ 

http://evidence.ohdsi.org:3838/Covid19CoverPrediction/
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2.1.2 Prediction Modelling in Rheumatoid Arthritis Patients  
 
Table 3. Problem definition rheumatoid arthritis prediction study 

Choice Definition 

Target cohort 
Rheumatoid arthritis patients initiating first-line treatment of methotrexate 
monotherapy 

Outcome cohort Serious infections, myocardial infarction (MI) and stroke 

Time-at-risk 90 days (serious infections), 2 years (MI and stroke), 5 years (cancer) 

Model L1 regularized logistic regression 

 
 
Background 
Rheumatoid arthritis (RA) is a common musculoskeletal disease, affecting approximately 0.5-1.0% of the 
adult population worldwide [5, 6]. While the management of RA has improved in recent decades, the risk of 
adverse health outcomes in addition to the traditional clinical manifestations in RA patients remains a major 
issue [7, 8]. Adverse health outcomes in RA include known complications such as cytopenia and comorbidities 
such as cardiovascular disease (CVD), infection, and cancer, which have a higher prevalence in RA patients 
compared to the general population [9-11]. Generally, periodic screening and monitoring for these adverse 
health outcomes throughout the course of therapy would allow for early interventions. Unfortunately, with 
a wide range of possible adverse health outcomes, this is a challenging task. Managing treatment of RA is 
complex and there is limited time available for direct interaction with patients. Evaluating patient-level risks 
for adverse health outcomes upon initiation of treatment would therefore allow clinicians to provide more 
personalized care. With methotrexate (MTX) adopted as the “anchor drug” since the 1990s [12], we aimed 
to develop and validate patient-level prediction models for risk of leukopenia, pancytopenia, infection 
(serious, opportunistic, all), cardiovascular disease (myocardial infarction (MI), stroke), and cancer 
(colorectal, breast, uterine) in RA patients initiating first-line treatment of MTX monotherapy.  

 

Methods 
Patient data were obtained from 15 claims and electronic health record (EHR) databases mapped to the 
OMOP CDM across 9 countries (Australia, Estonia, France, Germany, Japan, Netherlands, Spain, United 
Kingdom, and United States of America). All RA patients initiating first-line treatment of MTX monotherapy 
with at least one year of prior observation were included. Prediction models were developed on the Optum 
Clinformatics Data Mart Database using L1 regularized logistic regression to predict the risk of adverse health 
outcomes in 3 months (leukopenia, pancytopenia, infection), 2 years (MI and stroke), and 5 years (cancer) 
after initiating treatment. For each outcome, this allowed us to develop the models on approximately 20,000 
RA patients, with 75% and 25% of the data used for training and testing the models, respectively. More than 
143,000 RA patients from the other 14 databases were included for external validation. Performance was 
assessed using the area under the receiver operator characteristic curve (AUROC) and calibration plots. 

 

Results 
To the best of our knowledge, our study is the first to develop and externally validate patient-level prediction 
models for risk of a variety of adverse health outcomes in RA patients initiating first-line treatment of MTX 
monotherapy. For leukopenia, breast cancer, and uterine cancer, there were too few outcome events in our 
data to develop patient-level prediction models. For risk of pancytopenia, opportunistic infections, all 
infections, and colorectal cancer, we did not consider the internal validation AUROC < 0.70 high enough to 
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warrant validating the model externally. However, for risk of serious infections, MI, and stroke, we were able 
to develop models that showed good performance on internal and external validation. Internal validation  
resulted in AUROCs of 0.75, 0.77, and 0.78, respectively, indicating good discrimination. The large sample 
size of the development dataset allowed for good calibration as expected. External validation results showed 
good discrimination and calibration across other databases, although for some databases the AUROC 
confidence intervals were wide because of few outcome events (see Table 4). In databases where the 
outcome incidence is substantially higher or lower than in the development database, the models may 
benefit from recalibration. Overall, the models for risk of serious infections, MI, and stroke demonstrated 
transportability to RA patients from 14 other databases, with particularly good performance across USA 
databases. 

 

Conclusions 
We developed and externally validated patient-level prediction models for risk of serious infections, MI, and 
stroke in RA patients initiating first-line MTX monotherapy. The models showed good performance and 
demonstrated transportability to RA patients from 14 other databases. The models could be used to identify 
high-risk patients and aid clinicians in providing better personalized care.  
 

Published Outputs:  

A full manuscript detailing the developed prediction models is currently in development for submission to a 
peer-reviewed journal.  
 
Results Explorer (Shiny App): https://data.ohdsi.org/ehdenRaPrediction/ 
 
 
 

  

https://data.ohdsi.org/ehdenRaPrediction/
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Table 4. Internal and external validation results  

Outcome Database Target population Outcome events AUROC (95% 
confidence interval) 

Serious infections 
  

Optum DOD 
(internal validation) 

5,251 79 (1,5%) 0.747 (0.686-0.807) 

MDCD 3,355 111 (3.3%) 0.632 (0.580-0.684) 

JMDC 3,278 11 (0.3%) 0.707 (0.546-0.868) 

MDCR 6,533 152 (2.3%) 0.675 (0.631-0.719) 

CCAE 27,877 216 (0.8%) 0.661 (0.622-0.700) 

Estonia 1,464 8 (0.5%) 0.816 (0.691-0.941) 

IQVIA US hospital 3,703 746 (20.2%) 0.607 (0.585-0.630) 

