
Cryogrid

This Documentation

1. How to Set Up a New Model Run

2. Structure of the Model and Terminology

3. Style Guide

4. How to Write a New Forcing

5. How to Write a New Interaction

6. How to Write a New Module

7. (How to Write a New Trigger)

How to Set Up a New Model Run

1. Create a new folder yourRunningNumber in the results folder

2. Create (or copy) the f iles CONSTANT_excel.xlsx and yourRunningNumber.xlsx in that folder

3. Check if all constants you need are set up in CONSTANT_excel.xlsx

4. Set up your stratigraphy in yourRunningNumber.xlsx

5. Set up all necceassary parameters and state variables for the classes that you are using in yourRunningNumber.xlsx

6. Change the runningNumber in main.m to yourRunningNumber

7. Run main program main.m

Terminology

class: Matlab class (https://se.mathw orks.com/help/matlab/object-oriented-programming.html), realizes object-oriented

programming in Matlab

CryoGrid class: Matlab class w ith mandatory functions and properties w hich contains the defining equations for the time

evolution of the ground, snow, etc. Note that many of the classes in the code are not CryoGrid classes, but do something

else! A module is a realization of the class.

parameter file: spreadsheet (in Excel at this point) used to set up a CryoGrid run

CryoGrid stratigraphy: stratigraphy of connected CryoGrid classes

Folder structure

main.m: main f ile to be executed

read_display_out.m: displays the modulke out produced by the OUT class OUT_all.m. All CryoGrid classes stored in out

must be initialized before this function w orks. You can also implement your ow n OUT class.

results : contains the parameter f ile and the output f iles in a folder corresponding to the variable run_number in main.m

forcing: contains the forcing data as .mat-f iles. If you use the FORCING class, the f iles must have the same structure as in

the sample f ile provided.

modules : contains the model code

modules/@CLASS_NAME: code of individual CryoGrid classes

modules/INTERACTION: code of interaction classes, w hich define interactions betw een tw o model classes

modules/FORCING: code of FORCING classes w hich make forcing data accessible for the CryoGrid classes

modules/IO: contains all code related to in/out user interactions (e.g. initialization), not relevant for the time integration in the

CryoGrid classes

modules/IO/GRID: GRID classes w hich provide options for dif ferent model grids (at this stage only one!), only used to

interface w ith the user

modules/IO/STRATIGRAPHY: STRATIGRAPY classes w hich provide options to provide initial stratigraphies for the different

model variables, only used to interface w ith the user. Three options, STRAT_layers (layers w ith constant properties),

STRAT_linear (linear interpolation betw een given points) and STRAT_classes (defines the stratigraphy of CryoGrid classes)

modules/IO/OUT: OUT classes w hich store model output (only one option at this stage)

modules/IO/INITIALIZE_PARAMETER_FILE: contains the Matlab code (functions, not classes) to read the parameter f ile

https://se.mathworks.com/help/matlab/object-oriented-programming.html)

and initialize the CryoGrid stratigraphy.

modules/COMMON: contains functions that could be used by classes at all levels in the class hierarchy

Inheritance

Stacking of dif ferent modules to form a stratigraphy is organised w ith pointers to the NEXT and PREVIOUS module, and special

TOP and BOTTOM modules to indicate the current top and bottom positions. The same method is used for interactions.

Therefore every class (interactions, ground, snow …) need to be subclasses of matlab.mixin.Copyable. For the ground and

snow classes, w e recommend to use GROUND_base_class and SNOW_base_class as superclasses. This also guarantees

the existence of (fallback) mandatory functions and variables.

We recommend to use a hierarchy of inhertance to introduce new functionalities, w here on each level only one new functionality

is implemented. The f irst level is the base class. The classes on level three and above should reference the superclasses in their

name to make it obvious w hich class inherits fromw here.

For the ground class w ith surface energy balance as boundary condition and energy as state variable the inheritance hierarchy

could be

 GROUND_base_class < GROUND_seb < GROUND_seb_snow

Basic Structure of the Soil Column

A model run needs a forcing module, the special TOP and BOTTOM modules and one (or more) ground/snow /… modules to build

the stratigraphy of the 1D (soil-) column that is being modelled. The stacked ground (or snow) modules are linked w ith pointers

ground.NEXT and ground.PREVIOUS*. Interaction (e.g. exchange of heat, salt, w ater) betw een modules happens w ith interaction

classes. Again the connection is realised w ith pointers *ground.IA_NEXT* and ground.IA_PREVIOUS from the ground modules to

the interaction and interaction.NEXT and interaction.PREVIOUS from the interaction to the ground modules. In this w ay the

interaction has direct access to both involved ground modules.

