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1. Introduction 

This paper shines the spotlight on the mathematical formulae of resource sharing models. It 

contributes to greater transparency and comparability through a uniform mathematical representation, 

by showing generalisations and mergers as well as similarities and differences between currently used 

models. It also contains mathematical proofs for specified properties of the models. 

In Chapter 2 we consider models with a limited convergence period, at the end of which global 

emissions are allocated to countries according to population only. The Smooth Pathway Approaches 

in Chapter 3 calculates national pathways starting from allocated remaining national budgets. The 

Emission Probability Model in Chapter 4 determines country specific emission density functions and 

caps the emissions of individuals. 

Excel tools for calculating national emission pathways for all countries in the world compatible with 

the Paris Agreement using the Regensburg Formula (see Chapter 2.2) or the Extended Smooth 

Pathway Model (see Chapter 3.3) can be downloaded from our website http://www.save-the-

climate.info/. 

http://www.save-the-climate.info/
http://www.save-the-climate.info/
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2. Convergence models 

All convergence models presented here start with a global pathway that meets a remaining global 

budget usually corresponding to a certain degree of global warming.1 Then the models break down 

the annual global emissions on country level, transforming the actual emissions in a base year (BY) 

into emissions based on a per capita allocation in a convergence year (CY) at the end of a limited 

convergence period  

2.1 Models breaking down the global pathway in a simple way 

2.1.1 Contraction & Convergence Model 

The Global Commons Institute already propounded the following Contraction & Convergence Model 

(C&C Model) in the early 1990s. This model defines the emissions of country i in the year t (𝐸𝑡
𝑖̂) 

recursively (cf. Meyer, No date): 

𝐸𝑡
𝑖̂: =

{
 
 

 
 ((1 − 𝐶𝑡̂) ∗

𝐸𝑡−1
𝑖̂

𝐸𝑡−1
+ 𝐶𝑡̂ ∗

𝑃𝑡
𝑖

𝑃𝑡
) ∗ 𝐸𝑡 , for 𝐵𝑌 + 1 ≤ 𝑡 < 𝐶𝑌

𝑃𝑡
𝑖

𝑃𝑡
∗  𝐸𝑡 ,  for 𝐶𝑌 ≤ 𝑡                                                                  

, (1) 

where 

𝐸𝑡 global emissions in the year t, 

𝑃𝑡 global population in the year t and 

𝑃𝑡
𝑖 population of country i in the year t. 

𝐶𝑡̂ denotes the weight of the population when allocating global emissions to countries.  

The Global Commons Institute considered two specifications of 𝐶𝑡̂: 

• exponential (C&C-exp): Ct̂ = exp (−a (1 −
t−BY

CY−BY
)) with the parameter a > 0 to be 

determined. “The higher the value [a], the more the convergence happens towards the end of 

the convergence period, and vice-versa. Choosing a = 4 gives an even balance.” (Meyer, 

 
1 The formulae in Chapter 3 Smooth Pathway Models, for deriving national emission pathways that adhere to a specified 

budget can also be used to derive global pathways. In our Regensburg Model (Sargl, et al., 2017), which uses the 

Regensburg Formula to calculate national pathways (see Chapter 2.2), we use the RM Scenario Types (Wolfsteiner & 

Wittmann, 2021), which are also used in our Extended Smooth Pathway Model (see Chapter 3.3). 

. 
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1998, p. 21) 

• linear (C&C-lin): 𝐶𝑡̂ = 
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
. 

2.1.2 LIMITS Model 

LIMITS, a research project funded by the EU, uses the following formula for the emissions of country 

i in the year t (𝐸𝑡
𝑖̃) (cf. Tavoni, et al., 2013): 

𝐸𝑡
𝑖̃: =  

{
 
 

 
 ((1 − 𝐶𝑡̃) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡̃ ∗

𝑃𝑡
𝑖

𝑃𝑡
) ∗ 𝐸𝑡 ,   for 𝐵𝑌 +  1 ≤ 𝑡 < 𝐶𝑌

𝑃𝑡
𝑖

𝑃𝑡
∗  𝐸𝑡 , for 𝐶𝑌 ≤ 𝑡                                                                  

 (2) 

𝐶𝑡̃ denotes the weight of the population when allocating global emissions to countries. LIMITS 

considered only the linear specification of 𝐶𝑡̃ (𝐶𝑡̃ = 
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
).  