Optum EHR 41,072 397 (1.0%) 0.738 (0.712-0.764) 

Myocardial 
infarction 

Optum DOD 
(internal validation) 

5,308 98 (1.8%) 0.775 (0.735-0.815) 

 MDCD 3,427 78 (2.3%) 0.717 (0.665-0.770) 

 JMDC 3,299 9 (0.3%) 0.487 (0.298-0.676) 

 MDCR 6,613 210 (3.2%) 0.684 (0.649-0.718) 
 CCAE 28,084 173 (0.6%) 0.730 (0.693-0.767) 

 Estonia 1,465 18 (1.2%) 0.673 (0.547-0.799) 

 IPCI 556 7 (1.3%) 0.683 (0.559-0.807) 

 IQVIA Australia 560 14 (2.5%) 0.576 (0.438-0.713) 

 IQVIA LPD France 3258 7 (0.2%) 0.685 (0.510-0.860) 

 IQVIA Germany 7401 38 (0.5%) 0.644 (0.560-0.728) 

 IQVIA THIN 6,935 44 (0.6%) 0.621 (0.552-0.690) 

 IQVIA US 
ambulatory 

32,524 115 (0.4%) 0.756 (0.717-0.795) 

 IQVIA US hospital 4,140 191 (4.6%) 0.667 (0.632-0.703) 

 Optum EHR 41,496 716 (1.7%) 0.764 (0.745-0.781) 

 SIDIAP 3,614 15 (0.4%) 0.648 (0.501-0.796) 

Stroke Optum DOD 
(internal validation) 

5,301 127 (2.4%) 0.783 (0.745-0.821) 

 MDCD 3,415 108 (3.2%) 0.785 (0.743-0.828) 
 JMDC 3,299 21 (0.6%) 0.753 (0.640-0.866) 

 MDCR 6,609 297 (4.5%) 0.685 (0.653-0.716) 

 CCAE 28,082 243 (0.9%) 0.731 (0.698-0.764) 

 Estonia 1,464 24 (1.6%) 0.774 (0.704-0.845) 

 IQVIA Germany 7,416 37 (0.5%) 0.703 (0.603-0.802) 

 IQVIA THIN 6,937 21 (0.3%) 0.648 (0.551-0.745) 

 IQVIA US 
ambulatory 

32,561 131 (0.4%) 0.722 (0.667-0.751) 

 IQVIA US hospital 4,127 199 (4.8%) 0.632 (0.595-0.669) 

 Optum EHR 41,404 868 (2.1%) 0.779 (0.765-0.794) 

 SIDIAP 3,615 7 (0.2%) 0.749 (0.579-0.919) 
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2.2 Population-Level Effect Estimation 

We start with a quick refresher of population-level effect estimation (see D3.2 for more details). 

With population-level effect estimation, we refer to the estimation of average causal effects of exposures 
(e.g. medical interventions such as drug exposures or procedures) on specific health outcomes of interest. In 
what follows, we consider two different estimation tasks: 
 

• Direct effect estimation: estimating the effect of an exposure on the risk of an outcome, as 
compared to no exposure. 

• Comparative effect estimation: estimating the effect of an exposure (the target exposure) on the 
risk of an outcome, as compared to another exposure (the comparator exposure). 
 

In both cases, the patient-level causal effect contrasts a factual outcome, i.e., what happened to the exposed 
patient, with a counterfactual outcome, i.e., what would have happened had the exposure not occurred 
(direct) or had a different exposure occurred (comparative). Since any one patient reveals only the factual 
outcome (the fundamental problem of causal inference), the various effect estimation designs employ 
different analytic devices to shed light on the counterfactual outcomes. 
Use cases for population-level effect estimation include treatment selection, safety surveillance, and 
comparative effectiveness. Methods can test specific hypotheses one at a time (e.g. ‘signal evaluation’) or 
explore multiple-hypotheses-at-once (e.g. ‘signal detection’). In all cases, the objective remains the same: to 
produce a high-quality estimate of the causal effect. 
We can specify the questions we wish to answer in a cohort study by making the five choices highlighted in 
Table 5. 
 
Table 5. Main design choices in a comparative cohort design. 

Choice Description 
Target cohort A cohort representing the target treatment  
Comparator cohort A cohort representing the comparator treatment  
Outcome cohort A cohort representing the outcome of interest 
Time-at-risk At what time (often relative to the target and comparator cohort start and end 

dates) do we consider the risk of the outcome? 
Model The model used to estimate the effect while adjusting for differences between the 

target and comparator 
 
For more information see the vignettes of the R Package at https://github.com/CohortMethod. 

 

2.2.1 COVID-19 PLE studies  
Back in March 2020 we noticed a striking uptake in the use of hydroxychloroquine, alone as well as in 
combination with azithromycin for the treatment of COVID-19 in Europe. Data from Spain suggested that 
>70% of patients hospitalized with COVID-19 were initiated on hydroxychloroquine, and about half of them 
were also given concomitant azithromycin. Both these drugs have known effects on cardiac repolarization, 
and drug-drug interactions had been reported previously. We therefore set out to investigate the 
cardiovascular safety of hydroxychloroquine in combination with azithromycin.  

