
Object-oriented Packet Caching for ICN

Yannis Thomas
thomasi@aueb.gr

George Xylomenos
xgeorge@aueb.gr

Christos Tsilopoulos
tsilochr@aueb.gr

George C. Polyzos
polyzos@aueb.gr

Mobile Multimedia Laboratory
Department of Informatics

School of Information Sciences and Technology
Athens University of Economics and Business

ABSTRACT
One of the most discussed features offered by Information-
centric Networking (ICN) architectures is the ability to sup-
port packet-level caching at every node in the network. By
individually naming each packet, ICN allows routers to turn
their queueing buffers into packet caches, thus exploiting the
network’s existing storage resources. However, the perfor-
mance of packet caching at commodity routers is restricted
by the small capacity of their SRAM, which holds the in-
dex for the packets stored at the, slower, DRAM. We there-
fore propose Object-oriented Packet Caching (OPC), a novel
caching scheme that overcomes the SRAM bottleneck, by
combining object-level indexing in the SRAM with packet-
level storage in the DRAM. We implemented OPC and ex-
perimentally evaluated it over various cache placement poli-
cies, showing that it can enhance the impact of ICN packet-
level caching, reducing both network and server load.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: [Net-
work Architecture and Design]

Keywords
Information-centric networking; ICN; Caching

1. INTRODUCTION
Reducing the redundancy in Web traffic by exploit-

ing caches to satisfy repeated requests for popular con-
tent has long been an active research topic. Analysis
from Cisco argues that global IP traffic will increase
threefold over the next five years, reaching eventually
1.6 zettabytes per year by 2018 [1]. As a result, con-
siderable investment in network infrastructure will be
needed in order to meet these traffic demands, unless
caching rises up to the challenge. Numerous research
studies examining the character of modern Internet traf-
fic have indicated that caching has the potential to
greatly reduce network load for a given traffic demand [2,

3, 4]. Indeed, Web caches are vital network elements,
bringing popular content closer to the users, contribut-
ing to faster data delivery, and reducing network and
server load within ISPs and at large stub networks.
However, some studies question the effectiveness of

Web caches [5, 6], arguing that redundancy should be
detected at a finer granularity, such as packets, instead
of objects. These designs, also known as packet-level
caches, can be significantly more efficient in eliminating
repeated content transfers. Nevertheless, they present
significant scalability and flexibility issues, such as man-
aging large lookup indexes, performing per packet lookups
at wire-speed, operating in more than one link and syn-
chronizing lookup indexes.
Most such weaknesses can potentially be addressed by

Information-Centric Networking (ICN) [7]. ICN pro-
poses a clean slate network architecture where all net-
work operations concern information itself, in contrast
to IP-based networking, where communication is endpoint-
oriented. Most ICN initiatives adopt a model of receiver-
driven content delivery of self-identified packets that
can be temporarily cached by routers, allowing routers
to satisfy future requests for the same content. Nev-
ertheless, ICN caching has not yet met these expecta-
tions, receiving criticism for its efficiency [8, 9], based
on the debatable performance superiority of distributed
in-network caching over independent caches at the net-
work edge, as well as on the questionable support for
packet-level caching by today’s hardware.
In this paper we introduce Object-oriented Packet

Caching
(OPC), a novel packet-level caching scheme for ICN ar-
chitectures. OPC is designed to improve the perfor-
mance of ICN packet caches by increasing the usable
caching capacity of commodity routers, without requir-
ing additional storage resources. Furthermore, OPC ad-
dresses the looped replacement and large object poison-
ing effects, two common issues with packet caches that

1



can highly penalize the performance of ICN in-network
caching.
The remainder of this paper is organized as follows.

In Section 2 we review work in packet-level caching and
the issues raised by it in an ICN context. In Section 3
we explain how OPC works and how it addresses these
challenges. In Section 4 we present an evaluation study
of OPC, showing the gains achieved. We conclude and
discuss future work in Section 5.

2. RELATED WORK

2.1 Packet caches in IP
Packet-level caching in IP networks requires detect-

ing redundancy in arbitrary packets at wire-speeds. The
computational cost for avoiding replication via, say, sup-
pressing replicated data [10], deep packet inspection [11]
and/or delta coding [12], has prevented Web caches
from moving in this direction. Interest in packet-level
caching was rejuvenated by a computationally efficient
technique for finding redundancy inWeb traffic [5], where
Rabin fingerprints are used to detect similar, but not
necessarily identical, information transfers in real time.
As this method is protocol independent, it may even
eliminate redundancy among different services, thus greatly
widening the scope of application caches.
Unfortunately, this scheme has a limited scope of ap-

plicability: it requires placing pairs of caching points
at opposite ends of a physical link, replacing redundant
data with a special identifier as packets enter and leave
that link. The two caching points must also keep their
lookup indexes synchronized. A few years later, the
application of this technique was explored in an inter-
domain scenario [6]. Even though the scheme performed
far better than an ordinary object cache, it was once
more concluded that this solution can only be applied to
limited-scale deployments across specific network links.
The authors argued that the usefulness of this technique
could be enhanced by new network protocols that would
leverage link-level redundancy elimination [6].