The LIMITS Model (LIMITS) uses formula (2) to determine emissions pathways for different regions 

of the world. 

2.1.3 Generalised C&C Model and Generalised LIMITS Model 

C&C and LIMITS consider only certain specifications of 𝐶𝑡. However, any non-decreasing weighting 

function 𝐶𝑡 that takes the value 1 in the convergence year (CY) can be used. Numerous such weighting 

functions are conceivable. Thus we obtain the Generalised Contraction & Convergence Model (G-

C&C) and the Generalised LIMITS Model (G-LIMITS). National emissions pathways with weighting 

functions that take the value 0 (or approximately 0) in the base year (BY) normally do not have a step 

after the base year. Therefore we only list the most intuitive weighting functions with this property: 

• linear (lin): 𝐶𝑡 = 
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
  (C&C-lin and LIMITS) 

• exponential (exp_a): 𝐶𝑡 = 𝑒𝑥𝑝 (−𝑎 (1 −
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)) with the parameter a > 0 to be determined 

(C&C-exp) 

• convex quadratic (conv quadr): 𝐶𝑡 = (
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

• concave quadratic (conc quadr): 𝐶𝑡 = 1 − (1 −
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

• general quadratic: 𝐶𝑡 = 𝑎(𝑡 − 𝐵𝑌)
2 + 𝑏(𝑡 − 𝐵𝑌) + 𝑐, where a, b and c are parameters to be 

determined in such a way that 𝐶𝐵𝑌 =  0, 𝐶𝐶𝑌 = 1 and with a third constraint, e. g. a given 
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value for the year after the base year. The linear, the convex quadratic and the concave 

quadratic specifications of 𝐶𝑡 are special cases of the general quadratic specification. 

• cubic: 𝐶𝑡 = −2(
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)
3

+ 3(
𝑡−𝐵𝑌

𝐶𝑌−𝐵𝑌
)
2

 

• convex polynomial (conv pol_n): 𝐶𝑡 = (
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
𝑛

, where n is a natural number 

• concave polynomial (conc pol_n): 𝐶𝑡 = 1 − (1 −
𝑡 − 𝐵𝑌

𝐶𝑌−𝐵𝑌
)
𝑛

, where n is a natural number 

The weighting functions above depend directly on the year (t). Another class of weighting functions 

is obtained by introducing the emissions in the year t (𝐸𝑡). Thus these weighting functions depend on 

the global emissions and only indirectly on the year. We only show the linear specification as an 

example: linear in 𝐸𝑡 (lin_E_t): 𝐶𝑡 = 
𝐸𝐵𝑌−𝐸𝑡

𝐸𝐵𝑌−𝐸𝐶𝑌
 . 

Figure 1 depicts the trajectories of some weighting functions. 

 

Figure 1: Trajectories of the different specifications of 𝐶𝑡 

Figure 1 shows that, if n is great enough, the allocation key “population” 

- in the concave polynomial specification comes fully into effect already in the first year after 

the base year (equity, immediate climate justice).  

- in the convex polynomial specification comes into effect only in the convergence year 

(inertia). 
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2.1.4 Common but Differentiated Convergence Model 

The Common but Differentiated Convergence Model is described in (cf. Höhne, et al., 2006). This 

source does not contain any formulae, so the formulae presented here are our interpretation of the 

description of the CDC model. 

First a threshold 𝑇𝐻𝑡 in the year t is defined, which decreases if the global emissions decrease: 

𝑇𝐻𝑡 ≔
𝐸𝑡

𝑃𝑡
∗ 𝑃𝑇, 

where 𝑃𝑇 is a given percentage, e. g. 0.95. If the average emissions of country i in the year t in a 

business as usual scenario (
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 ) are below or equal to the threshold, i. e. 

𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 ≤ 𝑇𝐻𝑡, the country 

is allocated emissions according to the business as usual scenario and we define 

𝐸𝑡
𝑖 ≔ 𝐸𝑡

𝑖_𝑏𝑎𝑢. 

Otherwise, if the average emissions of country i in the year t in the business as usual scenario are 

above the threshold (
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖 > 𝑇𝐻𝑡), the country is allocated emissions according to the C&C formula 

and we define 

𝐸𝑡
𝑖 ≔ ((1 − 𝐶𝑡̂) ∗

𝐸𝑡−1
𝑖

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 + 𝐶𝑡̂ ∗

𝑃𝑡
𝑖

𝑃𝑡
𝑜𝑇𝐻) ∗ 𝐸𝑡

𝑜𝑇𝐻, 

where  

𝐶𝑡̂  weighting of per capita emissions in the year t, 

𝐸𝑡
𝑜𝑇𝐻  remaining emissions in the year t for the countries over the threshold in the year t, i. e. 