The resulting analyses were completed in a record time, with findings uploaded to MedRXiv on 10 April 2020 
[13] and submitted to the European Medicines Agency (EMA) and other international regulators only 2 weeks 
after we initiated the study design. We demonstrated a doubled risk of short-term cardiovascular mortality 
when azithromycin is prescribed to patients previously taking hydroxychloroquine. This news was covered 
by Forbes, Science, and in regulatory warnings by the EMA that cited our preprint manuscript on 23 April 

https://github.com/CohortMethod
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[14], therefore contributing to public health protection internationally. The details of this study are further 
described below, and in full in a recently published manuscript in Lancet Rheumatology [15]. 

At about the same time (22 April), the Spanish medicines regulator (AEMPS) published an additional warning 
suggesting a potential increase in the risk of neuropsychiatric symptoms amongst patients treated with 
hydroxychloroquine. This safety signal was further mentioned in a new warning by the EMA on 29 May 2020 
[16]. In an unprecedented exercise, we leveraged the EHDEN and OHDSI COVID-19 data network and PLE 
analytical pipelines to analyse this signal. Our analyses were completed again within weeks, and uploaded to 
MedRXiv on 21 July [17]. More details on these analyses are reported below, but in brief, we did not find an 
increased risk of psychosis, depression or suicide/suicidal ideation amongst users of hydroxychloroquine. 

Our novel methods have been praised in recent methodological guidelines published by the the European 
Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP) [18]. 

 

Below two examples of studies are presented: 

1. “Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid 
arthritis: a multinational, retrospective study”. J E Lane et al. Lancet Rheumatol 2020. [15] 

Shiny Application: https://data.ohdsi.org/Covid19EstimationHydroxychloroquine/ 

Background 

Hydroxychloroquine, a drug commonly used in the treatment of rheumatoid arthritis, has received much 
negative publicity for adverse events associated with its authorisation for emergency use to treat patients 
with COVID-19 pneumonia. We studied the safety of hydroxychloroquine, alone and in combination with 
azithromycin, to determine the risk associated with its use in routine care in patients with rheumatoid 
arthritis. 

Methods 

In this multinational, retrospective study, new user cohort studies in patients with rheumatoid arthritis aged 
18 years or older and initiating hydroxychloroquine were compared with those initiating sulfasalazine and 
followed up over 30 days, with 16 severe adverse events studied. Self-controlled case series were done to 
further establish safety in wider populations, and included all users of hydroxychloroquine regardless of 
rheumatoid arthritis status or indication. Separately, severe adverse events associated with 
hydroxychloroquine plus azithromycin (compared with hydroxychloroquine plus amoxicillin) were studied. 
Data comprised 14 sources of claims data or electronic medical records from Germany, Japan, the 
Netherlands, Spain, the UK, and the USA. Propensity score stratification and calibration using negative control 
outcomes were used to address confounding. Cox models were fitted to estimate calibrated hazard ratios 
(HRs) according to drug use. Estimates were pooled where the I2 value was less than 0·4. 

Findings 

The study included 956 374 users of hydroxychloroquine, 310 350 users of sulfasalazine, 323 122 users of 
hydroxychloroquine plus azithromycin, and 351 956 users of hydroxychloroquine plus amoxicillin. No excess 
risk of severe adverse events was identified when 30-day hydroxychloroquine and sulfasalazine use were 
compared. Self-controlled case series confirmed these findings. However, long-term use of 
hydroxychloroquine appeared to be associated with increased cardiovascular mortality (calibrated HR 1·65 
[95% CI 1·12–2·44]). Addition of azithromycin appeared to be associated with an increased risk of 30-day 
cardiovascular mortality (calibrated HR 2·19 [95% CI 1·22–3·95]), chest pain or angina (1·15 [1·05–1·26]), and 
heart failure (1·22 [1·02–1·45]). 

https://data.ohdsi.org/Covid19EstimationHydroxychloroquine/
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Interpretation 

Hydroxychloroquine treatment appears to have no increased risk in the short term among patients with 
rheumatoid arthritis, but in the long term it appears to be associated with excess cardiovascular mortality. 
The addition of azithromycin increases the risk of heart failure and cardiovascular mortality even in the short 
term. We call for careful consideration of the benefit–risk trade-off when counselling those on 
hydroxychloroquine treatment. 

Choice Description 
Target cohort 1.Hydroxychloroquine; 2.Hydroxychloroquine + Azythromycin  

Comparator cohort 1.Sulfasalazine; 2.Hydroxychloroquine + Amoxicillin 
Outcome cohort Long list of serious adverse events, including cardiovascular mortality. 
Time-at-risk A) 30-day post therapy initiation 

B) As long as continuously on the same index treatment 

Model Propensity scorematching + Cox regression 
 
 

2. “Risk of depression, suicidal ideation, suicide and psychosis with hydroxychloroquine treatment for 
rheumatoid arthritis: a multi-national network cohort study”. J.C.E. Lane et al. MedRXiv. [17] 

Shiny Application: https://data.ohdsi.org/Covid19EstimationHydroxychloroquine2/  

Objectives  

Concern has been raised in the rheumatological community regarding recent regulatory warnings that 
hydroxychloroquine used in the COVID-19 pandemic could cause acute psychiatric events. We aimed to study 
whether there is risk of incident depression, suicidal ideation, or psychosis associated with 
hydroxychloroquine as used for rheumatoid arthritis (RA). 