2.2 Packet caches in ICN
The distinguishing feature of ICN is the placement

of information in the center of network operations, in
contrast to endpoint-oriented IP networks [7]. In ICN
the functions of requesting, locating and delivering in-
formation are directly based on the information itself,
rather than on the hosts providing the content. In
most ICN proposals, information travels through the
network as a set of self-verified data chunks that carry
a statistically unique identifier. This identifier, which
is usually a concatenation of the content’s name and
the packet’s rank/order in the content, is placed in the
packet header, relieving ICN nodes from the computa-
tional costs of detecting identical packets; if two pack-

ets have the same identifier, then they must (statis-
tically) carry the same content. In the vast major-
ity of ICN studies, a chunk refers to the Maximum
Transfer Unit (MTU) of the network, that is, the maxi-
mum packet allowed, hence, we will use below the terms
packet and chunk as synonyms.
ICN transport protocols are mostly receiver-driven [13,

14], completing a transmission via numerous indepen-
dent transfers of self-verified chunks. Each transfer is
triggered by a specific request packet and is fulfilled
by the transmission of the corresponding data packet.
The pull model allows exploiting on-path caches: ICN
routers that use their queueing buffers as temporal repos-
itories for packets can directly respond to later requests
for these packets.
ICN has great potential for exploiting packet-level

caches, therefore many researchers have investigated the
gains of ubiquitous caching [15, 16, 17, 18]. The authors
of these papers try to aggregate the caching potential
of all on-path routers into a distributed caching sys-
tem, focusing on achieving the most profitable distri-
bution of content across these routers. However, expe-
rience with distributed caching systems suggests that
dedicated caching super-nodes at the edges of the net-
work can have the same impact as caching at every in-
network node [8]. In addition, some authors advocate
caching content only at a subset of network nodes that
satisfy certain centrality requirements [19], while oth-
ers argue that an “edge” caching deployment provides
roughly the same gains with a universal caching archi-
tecture [20].
To the best of our knowledge, there is only one study

in the literature dealing with the internal details of ICN
packet caches [21]. This study proposes a two-layer
cache model with the goal of improving response time.
Specifically, it suggests that groups of chunks should be
pre-fetched from the slow memory (SSD) to the fast one
(DRAM) in order to respond faster to consequent chunk
requests. However, the authors propose this design only
for edge routers, due to its storage requirements and
static content catalogue. For in-network routers they
argue that both SRAM and DRAM should be utilized
for wire-speed operation. Most other research simply
assumes a Least Recently Used (LRU) replacement pol-
icy [16, 17, 20, 19, 20, 22] or novel policies for the proper
distribution of the cached content along the path [15,
18, 23], without evaluating whether router-cache per-
formance is limited by the size of its fast memory.

3. OBJECT-ORIENTED PACKET CACHING

3.1 Design issues
Based on the previous discussion, we identified three

aspects of ICN packet-caching that can be improved:

2



Limited storage resources: A reasonable require-
ment for packet-level caching is wire-speed operation.
Usually, the cache module is implemented based on a
hash-table structure, spread across the fast and slow
memory of the system. The hash-table proper is kept
on the fast, and expensive, memory of the system, map-
ping a hashed packet identifier to a pointer to the packet
data on the slow, but cheap, memory [18, 24]. Since
the vast majority of proposed cache designs assumes
1500 byte chunks and at least 32 byte LRU entries [24],
a one-to-one correlation of fast-to-slow memory entries,
implies a ratio of fast to slow memory size of approx-
imately 1:46. The largest amount of SRAM memory
found in current network routers is 210 Mbits [9], thus
being able to index almost 1.2 GBytes of 1500 byte
chunks. However, the maximum DRAM memory of
a network router is 10 GBytes, thus roughly 88% of
the available network storage cannot be indexed at the
packet-level. One solution to this problem would be
to increase chunk size, so that the hardware specifica-
tions would not affect caching performance, but this
would penalize the granularity of caching [5, 6] and it
would also require changing the network’s MTU to pre-
serve the self-identification of network units. Another
solution could be to use DRAM for indexing the stored
packets. However, this design requires one read to the
slow memory for each incoming request, even with zero
cache hits, thus making wire-speed operation question-
able.
Looped replacement: In contrast to object caches,

packet caches may contain only part of an object, de-
pending on the replacement policy and the access pat-
tern. This can be both a benefit and a curse. In most
applications, the packets of an object are requested in
a sequential ascending order, which means that in an
LRU-based cache, the first packets of the object are
evicted before the last ones, as they have resided longer
in the cache. Consider for example an object consist-
ing of n packets and a cache that can hold m packets,
where n > m. An object cache would not cache the
object at all, but a packet cache could cache some of
its packets. However, if the object is accessed sequen-
tially, then after the first m packets are fetched and
the cache fills, the m + 1-th packet will displace the
first packet, and so on until the object completes trans-
mission (Fig.1(a)). When the object is later requested
again, the first packet will not be found, so it will be
fetched from the source, replacing the earliest packet of
the object; this will be repeated until the entire object is
fetched again, without even a single cache hit (Fig.1(b)
and (c)). We call this the looped replacement effect. It
can arise with any cache size, as long as we are using
the LRU replacement policy, provided that the object is
always accessed sequentially and requests for the same
object are not too frequent. This effect is also identi-

fied by authors in [22], who however do not propose a
specific solution.

Figure 1: An LRU cache holding m packets, pre-
sented as a circular buffer. In (a) an object con-
sisting of n packets (n > m) was just downloaded,
in (b) and (c) the first and second packet of the
same content, respectively, are fetched again.