𝐸𝑡
𝑜𝑇𝐻 = 𝐸𝑡 − ∑ 𝐸𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  ≤ 𝑇𝐻𝑡

 , 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡  emissions in the year t-1 of the countries over the threshold in the year t, i. e. 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 = ∑ 𝐸𝑡−1

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

 and 

𝑃𝑡
𝑜𝑇𝐻  population in the year t of the countries over the threshold in the year t, i. e. 
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𝑃𝑡
𝑜𝑇𝐻 = ∑ 𝑃𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

. 

Remark: Obviously the equation  

𝐸𝑡
𝑜𝑇𝐻 = ∑ 𝐸𝑡

𝑖

𝑖

if  
𝐸𝑡
𝑖_𝑏𝑎𝑢

𝑃𝑡
𝑖  > 𝑇𝐻𝑡 

 

holds, but this equation cannot be used to define 𝐸𝑡
𝑜𝑇𝐻, because 𝐸𝑡

𝑖 is defined with the help of 𝐸𝑡
𝑜𝑇𝐻. 

2.2 The Regensburg Formula (RF) 

We will present three equivalent notations of the Regensburg Formula2 

• as a weighting function with an annual degree of achieving the global convergence amount 

• as a straight line with a conversion factor for the reduction of emissions 

• as a recursion with an annual rate of change 

and show how they are derived from each other. Then we show the derivation of a formula for the 

national budget in the convergence period of an individual country. 

2.2.1 The RF as a weighting function 

The notation of the RF as a weighting function (cf. Sargl, et al., 2017) uses the annual degree of 

achieving the global convergence amount 𝐸𝐶𝑌 in year t 

𝑪𝒕̅̅ ̅:=  
𝑬𝑩𝒀 − 𝑬𝒕
𝑬𝑩𝒀 − 𝑬𝑪𝒀

 

as weighting factor for the national convergence amount 𝐸𝐶𝑌
𝑖  (in case of the national convergence 

amount being directly proportional to the population, it is also a per-capita weighting factor) for the 

calculation of emissions of country i in year t: 

𝑬𝒕
𝒊̅̅ ̅: =  (𝟏 − 𝑪𝒕̅̅ ̅) ∗ 𝑬𝑩𝒀

𝒊 + 𝑪𝒕̅̅ ̅ ∗  𝑬𝑪𝒀
𝒊 ,   𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

Directly from this definition of the RF we obtain the following results: 

 
2 The Regensburg Formula is part of the Regensburg Model, in which global pathways are derived using the RM Scenario 

Types (Wolfsteiner & Wittmann, 2021). 



Resource Sharing Models - A Mathematical Description  page 9 of 30 

Remark 1 (equal proportions in all countries and the world) 

In each year t, the proportion of emissions still to be reduced and the proportion of emissions already 

reduced in relation to the emissions to be reduced altogether are equal in all countries and globally: 

𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

= 
𝐸𝑡
𝑖̅̅̅ − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖
 (=  1 − 𝐶𝑡̅) and 

𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

= 
𝐸𝐵𝑌
𝑖 − 𝐸𝑡

𝑖̅̅̅

𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖
 (= 𝐶𝑡̅). 

In each year t, therefore, the degree of achieving the global convergence amount and the degree of 

achieving the national convergence amount are identical.  

Remark 2 (national convergence amounts in all countries in CY) 

In CY emissions calculated with the RF and the national convergence amount are the same in each 

country. 

Remark 3 (Uniqueness of 𝑪𝒕̅̅ ̅) 

There is only one weighting function 𝑪𝒕̅̅ ̅ so that the equation 

𝑬𝒕
𝒊 = (𝟏 − 𝑪𝒕̅̅ ̅) ∗ 𝑬𝑩𝒀

𝒊 + 𝑪𝒕̅̅ ̅ ∗  𝑬𝑪𝒀
𝒊  

holds for each country. This weighting function is 𝑪𝒕̅̅ ̅: =  
𝑬𝑩𝒀−𝑬𝒕

𝑬𝑩𝒀−𝑬𝑪𝒀
. This can be shown by summing up 

the equation across all countries, yielding an equation that can be solved for 𝑪𝒕̅̅ ̅. 