Methods  

This cohort study used claims and electronic medical records from 10 sources and 3 countries (Germany, UK 
and US). RA patients aged 18+ and initiating hydroxychloroquine were compared to those initiating 
sulfasalazine (active comparator) and followed up in the short (30-day) and long term (on treatment). Study 
outcomes included depression, suicide/suicidal ideation, and hospitalization for psychosis. Propensity score 
stratification and calibration using negative control outcomes were used to address confounding. Cox models 
were fitted to estimate database-specific calibrated hazard ratios (HRs), with estimates pooled where 
I2<40%.  

Results  

918,144 and 290,383 users of hydroxychloroquine and sulfasalazine, respectively, were included. No 
consistent risk of psychiatric events was observed with short-term hydroxychloroquine (compared to 
sulfasalazine) use, with meta-analytic HRs of 0.96 [0.79-1.16] for depression, 0.94 [0.49-1.77] for 
suicide/suicidal ideation, and 1.03 [0.66-1.60] for psychosis. No consistent long-term risk was seen, with 
meta-analytic HRs 0.94 [0.71-1.26] for depression, 0.77 [0.56-1.07] for suicide/suicidal ideation, and 0.99 
[0.72-1.35] for psychosis.  

Conclusions  

Hydroxychloroquine as used to treat RA does not appear to increase the risk of depression, suicide/suicidal 
ideation, or psychosis compared to sulfasalazine. No effects were seen in the short or long term. Use at higher 
dose or for different indications needs further investigation. 

 

 

https://data.ohdsi.org/Covid19EstimationHydroxychloroquine2/
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Choice Description 
Target cohort 1.Hydroxychloroquine; 2.Hydroxychloroquine + Azythromycin  

Comparator cohort 1.Sulfasalazine; 2.Hydroxychloroquine + Amoxicillin 
Outcome cohort Depression, suicide/suicidal ideation, hospitalization for psychosis. 
Time-at-risk A) 30-day post therapy initiation 

B) As long as continuously on the same index treatment 

Model Propensity score matching + Cox regression 
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3. ANALYTICAL PIPELINE DEVELOPMENT 

In the next sections an update is provided for the analytical pipeline of heterogeneity of treatment effects, 
disease trajectories, and the work performed in natural language processing to enable the use of 
unstructured text. 

3.1 Risk Stratified Effect Estimation  

Analysis of heterogeneity of treatment effect (HTE), i.e. non-random variation in the direction or magnitude 
of a treatment effect for individuals within a population, is the cornerstone of precision medicine; its goal is 
to predict the optimal treatments at the individual level, accounting for an individual’s risk for  harm and 
benefit outcomes [19]. In D3.2, we described the work performed on the development of the HTE analytical 
pipeline. This work has progressed considerably and here we provide a brief update and present a pre-print 
publication that is currently under review at a high-impact journal. 

The proposed framework defines five distinct steps that enable a standardized approach for risk-based 
assessment of treatment effect heterogeneity for databases mapped to the OMOP-CDM. These are: 1) 
general definition of the research aim; 2) identification of the database within which the analyses will be 
performed; 3) a prediction step where internal or external prediction models are used to assign patient-level 
risk predictions; 4) an estimation step where absolute and relative treatment effects are estimated within 
risk strata; 5) presentation and evaluation of the results. We created an R-package that can easily perform 
this kind of analyses, and made it publicly available (https://github.com/OHDSI/RiskStratifiedEstimation).  
 
Step 1: Problem definition. The typical research aim is: "to compare the effect of treatment 𝑇 to a 
comparator treatment 𝐶 in patients with disease 𝐷 with respect to outcomes 𝑂1, … , 𝑂𝑛". At least three 
cohorts are defined: a single treatment cohort (𝑇) which includes patients with disease 𝐷 receiving the target 
treatment of interest; a single comparator cohort (𝐶) which includes patients with disease 𝐷 receiving the 
comparator (control) treatment; one or more outcome cohorts (𝑂1, … , 𝑂𝑛) that contain patients developing 
the outcomes of interest. 
 
Step 2: Identification of the database. The aim of this step is the inclusion of databases that represent the 
patient population of interest. The inclusion of multiple databases potentially increases the generalizability 
of results. Furthermore, the cohorts should preferably have adequate sample size to ensure precise effect 
estimation, even within smaller risk strata (typically 4 risk quarters). 
 
Step 3: Prediction. The prediction framework requires the definition of two essential cohorts: a target cohort 
and an outcome cohort. To generate the target cohort we pool the already defined treatment cohort 𝑇 and 
comparator cohort 𝐶. However, for risk-based analysis of treatment effects it is necessary to develop the 
patient-level prediction model in a patient sample where treatment assignment is well balanced. Hereto, we 
use a propensity score matched patient subset on which we develop the prediction model. The propensity 
scores are based on LASSO logistic regression for modeling the association between treatment assignment 
and all available demographics, drug exposures, diagnoses, measurements and medical procedures. Finally, 
we need to define the time horizon for which we aim to make predictions and we need to select the machine-
learning algorithm we want to use to generate patient-level predictions.  
 
Step 4: Estimation. We use the patient-level prediction model to divide the target population into a set of 
equally-sized risk strata, typically 4 risk quarters. Then, we estimate propensity scores within risk strata. 
These propensity scores are used when estimating treatment effects, either by matching of patients from 
different treatment cohorts, by stratification of patients into groups with similar propensity scores, or by 
weighing patients’ contribution to the estimation process. Within risk strata we estimate treatment effect 
both on the relative and the absolute scale. We use Cox proportional hazards regression to estimate relative 

https://github.com/OHDSI/RiskStratifiedEstimation
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treatment effects. We estimate absolute treatment effects by the difference between Kaplan-Meier 
estimates at the end of the time at risk. 
 