A Module can delete itself, move itself to a new position, or initialize and insert a new module (from the same or dif ferent

classes). This can be used for snow buildup and melt, sedimentation, erosion, ice lenses, lakes…. Here is a short example w ith

snow to illustrate the process.

The uppermost ground module builds a child and connects to it w ith a interaction. The interaction initializes the child w ith empty

pointers. In the next timesteps, the child gets f illed up to a certain threshold (e.g. a certain snow w ater equivalent). Once this

threshold is reached, i.e. the amount of snow is enough to justify a new module, the child gets inserted above the parent as the

new top module and all pointers get relocated.

Structure of the Parameter File

In each class the variables are handled in dif ferent types: constants, parameter, state variables and temporal variables.

The constants get defined in CONSTANT_excel.xlsx globally for each run. Please use the naming convention detailed below.

The parameter get defined in yourRunningNumber.xlsx seperate for each used class.

The parameters need to be f illed in as follow s:

 CLASS index

 GROUND_yourName 1

 value default unit

 other_parameter value default [unit] description

 density 300 350 [kg/m3] snow density

 albedo 0.8 0.8 [-] surface albedo

 other_parameter value default [unit] description

 CLASS_END

The f ile is scanned to the key w ords CLASS and than for pre-defined ("allow ed") parameter names. Thus only the f irst three

columns are read and the rest can be used for clarif ication and comments. Empty lines and lines w ith dashes can be used to

devide the parameters.

The index besides the class name allow s for dif ferent modules based an the same class, e.g. tw o ground modules w ith the same

functionalities but dif ferent albedo.

The same structure is used for parameter setting of the forcing, the grid and the stratigraphy.

Style Guide

Compatibility

All modules can handle w hichever state variable they need and use w hichever boundary conditions. How ever, the boundary

conditions need to be compatible w ith the used interaction class(es) and the used forcing. For example, if you have the

temperature as a state variable and the interaction betw een tw o modules is handled as a heat f low, then your boundary

conditions need to convert the forcing data into heat f low s at the upper and low er boundaries.

The interaction classes get selected in /modules/INTERACTION/ get_IA_class.m based on the combination of modules. If you

w rite a new class or interaction, please insert your use cases in this function.

General Remarks

Use meaningful names: Use short phrases for clarity rather than abbreviations for shortness.

Physical properties should be named by their SI symbols.

In functions, used variables from containers should be saved by their name, i.e. theta = ground.CONST.theta

Variables and functions should be in low er case. Variable w ord separation may be indicated w ith camel case, w ord

separation in function names w ith underscores.

If you use equations and constants, cite their source in comments.

Documentation

Every author is responsible for the documentation of his*her ow n module. We use doxygen for the documentation of Cryogrid

and therefore recommend the follow ing conventions.

To use doxygen w ithin your code w rite the documentation comments above the function/variable that you are explaining and

start the line w ith "%> " (instead of just "% " for normal comments). Not every comment in the code needs to be forw arded to

doxygen for the documentation - choose w isely!

Mandatory Functions and Variables

ground.CONST

Need to be allocated in provide_CONST.m for every class, or in the inheriting superclass(es). Need to be specif ied in

CONSTANT_excel.xlsx

 year_sec = 365*24*3600; % s / yr

Latent heat L_f = 334*1000*1000; % J / m^3

Heat capacity c_w = 4.2*1000*1000; % J / (K m^3)

 c_i = 1.9*1000*1000; % J / (K m^3)

 c_o = 2.5*1000*1000; % J / (K m^3)

 c_m = 2*1000*1000; % J / (K m^3)

Thermal conductivity

 air k_a = 0.025; % W / m K [Hillel(1982)]

 water k_w = 0.57; % W / m K [Hillel(1982)]

 ice k_i = 2.2; % W / m K [Hillel(1982)]

 organic k_o = 0.25; % W / m K [Hillel(1982)]

 mineral k_m = 3; % W / m K

 quartz k_q = 7; % W / m K

Stefan-Boltzmann const.

 sigma = 5.67e-8;

Universal gas constant

 R = 8.314459; % J / K mol

Tortuousity tau = 1.5; % 1.5 standard

Freezing temperature of water

 Tmelt_free_water = 273.15; % K

ground.PARA

Need to be allocated in provide_PARA.m for every class, or in the inheriting superclass(es). Need to be specif ied in

yourRunningNumber.xlsx for every class w ithin the block for that class.