Large object poisoning: A serious challenge for
small in-network caches is handling large but unpopu-
lar objects. A cache-anything LRU module stores all
the chunks of every incoming object, regardless of its
popularity; popularity only influences evictions. This
can severely penalize the performance of the cache, es-
pecially in cases of large objects that occupy a signif-
icant amount of memory space, which cause the cache
to waste its resources by storing contents that do not
offer any profit.

3.2 Design overview
To address the limitations of packet-based caching

schemes in the ICN context, we designedObject-oriented
Packet
Caching (OPC) [25], a scheme which combines the ef-
fectiveness of packet-level caching with the resource ef-
ficiency of object-level caching. The design of OPC di-
rectly attacks the weak aspects of ICN packet-caches:
it increases memory utilization, avoids looped replace-
ment, and prevents large object poisoning. OPC achieves
these goals without requiring more computational and
memory resources than an ordinary LRU packet-cache.
The main concept of OPC is to combine object-oriented

cache lookups with packet-oriented cache replacement.
Based on the observation that most applications request
the packets of an object in a sequential manner, in OPC
the initial part of an object is always cached, from the
first to the n-th packet, with no gaps. Therefore, any
partially cached objects are always represented by their
first n packets.
The lookup index in OPC holds the object’s name

and a counter for each (partially) stored object. This
counter, also called last chunk id, indicates the num-
ber of cached chunks for that object. For instance, the
entry file/a, 45 means that the cache holds the first
45 chunks of the object file/a without gaps. If a re-
quest for that object arrives with a rank/order less or
equal to the last chunk id, the cache can directly re-
spond to the request. When a request with a higher
chunk rank/order arrives, then the cache simply for-
wards the request to its destination. This reduces the

3



indexing costs to one entry per (partially) stored ob-
ject, or roughly average objectsize times less than an
ordinary LRU packet cache.
To ensure that OPC always holds the initial part of

an object, we also introduce a novel packet replacement
algorithm. OPC inserts a chunk with rank/order i if
it is either the object’s first chunk, in which case we
also create a new index entry for that content, or if we
already have stored the i−1 chunk for that object, that
is, if last chunk id for that object is equal to i−1. This
guarantees that at any time the cache always holds the
first part of each object, without any gaps. If there is
no space in slow memory to hold a new chunk, then
we use an object-level LRU list and remove the last
cached chunk of the object at the tail, so as to still hold
the first chunks of the object with no gaps. On the
other hand, if there is no space in fast memory for a
new object, then the index entry for the object at the
tail of the object-level LRU is removed, along with the
corresponding chunks in the slow memory.1

Figure 2: Data structures used by OPC.

3.3 Data structures
An OPC node maintains two data structures for chunk

insertions and lookups, and one data structure for chunk
evictions. The first two structures, called Layer 1 (L1)
and Layer 2 (L2) indexes, organize data at the object-
level and the chunk-level, respectively. The L1 index
is stored in fast memory (e.g., SRAM) and is imple-
mented as a fixed-sized hash-table with one entry per
cached object. Each entry in L1 maps a content identi-
fier to a pair of values: the rank/order of the last stored
chunk (last chunk id) of that object and a pointer to
the final chunk of the object in the L2 index (Ptrmem).
The L2 index on the other hand is basically an array
in slow memory (e.g. DRAM) containing the cached
chunks of each object in sequential order; we explain
how slow memory is managed in Section 3.5.
Upon the receipt of a chunk request, OPC uses the

identifier in the request’s header to check via the L1
index if there are any cached chunks of that item. If
so, and the search returns a last chunk id greater or
equal to the rank/order of the requested chunk, then

1The hash table can use linear probing, double hashing, or
any other technique that does not require additional mem-
ory, to handle collisions.

that chunk can be retrieved from address Ptrmem −
(chunk id − id) ∗ MSS, where id is the rank/order of
the requested chunk and MSS is the maximum seg-
ment size of a data chunk. Note that in order to speed
up lookups, the memory array employs MSS bytes per
chunk, regardless of the chunk’s size. Otherwise, the
request is forwarded towards its destination.
When a new data chunk arrives, we also consult the

L1 index: if the object is stored and this is the next
chunk in sequence, we store it in the L2 index, incre-
ment Ptrmem by MSS and increase last chunk id; if
the object is not stored and the chunk is the first for
that object, we store the chunk in the L2 index and
create a new entry in the L1 index with last chunk id
equal to 1 and Ptrmem pointing at the chunk in the L2
index. Otherwise, we ignore the chunk.
The third data structure in OPC is a doubly-linked

list used to rank the objects for replacement purposes.
This list, also kept in fast memory, shows the least “im-
portant” object in the OPC cache; this object will be
evicted when additional space is needed. In our im-
plementation, objects are ranked based on their recent
usage, i.e. in LRU fashion. However, the way the least
important content is defined is not crucial for our de-
sign, so cached contents may be organized in an LRU,
LFU or FIFO structure. If the eviction is due to lack
of L1 space, then the L1 index entry and all the L2
chunks that the selected entry points at are reclaimed.
If the eviction is due to lack of L2 space though, only
the last chunk of the selected entry is reclaimed and
the L1 entry is updated by decrementing Ptrmem by
MSS and last chunk id by 1. A snapshot of OPC’s
data structures is illustrated in Fig. 2.