Step 5: Result presentation and evaluation. Our framework provides standardized output for each step of 
the analysis: A) The number of patients and person years by treatment arm along with the number of 
outcomes; B) A performance overview of the derived prediction models, including discrimination and 
calibration both in the propensity score matched subset, the entire population and separately for treated 
and comparator patients; C) Propensity score distributions by treatment group and covariate balance plots 
for each risk stratum; D) Event rates, hazard ratios and absolute risk differences in risk strata for a selected 
outcome, both in tables and in graphs; E) Hazard ratios and absolute risk differences for all analyzed 
outcomes by risk stratum. A shiny application can be generated to enable easy sharing of the results. 
 
As a proof of concept we evaluated treatment effect heterogeneity of ACE inhibitors compared to beta 
blockers in patients with hypertension. We considered 3 main outcomes (hospitalization with heart failure, 
acute myocardial infarction, stroke) and 6 safety outcomes (hypokalemia, hyperkalemia, hypotension, 
angioedema, cough, abnormal weight gain). Here we only present the results from CCAE, a US claims 
database (Table 6). 
 
Table 6: Number of patients, person years and events within quarters of predicted risk for hospitalization with heart 
failure for the 3 main outcomes of the study (acute myocardial infarction, hospitalization with heart failure, and 
ischemic or hemorrhagic stroke). 

  ACE inhibitors Beta blockers 

Outcome Risk 
quarter 

Patients Person years Events Patients Person years Events 

Acute myocardial 
infarction 

1 161,099 276,171 203 133,977 220,633 135 

 2 204,882 372,197 534 90,193 169,231 321 

 3 214,413 393,583 1,117 80,662 150,035 535 

 4 204,167 351,727 2,095 90,908 154,419 1,520 

Heart failure 
(hosp) 

1 146,259 249,809 228 126,387 206,706 378 

 2 188,006 341,014 457 84,280 158,425 340 

 3 218,052 399,394 826 83,421 155,222 570 

 4 230,226 400,330 2,012 98,380 169,139 1,773 

Stroke (ischemic 
or hemorrhagic) 

1 146,069 294,484 299 126,264 206,453 320 

 2 187,524 340,234 554 84,000 157,913 351 

 3 217,070 397,830 947 83,038 154,587 521 

 4 226,128 393,861 1,718 97,628 167,810 1,077 

 

Relative treatment effects of ACE-inhibitors vs beta blockers increased (hazard ratios decreased) with 
increasing acute MI risk, resulting in more pronounced increases of absolute risk difference (ARD) with 
increasing acute MI risk. Patients in the low-risk quarter did not receive absolute treatment benefit (ARD -
0.03%) while absolute risk was 0.54% lower (95% confidence interval 0.36%-0.71%) for patients in the high-
risk quarter. In contrast, the absolute and relative effects of ACE-inhibitors on safety outcomes (e.g., cough 
and angioedema) are approximately constant or even slightly decreasing with increasing acute MI risk (Figure 
3). 
This example nicely illustrates heterogeneity of absolute treatment effects, i.e., differences in absolute 
benefits and harms of ACE-inhibitors vs beta blockers for patients with different baseline risk. The results 
suggest that treatment with ACE-inhibitors, compared to treatment with beta blockers, may be focused on 
the higher risk patients, in whom the benefits outweigh the harms. However, treatment with beta blockers 
may be a viable option in lower risk patients, in whom the benefit-harm tradeoff is in favor of beta blockers. 
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This is in accordance with earlier findings that beta blockers should be considered as first-line treatment for 
younger hypertensive patients. More thorough evaluation of these results is required in future research. 

 
Figure 3: (Left) Hazard ratios (relative treatment effects) for the main and safety outcomes, estimated by fitting stratified 
Cox regression models within quarters of predicted risk of acute myocardial infarction. (Right) Absolute risk reduction 
for the main and safety outcomes, estimated as the difference in Kaplan-Meier estimates within quarters of predicted 
risk for acute MI. The four risk quarters (Q1-Q4) are defined using the internally developed model for acute MI. 

 
The proof-of-concept study demonstrated the feasibility and power of the approach. The next step is to scale 
up to more drugs and outcomes as evaluated in OHDSI’s LEGEND study in which a systematic, multinational, 
large-scale analysis was performed on the comparative effectiveness and safety of all first-line 
antihypertensive drug classes [20]. 
 
Published Outputs:  

The developed framework has been published as pre-print and is submitted to a journal [21]. 
Results Explorer (Shiny App): https://data.ohdsi.org/AceBeta9Outcomes/ 

 

3.2 Disease trajectories 

Patient journeys/trajectories – sequences of health events, including diseases, procedures, and visits, which 
patients follow – have gained more and more attention during recent years. It is now more important than 
ever to analyse and continuously improve such journeys to keep patients engaged with the medical care and 
have the best output of the treatment. Detecting the sequences of health events may also help us to better 
understand disease aetiology (what happened before the disease) and predict events for the future (what 
happened after). It can also reveal and enable to analyse different treatment options that are used in practice 
for the same diseases.  