Default heat flux at lower boundary

 heatFlux_lb = 0.05; % W / m^2

Albedo albedo = 0.15; %

Emissivity epsilon = 0.99; %

 rs = 100; %

Measurement height

 z =2; % m

Roughness length

 z0 = 1e-3; % m

Maximum time step

 dt_max = 3600 ; % s

Maximum energy change per time step

 dE_max = 0.5e5; % J / m^3

Maximum temperature change per time step

 dT_max = 0.5e5; % K

Maximum salt concentration change per time step

 dsaltConc_max %

Snow water equivalent per cell

 swe_per_cell = 0.01; % m must be the same as in SNOW class, should be taken from input file

Sedimentation Rate

 sedRate % m / yr

Soil Type

 soilType = 1 .* ones(size(grid_cell_size)); %0 - sand, 1 - silt

ground.STATVAR (depends on your choice of state variables)

Need to be allocated in provide_STATVAR.m for every class, or in the inheriting superclass(es). Need to be specif ied in

yourRunningNumber.xlsx for the stratigraphy and in finalize_STATVAR.m for every class.

 upperPos = grid(1);

 lowerPos = grid(end);

 layerThick % the distances between layer boundaries in m

 % Should be sufficient to save only upperPos, lowerPos and layerThick

 % However, if you want to save other info, please use the following

 midptDepth % the depths of module layer midpoints in m

 midptThick % the distances between layer midpoints in m

 layerDepth % the depths of the module layer boundaries in m

Initial fractional volumes

 water = 0.4 .* ones(size(grid_cell_size)); %fraction of volume "m^3/m^3"

 ice = 0 .* ones(size(grid_cell_size)); %fraction of volume

 organic = 0 .* ones(size(grid_cell_size)); %fraction of volume

 mineral = 1.1 * 0.6 .* ones(size(grid_cell_size)); %fraction of volume

Salt diffusivity

 saltDiff % m^2 / s

Bulk thermal conductivity

 thermCond % W / m K

Effective heat capacity

 c_eff % J / m^3

Liquid water content

 liqWater % fraction of volume

Freezing temperature of solution

 Tmelt % K

% Of the following choose your state variables

Initial temperature

 T % °C

Initial salinity - salt concentration in liquid water

 saltConc = 895 .* ones(size(grid_cell_size)); % mol / l [Dimitrenko 2011]

Initial energy

 E % J

Initial total ions - salt concentration per layer volume

 salt % mol

ground.TEMP

To be calculated in the appropriate functions (get_boundary_condition_**, *get_derivatives_prognostic*, interactions, etc.) -

depends on choice of state variables - needed boundary conditions depend also on the chosen interaction

% Boundary conditions for the chosen state variable(s) -

Temperature at upper boundary (for updating of thermal properties)

 T_ub % °C

Heat flux at upper boundary

 heatFlux_ub % W / m^2

Heat flux at lower boundary

 heatFlux_lb % W / m^2

Salt flux at upper boundary

 saltFlux_ub %

Salt flux at lower boundary

 saltFlux_lb %

Temperature divergence

 divT %

Salt concentration divergence

 divsaltConc %

forcing.PARA

Need to be specif ied in yourRunningNumber.xlsx in the forcing block. Other parameter of the forcing depends on the chosen

forcing class.

Starttime of forcing data

 startForcing

Time step of forcing data

 dtForcing

Endtime of forcing data

 endForcing

% Other depending on your forcing data

forcing.DATA

to be calculated in generateForcing. All variable are vectors w ith the same length

Vector of discrete time steps

 timeForcing = [startForcing:dtForcing:endForcing]';

Vector of forcing temperature

 TForcing

Vector of forcing salt concentration

 saltConcForcing

forcing.TEMP

to be calculated in interpolateForcing - depending on the choice of state variables.

All variables are single values - interpolated for each time step

Surface temperature at this time point

 TForcing

Surface salt concentration at this time point

 saltConcForcing

OUT und RUN_INFO

Save interval dtSave

How to Write a New Forcing

A new forcing module loads or generates forcing data. The state variables that are provided by the forcing module need to match

the ones that are needed by the used ground modules.