3.4 Caching behavior
We can now explain how the OPC design addresses

the limitations of chunk-level caching in the ICN con-
text described in Section 2. First, the two-level indexing
structure of OPC optimizes the use of both fast and slow
memory: the L1 index in fast memory uses one entry
per object, rather than one entry per chunk. The small
size of the L1 index allows storing it in fast memory,
to speed up lookups, but also substantially augments
the volume of data that can be indexed in L2 memory,
compared to simpler solutions such as LRU and FIFO,
thus addressing the limited storage resources problem.
Second, to avoid the looped replacement issue, OPC

always holds the initial chunks of an object, by only
inserting chunks sequentially and evicting them in the
reverse order. Assuming that chunks are requested in
ascending order (as is also the case in [21]), our method
extends the time that a cached object can be exploited,
thus increasing the cache hit rate. To better illustrate
this, consider Fig. 3, which presents the potential cache
hits of two requests for the same object (y-axis) in an

4



Figure 3: Potential cache-hits of two requests for
the same object in an LRU and an OPC cache.
In (a) and (c) content size exceeds cache size,
whereas in (b) and (d) cache size exceeds content
size.

LRU and an OPC cache, depending on the interarrival
time of these requests (x-axis). In general, as the chunks
of an object are requested sequentially, the number of
cached chunks increases, hence the potential for cache
hits also grows. In subfigures (a) and (c), the cache
size is smaller than the object size, therefore when the
cache gets full, the potential for cache hits cannot in-
crease any more. With an LRU cache (subfigure (a))
the looped replacement effect causes the next chunks
(even of the same object) to displace the first chunks
of the object, therefore a new sequential request for the
object will lead to zero cache hits. In contrast, with
OPC (subfigure (c)) chunks are only dropped from the
end of the object, therefore the potential for cache hits
decreases gradually, until all chunks are displaced. Sim-
ilarly, in subfigures (b) and (d) where the cache size is
larger than the object size, after the entire object is
cached the potential for cache hits remains constant.
When the chunks start getting evicted at a later time,
with an LRU cache (subfigure (b)) the potential drops
to zero, since the first chunks are evicted, while with
OPC (subfigure (d)) it only decreases gradually.
Finally, OPC addresses the large object poisoning is-

sue, by applying object-level filtering on popularity statis-
tics. Specifically, an L1 object-level index following the
LRU policy, pushes an object at the head of the LRU
list only on cache hits; newly inserted chunks inherit
the LRU position of the object, which is commonly not
the head. In contrast, with chunk-level LRU, each in-
serted chunk is placed at the head of the LRU list by
default, thus having to traverse the entire LRU list be-
fore it is evicted. Consequently, in OPC the eviction of
an object depends on the popularity of that object as a
whole, while in a cache-anything chunk-based LRU the
many individual chunks of the object fill up the LRU

list, making it harder to keep popular objects in the
cache. As shown in the evaluation section, OPC ef-
fectively enhances caching efficiency, by storing chunks
with greater popularity, which are expected to produce
more cache-hits.

3.5 Space allocation in slow memory
The OPC scheme assumes that slow memory is a

large array with fixed size slots ofMSS bytes, where ad-
jacent chunks of the same object are placed in contigu-
ous physical memory locations. This allows one-access
insertions, evictions and reads from slow memory, since
we simply index slow memory based on a pointer in fast
memory. However, the number of chunks that must be
stored per object is not known a priori, therefore allo-
cating L2 memory for a new L1 entry is not trivial.
The simplest policy is to provide a fixed-size area

per object, based on the L2 slots/L1 slots ratio, thus
equally distributing slow memory among all cached ob-
jects, ignoring the size and caching needs of each ob-
ject. The efficiency of this approach clearly depends on
the nature of network traffic; if most object sizes are
close to L2 slots/L1 slots, then cache performance is
not affected, but if objects are much smaller than the
fixed-size allocation, then slow memory is underutilized;
if they are larger, we can only store their first part, thus
potentially reducing cache hits.
To avoid these problems, we have designed a method

for dynamic memory allocation that adapts to differ-
ent types of traffic, retaining one-access chunk inser-
tions and evictions from slow memory, at the cost of
increasing the accesses for lookups and entire object
evictions. In our scheme, chunks of the same object
are not stored in contiguous memory space, forming in-
stead a linked-list starting from the last chunk of the
object. Therefore, each chunk slot in L2 consists of a
data chunk and a pointer Ptrprev to the previous chunk
of the same object. The combination of Ptrmem (L1)
and Ptrprev (L2) forms a linked-list per object, where
the last chunk of the object is the head of the list. In
addition, one global pointer, Ptrfree points at a list of
available chunks, which are also linked via their Ptrprev
pointers.
Whenever a new chunk needs to be inserted to the

cache, if the list of available chunks is not empty, the
entry pointed at by Ptrfree is used, and Ptrfree is mod-
ified to point to the next free chunk. The new chunk is
linked to the list of the appropriate object by modify-
ing its Prevptr to the previous head of that object’s list,
and making the Ptrmem of that object point at the new
chunk. If there are no available chunks (Ptrfree is null),
then we use the LRU object list to determine which ob-
ject will lose a chunk, and move the chunk at the head
of that object’s list to the head of the new object’s list,
by simply modifying the Ptrmem pointers of the two

5



Figure 4: Evolution of slow memory: (a) ini-
tially, (b) after object c steals a chunk from ob-
ject b, (c) after object b is evicted to make space
for object e.