Observational health data is a great source for analysing such trajectories. Visits, diagnoses, lab analyses, 
drugs/prescriptions, etc. are all common elements in most of these datasets. These are also the key elements 
in OMOP CDM. This makes it extremely useful to run health event trajectory analyses also on OMOP CDM 
data, as the same analysis could be easily run on various databases. 

In the EHDEN project, we have started developing an R-package “Trajectories” to investigate disease 
trajectories in OMOP CDM. It follows the principles previously published by Søren Brunak’s group [22] by 
detecting pair-wise temporal associations between diseases. However, we have added lots of useful features 
to our package. It is not limited to diseases only but can also use any other health event in OMOP CDM such 
as observations, procedures, or drug exposures. Also, one could run the package on a specific cohort instead 

https://data.ohdsi.org/AceBeta9Outcomes/
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of the whole database. For instance, if one is interested in hypertension patients, it allows to generate 
trajectories for these types of patients. Perhaps the greatest value of the package is the fact that it will be 
completely open source as soon as it reaches a generally stable state so that anyone can run the package on 
top of their own CDM, evaluate its validity, and contribute to make further improvements to the tool. 

In the following figure, the general workflow inside the package is shown. It includes all the events in the 
cohort in OMOP CDM and analyses all event pairs to detect their temporal association. As there might be lots 
of significant pairs, it is vital to visualize the findings effectively. In order to do so, it constructs a graph from 
the significant event pairs and then aligns true patient journeys based on the actual data along that graph. 
As a result, it generates a graph of actual patient trajectories along significantly associated temporal event 
pairs. 

 
Figure 4: Workflow of Trajectories R-Package 

 

We have tested the package currently on two health datasets available for the University of Tartu (1 million 
patients and 170K patients from Estonia). We are currently running it also on General Practitioner Data from 
Erasmus MC, results will be shared in the upcoming pipeline deliverable. In the following figure, an example 
output (all significant event pairs) of the run on Estonian data is shown. 
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Figure 5: Example of disease trajectories showing in yellow procedures, in green drugs, and in red conditions 

 

If one is interested in a particular event – for instance, essential hypertension – it can be fixed in the graph 
and actual patient journeys through this event are then aligned to the graph. The example result of this is 
shown in the next figure. We can see that 33% of essential hypertension patients are directly followed by 
electrocardiographic monitoring and 1% will get atorvastatin as a next step after monitoring. 
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Figure 6: Example trajectory of essential hypertension, showing in yellow procedures, in green drugs, and in red 

conditions 

Before releasing the package to the public, we need to test it on various databases and database engines. 
We are currently working on this. Also, we are currently adding package documentation and unit tests to 
ensure the validity of its outputs as described in the Software Validity Chapter of the Book of OHDSI 
(https://ohdsi.github.io/TheBookOfOhdsi/SoftwareValidity.html) 

 

3.3 Natural Language Processing  

Electronic health record (EHR) databases are a rich source of data for building patient level prediction models. 
Currently, most prediction models use only the structured data in the EHR, such as coded conditions, 
measurements, vital signs, and drug prescriptions, as features [1]. However, EHRs commonly also store vast 
amounts of unstructured textual data (e.g., physician’s and nurse’s notes and discharge letters) [23]. Using 
natural language processing (NLP) methods the information hidden in the unstructured clinical text can be 
extracted and incorporated in PLP models. 

We developed a standardized NLP pipeline tool, within the OHDSI framework, for extracting textual features 
in a data-driven and language-independent manner. This tool extends the FeatureExtraction framework in 
the form of a custom covariate builder and constructs a set of text-based covariates. The tool contains a 
modular NLP pipeline for the pre-processing, tokenization and vectorization of text documents, that can be 
fully customized to specific needs. The pipeline settings and customizations are saved with the result for 
sharing and reproducibility. The tool is called Text Represented In Terms Of Numeric-features (TRITON) and 
is now publicly available on GitHub at github.com/mi-erasmusmc/Triton. 

TRITON can pre-process the text in any way (for example a conversion to lowercase), tokenize it using various 
(or custom) tokenization methods, remove language dependent stop words, create term ngrams, and filter 
terms based on their absolute and relative frequency, before creating a vectorized text representation (see 

https://ohdsi.github.io/TheBookOfOhdsi/SoftwareValidity.html
https://github.com/mi-erasmusmc/Triton
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figure 7 for an overview). Two bag-of-word text representations are currently supported, the term frequency 
(TF) and the term frequency-inverse document frequency (TFIDF [24]). More text representations such as 
topic models (latent Dirichlet allocation [25]) and word and document embeddings (GloVe [26], doc2vec [27]) 
are planned to be implemented. Furthermore, extra options for dictionary-based approaches will be added 
in the future, to find specific words, together with spelling correction options and the possibility of detecting 
contextual information (e.g., negation, experiencer, temporal aspects, severity). 

 

Figure 7. An overview of the TRITON natural language processing pipeline. Each step in the pipeline has specific settings.  

 

We provide a language independent, scalable, and customizable tool for the generation of numeric text 
representation covariates, that can readily be generated from any OMOP CDM database that contains 
unstructured text data. Subsequently, the created covariates can be used by the analysis tools within the 
OHDSI framework, e.g., in population-level estimation and patient-level prediction. 

In the upcoming period we will further develop the NLP pipeline and will apply it to multiple use cases. 