2.2.2 The RF as a straight line 

Theorem 1 (notation of the RF as a straight line) 

The emissions of each country i as a function of the global emissions are on a straight line: 

𝑬𝒕
𝒊̅̅ ̅ = (𝑬𝒕 − 𝑬𝑪𝒀) ∗ 𝒂

𝒊 + 𝑬𝑪𝒀
𝒊 ,   𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌, 

with the conversion factor for the reduction: 𝒂𝒊: =
𝑬𝑩𝒀
𝒊 − 𝑬𝑪𝒀

𝒊

𝑬𝑩𝒀 − 𝑬𝑪𝒀
. 

Proof:  

𝐸𝑡
𝑖 = 

= 𝐸𝐵𝑌
𝑖 ∗  (1 − 𝐶𝑡̅)  +  𝐶𝑡̅ ∗  𝐸𝐶𝑌

𝑖 = 

= 𝐸𝐵𝑌
𝑖 ∗ (1 −

𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) + (
𝐸𝐵𝑌 − 𝐸𝑡
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) ∗ 𝐸𝐶𝑌
𝑖 = 
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= 𝐸𝐵𝑌
𝑖 ∗ (

𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) + (1 −
𝐸𝑡 − 𝐸𝐶𝑌
𝐸𝐵𝑌 − 𝐸𝐶𝑌

) ∗ 𝐸𝐶𝑌
𝑖 = 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗
𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌 − 𝐸𝐶𝑌
+ 𝐸𝐶𝑌

𝑖 = 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎
𝑖 + 𝐸𝐶𝑌

𝑖  

  □ 

Remark 3 (stepwise approximation) 

By presenting the RF as a straight line, it becomes clear that a stepwise approximation of the global 

emission pathway to the global convergence amount is transmitted to all national emission pathways. 

Remark 4 (construction of national graphs)  

This theorem also shows that, when applying the RF, the national graph (t, 𝐸𝑡
𝑖̅̅̅)  for country i with a 

reduction amount (𝐸𝐵𝑌
𝑖 > 𝐸𝐶𝑌

𝑖 ) can be derived from the global graph  

(t, 𝐸𝑡) by changing the scaling on the ordinate and by vertically shifting the abscissa. For countries 

with a national convergence amount permitting increasing annual emissions (𝐸𝐵𝑌
𝑖 < 𝐸𝐶𝑌

𝑖 ), the global 

graph additionally needs to be reflected across the abscissa to obtain the national graph. 

Remark 5 (factor for converting reductions = proportional factor) 

Because of ∑ 𝑎𝑖𝑖 =  1 the factor for converting the reduction is also called “proportional factor”. 

Corollary 1 (constant factor for converting reductions) 

For each country i there is a constant proportional factor αi that allows converting annual global 

reductions to annual reductions of country i:  

𝐸𝑡
𝑖̅̅̅ − 𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ = (𝐸𝑡 − 𝐸𝑡−1)  ∗  𝑎
𝑖. 

Factor 𝑎𝑖 for converting reductions can be determined by the ratio between emissions that remain to 

be reduced by country i in year t and emissions which remain to be reduced globally: 

𝑎𝑖 =
𝐸𝑡
𝑖̅̅̅ − 𝐸𝐶𝑌

𝑖

𝐸𝑡 − 𝐸𝐶𝑌
  (𝐵𝑌 ≤ 𝑡 ≤ 𝐶𝑌 − 1). 
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Remark 6 (monotonicity) 

This corollary also shows that monotonicity of the global emission pathway is transferred to the 

national emission pathways. 

Corollary 2 (complete distribution of global emissions) 

The emissions determined according to the RF of all countries together sum up to the amount of 

global emissions: 

∑𝐸𝑡 
𝑖̅̅̅̅ =  𝐸𝑡  

𝑖
 for every year 𝑡. 