objects and the Ptrmem pointer of the chunk. These
operations require only a single slow memory access to
modify the Ptrprev pointer of the selected chunk.
When an entire object is to be evicted, all of its

chunks in L2 become part of the free list. We first make
the Ptrfree pointer point at the head of the evicted ob-
ject’s list, then we traverse the list following its Ptrprev
pointers and, finally, we modify its last pointer to point
at the previous head of the free list. This requires
traversing the list of the object that is evicted, thus
object eviction is a costlier procedure.
The main overhead of our method is that it does not

support one-access cache hits. In order to fetch a cached
chunk, OPC must follow the object’s linked-list from
the last stored chunk until the right chunk is found.
Given that chunks are requested in sequential order and
that OPC holds the initial part of an object without
any gaps, if the first chunk is hit then the rest will
follow. Therefore, we expect an average of n/2 memory
accesses per hit when all chunks of an n-chunk object
are hit. Nevertheless, our experiments validate that this
overhead is not critical, since it arises only during actual
cache hits. Furthermore, an additional latency in the
order of nanoseconds is an insignificant expense for a
cache-hit that saves several milliseconds of delay.
An example of L2 management is presented in Fig-

ure 4, where L2 state is shown at three consecutive
snapshots. In Fig.4.(a), the slow memory holds chunks
of four objects (a,b,c and d), which are not stored con-
tiguously. In Fig.4.(b), another chunk of object c is in-
serted, but since there are no free slots, it “steals” the
last chunk of object b. In Fig.4.(c), object b is evicted
to make space for object e, by first moving all chunks
of b to the free list and then using the first free chunk
for the first chunk of object e. If at this point we get a
cache hit for the first chunk of object c, we need 4 slow
memory accesses to traverse the corresponding list.

Web P2P Video Other

#objects 195386 1 176 10485
#chunks median 6 687168 8133 4

max 19929 687167 16977 5120
std. dev 56.6 0 5261.2 0

#requests mean 10984 2 17 1106
max 658686 2 326 22352
std. dev 53.8 0 2.33 15.3

Table 1: Workload characteristics.

4. EXPERIMENTAL EVALUATION

4.1 Experiment set-up
We implemented the CCN/NDN forwarding function-

ality along with various policies for chunk-level cache
management2 over the NS-3 network simulator.3 We
examined 10 scale-free topologies of 50 nodes, created
via the Barabási-Albert algorithm [26], as in the ex-
periments in [19]. We assumed a stop-and-wait uni-
cast transport protocol for all applications, as the sim-
pler transport provides a clearer view of system per-
formance. In order to get a realistic traffic mix with
variable object sizes and popularities, we employed the
GlobeTraff traffic trace generator [27]; the character-
istics of the resulting workload are summarized in Ta-
ble 1. At every access node we placed a fixed-size group
of 25 receivers, reserving one access node to host the ori-
gin server for all content. The workload was randomly
distributed among the receivers, which all started re-
questing content simultaneously. The experiment ended
when all receivers finished pulling their scheduled items.
We investigated the performance of OPC against LRU

under three different cache placement policies: universal
caching, edge caching and caching based on betweenness
centrality. In universal caching, all network nodes oper-
ate a caching module, whereas in edge caching, caches
are placed only at the access nodes of the network. In
betweenness centrality caching, all network nodes de-
ploy a caching module, but data chunks are stored at
the on-path node(s) with the highest betweenness cen-
trality degree [19]. Based on the hardware specifica-
tions presented in [9], we assume that the most capable
caching router is equipped with 210 Mbits of SRAM and
10 GBytes of DRAM. Furthermore, we assume 40 byte
LRU entries and 1500 byte chunks, similarly to most
previous work [9, 19, 20]. Compared to LRU, the OPC
fast memory entry requires two additional bytes for
storing the number of cached chunks per object (up
to 216 chunks per object). This means that LRU can
index up to 688,128 items in fast memory, while OPC
can only index up to 655,360 items. However, since
LRU requires one index entry per packet, the ratio of

2Implementations available at http://www.mm.aueb.gr/
3Available at http://www.nsnam.org/

6



Figure 5: OPC gains normalized to LRU depending on ‘fast memory size:catalog size’ ratio.

Figure 6: OPC gains normalized to LRU depending on ‘fast:slow memory size’ ratio.

fast to slow memory items must be 1:1, while with OPC
each index entry can point at many packets; with these
memory sizes, the fast to slow memory item ratio is
around 1:11, i.e., one index entry per 11 chunks.

4.2 Network Performance assessment
We first investigate the performance of OPC rela-

tive to LRU under the three cache placement policies
described above, depending on the ratio of fast cache
memory size per router to the population of distinct
self-identified items (chunks) in the workload, commonly
referred to as the Catalog size. Since the number of dis-
tinct chunks was fixed in our workload, we first set the
fast memory size in each caching router to correspond
to 0.01%, 0.1% and 1% of the distinct items in the work-
load and then set the slow memory size according to the
ratios presented in Sec. 4.1, i.e., 1:1 for LRU and 1:11 for
OPC. For every run, we measure the number of hop-by-
hop interests forwarded in the network (Network load),
the number of interests received by the source (Server
load) and the fraction of cache hits to cache requests
(Cache hit ratio).
Figure 5 depicts the performance gains of OPC for

each metric normalized to LRU, that is, the LRU met-
rics correspond to 100%. The performance superiority
of OPC is clear in all cases, but is even more evident
when storage resources are more limited. Specifically,
when fast memory can hold 0.01% of the traffic, the
gains of OPC with regard to LRU range from 260% to