 

4 METHODS RESEARCH 

 
In addition to analytical pipeline development as described above, WP3 is also performing methods research 
driven by EHDEN use cases. In the next sections the work conducted in the second year is described. 

 

4.1 Predictive analytics using unstructured data  

In contrast to coded data, text data lacks an organized structure and terminology. Moreover, text data can 
be very large and often contains patient-sensitive information. This makes it difficult to manage, analyse, and 
use the text data in the development of prediction models [28]. However, the information that is captured 
in the clinical text is generally more extensive and detailed than the coded data. Previous studies have 
described the value of text data in addition to structured data in tasks such as phenotyping or case 
identification [29]. However, the value of this information to improve patient-level prediction models has 
largely been unexplored.  

The aim of this EHDEN use case is to determine the added value of textual data in EHRs for improving patient-
level prediction models. We will investigate a variety of methods to generate text-based features and 
determine whether predictive performance improves if these features are used on their own and in addition 
to the features based on coded information. 

Different feature sets will be generated using the TRITON framework (see section 4.3) and tested for their 
predictive value. First, as a baseline, bag-of-word approaches will be considered, including raw term 
frequencies and TFIDF values. Second, dictionary-based approaches will be used to identify and extract 
relevant concepts (e.g., symptoms, conditions, procedures) in the texts. For concept recognition, deep-
learning based language models can be explored (e.g., BERT [30], UMLFit [31]). Thirdly, topic modelling (latent 



 

D3.4 – Second Report on the implementation of the analytical pipeline for personalized 
medicine 

WP3 – Personalized Medicine Version: v1.1 – Final 

Author(s): Peter Rijnbeek et al. Security: PU 23/29 

 

© Copyright 2020 EHDEN Consortium  

 

Dirichlet allocation) and word or document embedding methods (e.g. GloVe, doc2vec) will be used to 
generate a specific number of new features that capture semantic information. 

Different text pre-processing steps can be performed. From simple processing steps, such as converting 
sentences to lower case, to the detection of contextual information (e.g., negation, and temporality). 
Furthermore, spelling correction algorithms can be applied [32]. The impact of these pre-processing steps on 
predictive performance will be assessed. 

Two important aspects that will be addressed are multi-linguality and scalability. Since EHR data may stem 
from different (European) countries, the investigated methods need to be able to cope with several different 
European languages. Validating the prediction models between countries (with different languages) will 
require a standardized multilingual dictionary. SNOMED CT and the Unified Medical Language System (UMLS) 
will be used as the main resources for English and non-English dictionaries. If a dictionary is not or only 
partially available in a non-English language of interest, we will apply automatic machine translation. 

Using the TRITON framework, it is be possible to apply the methods on a large scale, on every CDM database 
(that contains unstructured text data), and for many different outcomes and covariates. Because the 
methods will need to be scalable, they require the use of unsupervised and semi-supervised methods as 
much as possible. Most of the proposed methods fall in these categories. Furthermore, we will investigate 
the use of pre-trained models and unlabelled data sets (BERT, UMLFit). 

The primary data source for method development and evaluation will be the Dutch Integrative Primary Care 
Information (IPCI) database, comprising general practitioner records and specialist letters of more than 2 
million patients in the Netherlands. Most of the information in IPCI is in unstructured, textual format. 
Currently, only the coded information in IPCI has been mapped to the OMOP CDM. Additional data sources 
with textual data, in Dutch or other European languages, will be included when they become available in the 
project. Using the TRITON framework and NLP pipeline and other pre-trained models the potential value of 
textual information for patient-level prediction will be assessed for a wide range of outcomes and target 
cohorts. 

 

4.2 Learning Curves  

EHDEN’s federated data network opens up possibilities to develop clinical prediction models on massive 
amounts of patient data which can serve large patient populations in a timely manner. In practice this could 
manifest in the development of several hundreds or even thousands of prediction models for the various 
target-outcome pairs and for the many different databases that are currently being mapped to the OMOP 
CDM. 

However, models developed on these large amounts of observational health data run the risk of being more 
complex than needed. These models can include many more features without achieving substantially better 
discrimination than smaller models. As a result, these models may become harder to interpret, more difficult 
to implement in clinical practice, and more susceptible to overfitting. In addition, developing prediction 
models on such large data sources can put strong demands on computing resources and may require 
computation times that can become prohibitive. Reducing the sample size of a large and unwieldy dataset to 
an “adequate” sample size that is still sufficient to achieve nearly the same performance as the full dataset, 
may facilitate the development of less complex clinical prediction models with less computing resources. 

The objective of this study is to provide guidance on sample size considerations for developing predictive 
models by empirically establishing the adequate sample size, which balances the competing objectives of 
improving model performance and reducing model complexity as well as computational requirements. 

For this study we empirically assessed the effect of sample size on prediction performance and model 
complexity by generating learning curves for 81 prediction problems in three large observational health 
databases, requiring training of 17,248 prediction models. The adequate sample size was defined as the 
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sample size for which the performance of a model was equal to the maximum model performance minus a 
small threshold value. 

Figure 8 exemplifies the approach for a single learning curve showing the reduction in the number of events 
and the number of predictors of an adequate model as compared to a full model. 

  

Figure 8. Exemplary learning curve where the horizontal lines indicate the maximum performance of full model (blue) 
and the performance of the adequate model at a threshold of 0.02 (red). The vertical lines denote the maximum number 
of events (blue) and the adequate number of events (red). 