%> here goes the documentation of the focing module

classdef FORCING

 properties

 DATA %all data

 TEMP %at each timestep

 PARA

 STATUS %forcing data suitable for the modules that are to be run -> can be used

 end

 methods %mandatory functions

 %> Descitption of the functions, input and output parameters

 function forcing = initalize_from_file(forcing, section)

 %This function initializes the parameter from the section of the excel file to forcing.PARA

 end

 %> Descitption of the functions, input and output parameters

 function forcing = load_forcing_from_mat(forcing)

 %This function loads/generates the forcing and stores it in forcing.DATA

 end

 %> Descitption of the functions, input and output parameters

 function forcing = interpolate_forcing(t, forcing)

 %This function will be called by ground modules and should return all state variables, that are needed

 end

 end

end

How to Write a New Interaction Class

The interaction classes handle the boundary conditions for all modules in the stratigraphy that share an inner boundary w ith

another module. The interaction has pointers to the tw o interacting modules and can therefore change both modules directly. The

interaction needs to match the boundary conditions that are used in the modules. The interaction classes get selected in

/modules/INTERACTION/ get_IA_class.m based on the combination of modules. If you w rite a new class or interaction, please

insert your use cases in this function.

%> Here comes the documentation of your interaction class

classdef IA_HEAT < matlab.mixin.Copyable

 properties

 PREVIOUS

 NEXT

 end

 methods

 %> Descitption of the functions, input and output parameters

 function get_boundary_condition_m(ia_heat)

 stratigraphy1 = ia_heat.PREVIOUS;

 stratigraphy2 = ia_heat.NEXT;

 %put interaction here

 %it should act as the boundary conditions for both involved section,

 %i.e. get_boundary_condition_l for stratigraphy1 and as get_boundary_condition_u for stratigraphy2

 end

 end

end

How to Write a New Module

The definition of a new module should look like follow s. The functions are mandatory for the time loop to w ork. The "initialize"

function may take additional input parameters, as you only use it before entering the time loop, the other functions may not.

%> Here comes the documentation of your new module

classdef GROUND_yourName

 properties

 CONST %constants

 PARA %external service parameters, all other

 STATVAR %state variables - choose wisely

 TEMP %derivatives in prognostic

 PREVIOUS %pointer to previous module

 NEXT %pointer to next module

 IA_PREVIOUS %pointer to interaction with previous module

 IA_NEXT %pointer to interaction with next module

 end

 methods %mandatory functions for each class

 %> Descitption of the functions, input and output parameters

 function ground = provide_variables(ground)

 %initializes the variables in ground.CONST, ground.PARA and ground.STATVAR as empty arrays.

 %You may also use this function from the superclass

 end

 function variable = initialize_from_file(ground, variable, section)

 %fills variables in ground.CONST and ground.PARA with info from the appropriate section in the excel file

 end

 function ground = assign_global_variables(ground, forcing)

 %assign variables from forcing to module

 end

 function ground = initialize_STATVAR_from_file(ground, grid, forcing, depths)

 %initialize state variables in ground.STATVAR with info from the appropriate section in the excel file

 end

 %> Descitption of the functions, input and output parameters

 function ground = get_boundary_condition_u(ground, forcing)

 %put upper boundary here

 %this function needs to be compatible with the used interaction class, i.e. if you use heatflux here,

 %you also need to use it in the interaction class

 end

 %> Descitption of the functions, input and output parameters

 function ground = get_boundary_condition_l(ground)

 %put lower boundary here

 end

 function ground = get_derivatives_prognostic(ground)

 %put spatial derivative here

 end

 %> Descitption of the functions, input and output parameters

 function timestep = get_timestep(ground)

 %put estimate for maximum timestep which allows stable forward Euler here

 end

 %> Descitption of the functions, input and output parameters

 function ground = advance_prognostic(ground, timestep)

 %put advancing in time here

 %real timestep derived as minimum of several classes in [sec] is used here!

 end

 %> Descitption of the functions, input and output parameters

 function ground = compute_diagnostic_first_cell(ground, forcing)

 %put stuff that happens only if this cell is the first cell here

 end

 %> Descitption of the functions, input and output parameters

 function ground = compute_diagnostic(ground, forcing)

 %put stuff that happens in every cell here

 end

 end

 end

end