400%, depending the metric and the cache placement
policy. As storage resources are increased, the gains of
OPC relative to LRU are reduced, since the fast mem-
ory bottleneck of LRU plays a smaller role. In addition,
we observe that the improvement on edge caching is the
most sensitive to cache size; for example, the gains in
server load drop from 400% to 128%, with increasing
cache size. This is not unreasonable, since edge caching
offers less aggregated cache capacity compared to the
other two policies which use all routers for caching. Fi-
nally, betweenness caching is the least affected by cache
size: OPC gains on server load drop from 260% to 160%.
We then explore the impact of memory configuration

on the performance of OPC. While the ratio of fast
to slow memory is fixed to 1:1 for LRU by its design,
regardless of actual memory sizes, OPC can adapt to
different memory configurations by adapting this ratio.
We thus fixed the fast cache size per router to 0.1%
of the total traffic and modified the slow cache size so
that the ‘fast:slow memory size’ ratio was 1:1, 1:2, 1:5,
1:10 and 1:20. Figure 6 illustrates the gains of OPC for
each metric (again, normalized to LRU) depending on
this ratio. We first notice that even with a 1:1 ratio,
where both LRU and OPC exploit the same amount of
slow memory, OPC performs approximately 10% better
than LRU in all cases. This confirms our arguments in
Sec. 3.4 that OPC better utilizes storage resources, thus
providing more efficient in-network caching. We also
observe that the performance gains converge at their

7



maximum values (180% to 200%) for all metrics when
the ratio reaches 1:5. This is reasonable, since in our
workload the most popular traffic types are Web and
Other, with the median number of chunks per object
being 6 and 4, respectively.

4.3 Cache Performance assessment
We now explore the performance of OPC in terms

of temporal caching costs, measuring the latency over-
head of the design of Sec. 3.5 and its impact on network
performance. In our analysis, we disregard processing
delays, focusing on the latency overhead due to access-
ing the router’s memory, which is considered essential
for wire-speed operation. We assume that each mem-
ory access requires 0.45 ns and 55 ns for SRAM and
DRAM, respectively[9]. LRU performance is charged
1 DRAM + 1 SRAM access at packet insertions and
packet fetches and 1 SRAM access at unsuccessful packet
lookups. For OPC, we assume the design of Sec. 3.5 for
managing DRAM, so we charge packet insertions and
evictions with 1 DRAM+1 SRAM access, object evic-
tions with 1 DRAM + n ∗ SRAM accesses, where n is
the number of stored object chunks, and packet hits
with 1 DRAM +m ∗DRAM accesses, where m is the
number of hops followed in the linked list from the last
stored chunk to the requested one. Finally, we assign a
5 ms propagation delay to all network links, and rede-
ploy the experimental setup used in the results reported
in Fig. 5.

Figure 7: OPC performance normalized to LRU
depending on ‘fast memory size:catalog size’ ra-
tio.
Figure 7.(a) depicts the total DRAM accesses of OPC

normalized to LRU for three distinct ‘fast memory size:catalog
size’ ratios. When memory size is 0.01% of the cata-
log, OPC exhibits 16-32% less temporal overhead than
LRU, despite the additional cost of maintaining the
linked lists in DRAM. Since the actual hit-ratio of OPC
is around 2-3% (against a roughly 1% hit-ratio for LRU),
most memory accesses are due to insertions and evic-
tions, rather than cache hits. The stricter insertion rule
of OPC, which only inserts chunks in sequence, reduces
the DRAM accesses for insertions/evictions by roughly

40%, leading to better memory performance. On the
other hand, on cache hits OPC can require up to 1800%
more reads than LRU, but as hits are only accountable
for 1-2% of the total memory accesses, their cost is negli-
gible. When memory size is increased to 0.1% of the cat-
alog, OPC spends roughly 200% more time for DRAM
accesses than LRU. This increased delay overhead is
proportional to the increased hit-ratio, thus these addi-
tional memory reads are due to additional cache hits,
justifying the temporal overhead. Finally, when mem-
ory size is set to 1% of the catalog, OPC’s total DRAM
latency reaches 1400% of LRU. OPC’s larger memory
can now hold bigger objects, creating longer linked-lists
that amplify the DRAM accesses, as cache hits are up
to 26000% more than with LRU. Nevertheless, these
DRAM accesses are only triggered by cache hits, which
offer network delay gains in the order of milliseconds,
whereas DRAM accesses due to insertions/evictions are
further reduced to 30% of LRU.
In order to understand how the increased DRAM la-

tency of OPC impacts actual network performance, we
also measured the average time needed for users to com-
plete their scheduled transmissions, also called comple-
tion time. As shown in Fig. 7.(b), which illustrates
the reduction in completion time with OPC normal-
ized against LRU, memory latency has a negligible im-
pact on the performance visible to users: the plot is
completely analogous to Figure 5.(b), which presents
the reduction of network load with OPC normalized
against LRU. This validates our claim that performance
is mostly influenced by cache hits, where the temporal
gains due to the increased hit-ratio of OPC dwarf its
penalties in accessing DRAM.