 

In Figure 9, we observe that the adequate sample size achieves a median reduction of the number of events 
between 9.5% and 78.5% for threshold values between 0.001 and 0.02. Moreover, the median reduction of 
the number of predictors in the models at the adequate sample size varies between 8.6% and 68.3%, 
respectively. 
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Figure 9. Relative reduction of the number of events at thresholds of 0.001, 0.005, 0.01, and 0.02 plotted against the 
number of events at the maximum AUROC performance for multiple prediction problems in three large databases. 

 

Therefore, our results suggest that in most cases only a fraction of the available data was sufficient to produce 
a model close to the performance of one developed on the full data set, but with a substantially reduced 
model complexity. 

Published Output 

A preprint of this work is available in the arXiv repository [33]. 

 

4.3 Explainable AI  

Lack of transparency is identified as one of the main barriers to implement patient-level prediction models 
in clinical practice [34, 35]. As it is the responsibility of clinicians to give the best care to each patient, they 
should be confident that AI systems (i.e., the prediction model and other parts of the implementation) can 
be trusted. A possible step towards trustworthy AI is to develop explainable AI. The field of explainable AI 
aims to create insight into how and why models produce predictions, while maintaining high predictive 
performance levels. Although the field of explainable AI has promising prospects for health care, it is not fully 
developed yet. We have reviewed the current literature to provide guidance on the design of explainable AI 
systems for the health-care domain. 

For an AI system to be explainable, we argue we need both interpretability and fidelity. The interpretability 
of an explanation captures how understandable an explanation is for humans. The fidelity of an explanation 
expresses how accurately an explanation describes model behavior, i.e. how faithful an explanation is to the 
task model. The task model is the model generating predictions. 
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There are different methods to achieve explainability. One way to achieve explainable AI is by explainable 
modelling, i.e., by developing an AI model where the internal functioning is directly accessible to the user, so 
that the model is intrinsically interpretable. Alternatively, post-hoc explanations can accompany the AI model 
to make it explainable. Post-hoc explanations can be motivated by the trade-off between predictive 
performance and interpretability. Hence, instead of developing an intrinsically interpretable model with the 
risk of a lower predictive performance, post-hoc explanations accompany the AI model and provide insights 
without knowing how the AI model works. We further classify explainable AI techniques according to the 
type of explanation and the scope of explanation. We distinguish three types of explanations in the literature: 
model-based explanations (e.g., rule-based model), attribution-based explanations (e.g., feature 
importance), and example-based explanations (e.g., counterfactual explanation). Furthermore, the scope of 
explanation can be local (i.e. explaining an individual prediction) or global (i.e., explaining the entire model).  

We argue that the reason to demand explainability determines what should be explained as this determines 
the relative importance of the properties of explainability (i.e., interpretability and fidelity). We identify three 
reasons why explainability can be required: 1) to assist in verifying (or improving) other model desiderata, 2) 
to manage social interaction, or 3) to discover new insights. However, explanations can be costly and might 
only be needed when the cost of misclassification is high or the AI system has not yet proven to work well in 
practice. In the health-care domain both situations often apply.  

We propose the following step-by-step guide to select the most appropriate class of explainable AI methods:  

 

Figure 10: Step-by-step guide with recommendations to choose between classes of explainable AI methods. 

As we believe explainability is very important to create trustworthy AI for health care, we conclude that 
explainable modelling might be preferred over post-hoc explanations. If one wants to opt for a post-hoc 
explanation, model-based explanations are the preferred type of explanation. In the near future, we aim to 
extend the patient-level prediction pipeline with more explainable models (e.g., rule-based learners) and 
investigate whether a trade-off between predictive performance and interpretability occurs. Moreover, we 
will explore how we can enhance the interpretability of patient-level prediction models by incorporating 
expert knowledge in the model development process. 

Published Output 

A preprint of this work is available in the arXiv repository [36].  
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5. NEXT STEPS  

In the second year, again major steps have been taken in the development of analytical pipelines for 
personalized medicine and a significant amount of work has been done in methods research. 

Most importantly we have applied the patient-level prediction and population-level effect estimation 
pipelines for several high-impact clinical problems, which resulted in multiple manuscripts. The studies for 
COVID-19 are especially good examples of the power of the standardization to the OMOP CDM and the 
strength of a strong collaborative community.  

The next steps for WP3 are: 

1. Extending the methods research to build predictive models that transport well to other settings. 
This includes training on subsets of variables that are frequent in all database, federated learning, 
and addition of functionality to perform re-calibration in the framework. 

2. Further research on the use of multilingual unstructured text in the context of prediction. 
3. Research on frequent pattern mining has recently started and will be implemented against the 

CDM and tested in use cases. 
4. Further development of the disease trajectory pipeline and application across the data network. 
5. Application of the expertise gained in Explainable AI in the field of patient-level prediction. 

 

Furthermore, we will apply the analytical pipeline to more use cases in the upcoming year. The pipelines will 
be further updated in an agile manner driven by these use cases. EHDEN continues to collaborate with OHDSI 
in large-scale studies such as the recently started SARS-Cov-2 Large-scale Longitudinal Analyses (SCYLLA) 
project on the comparative safety and effectiveness of treatments under evaluation for COVID-19 across an 
international observational data network.  The EHDEN data network will grow considerably in the coming 
period and we look forward to invite these European data partners to participate in the upcoming use cases. 
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