4.4 Behavioral assessment
In order to better interpret the above results, we will

also explore the state of the cache throughout the ex-
periments. Using periodic logs, we record the stored
chunks and the hits per chunk in the cache. In Figure 8
we plot these data for the betweenness centrality cache
placement policy with either LRU or OPC, when the
fast memory per cache is 0.1% of the catalog. Specif-
ically, we show the cumulative distribution functions
(CDFs) of cache-hits per chunk Id and of stored chunks
per chunk Id, where the chunk Id is the rank/order of
a chunk in its corresponding object.
We can see that 95% of the cache-hits in LRU are

scored by the first five chunks of objects, whereas these
same chunks account for only 53% of the cached con-
tent. In contrast, 95% of the cache-hits in OPC are pro-
vided by chunk Ids that account for 74% of the cached
content, or 21% more than LRU, even though the slow
memory capacity of OPC is approximately 10 times
larger. Therefore, OPC “caches more” of the content
that is accountable for most cache-hits, thus offering

8



Figure 8: CDF of cache-hits and cached chunks
against chunk Id.

better caching accuracy. We omit plots for other poli-
cies, as they present the same tendencies.
In order to delve deeper in the results, we now focus

on the 350 most frequently cached objects. We define
the caching frequency as #logs with object

#logs , or the proba-

bility that an object is (partially) found inside a cache.
These 350 objects, even though they represent 0.01% of
the catalogue, account for 65% and 80% of OPC and
LRU cache-hits. A detailed analysis of the character-
istics of these objects is depicted in Figure 9, with the
x-axis representing the rank of the object; note that,
the 350th object has the highest frequency.
Figure 9.(a) presents the caching frequency of these

350 objects, showing that OPC caches store more of the
most frequently cached objects than LRU caches, which
is not surprising, given that OPC stores approximately
11 times more chunks in the slow memory, thus allowing
for more popular objects to be cached. The significance
of this design decision is revealed by the fact that in
LRU only 10 objects are found cached in more that
80% of logs, whereas 150 objects satisfy this condition
in OPC. Figure 9.(b) shows that both LRU and OPC
exploit popularity roughly the same, since the popular-
ity of the most frequently cached objects is roughly the
same. This is also reasonable, since OPC itself utilizes
LRU replacement for the L1 object-level index. Nev-
ertheless, some not so popular objects are frequently
cached in LRU, implying that caching frequency is not
as correlated with popularity as in OPC.
Figure 9.(c) depicts the size of the 350 most fre-

quently cached objects, while Fig. 9.(d) shows the stor-
age capacity occupied by each object throughout the
experiment, that is, the total number of chunk occur-
rences for an object in all logs. These figures verify that
large object cache poisoning does occur in LRU, since
LRU stores some fairly large objects, some of which are
also unpopular (see Fig. 9.(b)), leading to thousands of
stored chunks for these objects, as shown in Fig. 9.(d).
As a result, Fig. 9.(e) shows that the cache-hits per
object are very low for these unpopular objects. For
example, object 91 in the LRU cache has a size of 6416
chunks and a popularity of only 11 requests, yet it occu-

Figure 9: State analysis of OPC and LRU chunk-
level caches (placement: betweenness, (fast)
memory size: 0.1% of catalog).

9



pies 33,000 slots in the slow memory, while scoring zero
hits. In contrast, the object at position 90 of OPC has
a size of 6 chunks, a popularity of 130 requests, it occu-
pies 1680 slots and scores 345 hits. Besides this corner
case, OPC provides more cache-hits than LRU in gen-
eral, even for objects with similar popularities. This is
not a surprise, since the larger usable slow memory ca-
pacity of OPC allows it to store more chunks per object
for a longer time.
Finally, Fig. 9.(f) depicts the per object caching ef-

ficiency of OPC and LRU, defined as #cache hits
#stored chunks .

This metric exposes the gains due to inserting an ob-
ject in the cache, by relating storage costs with cache
hit benefits. The deviation of this metric with OPC
is noticeably lower than with LRU. We interpret this
stability as a positive side-effect of addressing the par-
ticular problems of packet-caches, the very same prob-
lems that directed the design of OPC and provide the
aforementioned gains in almost every metric.

5. CONCLUSION
We have presented theObject-oriented Packet Caching

(OPC) scheme for ICN architectures, a two level chunk
caching scheme that fully exploits both the fast and slow
memories of current routers for caching. We discussed
the set of goals guiding OPC design, such as increas-
ing chunk storage capacity and improving caching effi-
ciency. Having identified looped replacement and large
object poisoning as two critical issues for ICN packet
caches, we presented a simple yet effective algorithm
for chunk lookup, insertion and eviction, which achieves
all of our design goals. We assessed the performance
of OPC via domain-scale simulations with realistic net-
work traffic and provided an in-depth report of the OPC
gains, validating our claim that OPC provides signifi-
cantly higher performance than a simple LRU cache,
reducing both network and server load, in a wide range
of cache placement policies and router cache sizes.

6. ACKNOWLEDGEMENT
The work presented in this paper was supported by

the EU funded H2020 ICT project POINT, under con-
tract 643990.

7. ADDITIONAL AUTHORS

8. REFERENCES
[1] Cisco. (2014) Visual networking index: Forecast

and methodology. [Online]. Available:
http://www.cisco.com/c/en/us/solutions/service-
provider/visual-networking-index-vni/index.html

[2] S. Ihm and V. S. Pai, “Towards understanding
modern web traffic,” in Proc. of the ACM
Internet Measurement Conference (IMC), 2011,
pp. 295–312.

[3] G. Maier, A. Feldmann, V. Paxson, and
M. Allman, “On dominant characteristics of
residential broadband internet traffic,” in Proc. of
the ACM Internet Measurement Conference
(IMC), 2009, pp. 90–102.

[4] B. Ager, F. Schneider, J. Kim, and A. Feldmann,
“Revisiting cacheability in times of user generated
content,” in Proc. of the IEEE Global Internet
Symposium, 2010.

[5] N. T. Spring and D. Wetherall, “A
protocol-independent technique for eliminating
redundant network traffic,” ACM SIGCOMM
Computer Communication Review, vol. 30, no. 4,
pp. 87–95, 2000.

[6] A. Anand, A. Gupta, A. Akella, S. Seshan, and
S. Shenker, “Packet caches on routers: the
implications of universal redundant traffic
elimination,” in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4, 2008, pp.
219–230.

[7] G. Xylomenos, C. N. Ververidis, V. A. Siris,
N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V.
Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE
Communications Surveys Tutorials, vol. 16, no. 2,
pp. 1024–1049, 2014.

[8] A. Ghodsi, S. Shenker, T. Koponen, A. Singla,
B. Raghavan, and J. Wilcox, “Information-centric
networking: seeing the forest for the trees,” in
Proc. of the ACM Workshop on Hot Topics in
Networks, 2011.

[9] D. Perino and M. Varvello, “A reality check for
content centric networking,” in Proc. of the ACM
SIGCOMM ICN Workshop, 2011, pp. 44–49.

[10] J. R. Santos and D. Wetherall, “Increasing
effective link bandwidth by supressing replicated
data.” in Proc. of the USENIX Annual Technical
Conference, no. 98, 1998.

[11] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley,
and J. Turner, “Algorithms to accelerate multiple
regular expressions matching for deep packet
inspection,” Proc. of the ACM SIGCOMM, pp.
339–350, 2006.

[12] J. C. Mogul, F. Douglis, A. Feldmann, and
B. Krishnamurthy, “Potential benefits of delta
encoding and data compression for http,” in Proc.
of the ACM SIGCOMM, 1997, pp. 181–194.

[13] G. Carofiglio, M. Gallo, and L. Muscariello, “Icp:
Design and evaluation of an interest control
protocol for content-centric networking,” in Proc.
of the IEEE INFOCOM NOMEN Workshop,
2012, pp. 304–309.

[14] Y. Thomas, C. Tsilopoulos, G. Xylomenos, and
G. C. Polyzos, “Accelerating file downloads in
publish subscribe internetworking with

10



multisource and multipath transfers,” in Proc. of
the World Telecommunications Congress (WTC),
2014.

[15] Z. Ming, M. Xu, and D. Wang, “Age-based
cooperative caching in information-centric
networks,” in Proc. of the IEEE INFOCOM
NOMEN Workshop, 2012, pp. 268–273.

[16] S. Saha, A. Lukyanenko, and A. Yla-Jaaski,
“Cooperative caching through routing control in
information-centric networks,” in Proc. of the
IEEE INFOCOM, 2013, pp. 100–104.

[17] I. Psaras, W. K. Chai, and G. Pavlou,
“Probabilistic in-network caching for
information-centric networks,” in Proc. of the
ACM SIGCOMM ICN Workshop, 2012, pp.
55–60.

[18] S. Arianfar, P. Nikander, and J. Ott, “Packet-level
caching for information-centric networking,” in
Proc. of the ACM ReArch Workshop, 2010.

[19] W. K. Chai, D. He, I. Psaras, and G. Pavlou,
“Cache less for more in information-centric
networks,” in Proc. of the IFIP Networking
Conference, 2012, pp. 27–40.

[20] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian,
A. Ghodsi, T. Koponen, B. Maggs, K. Ng,
V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable ICN,” in ACM
SIGCOMM Computer Communication Review,
vol. 43, no. 4, 2013, pp. 147–158.

[21] G. Rossini, D. Rossi, M. Garetto, and
E. Leonardi, “Multi-terabyte and multi-gbps

information centric routers,” in Proc. of the IEEE
INFOCOM, 2014, pp. 181–189.

[22] Z. Li and G. Simon, “Time-shifted tv in content
centric networks: The case for cooperative
in-network caching,” in Communications (ICC),
2011 IEEE International Conference on. IEEE,
2011, pp. 1–6.

[23] M. Badov, A. Seetharam, J. Kurose, V. Firoiu,
and S. Nanda, “Congestion-aware caching and
search in information-centric networks,” in Proc.
of the ACM ICN Conference, 2014, pp. 37–46.

[24] A. Badam, K. Park, V. S. Pai, and L. L.
Peterson, “Hashcache: Cache storage for the next
billion.” in Proc. of the USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), vol. 9, 2009, pp. 123–136.

[25] Y. Thomas and G. Xylomenos, “Towards
improving the efficiency of ICN packet-caches,” in
Proc. of the International Workshop on Quality,
Reliability, and Security in ICN (Q-ICN), 2014.

[26] A.-L. Barabási and R. Albert, “Emergence of
scaling in random networks,” Science, vol. 286,
no. 5439, pp. 509–512, 1999.

[27] K. V. Katsaros, G. Xylomenos, and G. C.
Polyzos, “GlobeTraff: a traffic workload generator
for the performance evaluation of future internet
architectures,” in Proc. of the International
Conference on New Technologies, Mobility and
Security (NTMS), 2012, pp. 1–5.

11