Proof by using the notation of the RF as a straight line:   

∑𝐸𝑡 
𝑖̅̅̅̅ = 

𝑖
 

=∑ ((𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎
𝑖 + 𝐸𝐶𝑌

𝑖 )
𝑖

= 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗  ∑ 𝑎𝑖
𝑖

+∑ 𝐸𝐶𝑌
𝑖

𝑖
= 

= (𝐸𝑡 − 𝐸𝐶𝑌) ∗  1 + 𝐸𝐶𝑌 = 𝐸𝑡 

  □ 

2.2.3 The RF as a recursion 

Theorem 2 (notation of the RF as a recursion) 

We have:3 

𝑬𝒕
𝒊̅̅ ̅ = 𝑬𝒕−𝟏

𝒊̅̅ ̅̅ ̅̅ − 𝑪𝑹𝒕−𝟏 ∗ (𝑬𝒕−𝟏
𝒊̅̅ ̅̅ ̅̅ − 𝑬𝑪𝒀

𝒊 ), 𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌  

with the annual rate of change 𝑪𝑹𝒕−𝟏: =  
𝑬𝒕−𝟏 − 𝑬𝒕
𝑬𝒕−𝟏 − 𝑬𝑪𝒀

. 

Proof: 

 𝐶𝑅𝑡−1 is well defined, because 𝐸𝑡−1 ≠ 𝐸𝐶𝑌 for 𝐵𝑌 + 1 ≤ 𝑡 ≤ 𝐶𝑌  . 

By using corollary 1 for the factor for converting reductions, we can say: 

 
3 Alternative notation with 𝑇𝐴 ≔ 𝐸𝐶𝑌 , 𝑇𝐴

𝑖 ≔ 𝐸𝐶𝑌
𝑖  and  𝐶𝑅̃𝑡−1 ≔ − 𝐶𝑅𝑡−𝑡 =

𝐸𝑡−𝐸𝑡−1

𝐸𝑡−1−𝑇𝐴
:  𝐸𝑡

𝑖̅̅̅ = 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ + 𝐶𝑅̃𝑡−1 ∗ (𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ −

𝑇𝐴𝑖). 



Resource Sharing Models - A Mathematical Description  page 12 of 30 

𝐸𝑡
𝑖̅̅̅ =  

= 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ + (𝐸𝑡 − 𝐸𝑡−1)  ∗  𝑎

𝑖 = 

= 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ −

𝐸𝑡−1 − 𝐸𝑡
𝐸𝑡−1 − 𝐸𝐶𝑌

∗ (𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ − 𝐸𝐶𝑌

𝑖 ) = 

= 𝐸𝑡−1
𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐶𝑅𝑡−1 ∗ (𝐸𝑡−1

𝑖̅̅ ̅̅ ̅̅ − 𝐸𝐶𝑌
𝑖 ) 

  □ 

Remark 7 (identical annual rates of change) 

The notation as a recursion offers another interpretation of the RF: The annual emissions of country 

i in the year t are determined by transferring the rates of change which are derived from the global 

emission pathway, to national emission pathways. Therefore, in each year t, the national and global 

annual rates of change are identical. 

Remark 8 (national convergence amounts in all countries in the convergence year) 

From the notation of the RF as a recursion, you can see that the convergence amounts are achieved 

in all countries in the year CY, if you take into consideration that the rate of change 𝐶𝑅𝐶𝑌−1 takes 

value 1. 

2.2.4 Implicit national budgets 

The emissions of country i in the convergence period are also referred to as national budget of country 

i in the convergence period: 

𝐵𝑖: = ∑ 𝐸𝑡
𝑖

𝐶𝑌

𝑡=𝐵𝑌+1
. 

The global emissions in the convergence period are denominated are also referred to as global budget 

in the convergence period: 

𝐵:=∑ 𝐸𝑡  (=  ∑ ∑ 𝐸𝑡
𝑖

𝑖

𝐶𝑌

𝑡=𝐵𝑌+1
 =  ∑ ∑ 𝐸𝑡

𝑖
𝐶𝑌

𝑡=𝐵𝑌+1
=∑𝐵𝑖

𝑖
𝑖

) .
𝐶𝑌

𝑡=𝐵𝑌+1
 

Theorem 3 (national budget in the convergence period) 

For the national budget of country i in the convergence period we have: 

𝐵𝑖 = 𝐸𝐶𝑌
𝑖 ∗ (𝐶𝑌 − 𝐵𝑌) + (𝐵 − 𝐸𝐶𝑌 ∗ (𝐶𝑌 − 𝐵𝑌)) ∗  𝑎

𝑖, 

with the factor 𝑎𝑖 =
𝐸𝐵𝑌
𝑖 − 𝐸𝐶𝑌

𝑖

𝐸𝐵𝑌 − 𝐸𝐶𝑌
 for converting reductions. 
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Proof: 

According to the notation of the RF as a straight line, the following applies to the emissions of country 

i in year t: 

𝐸𝑡
𝑖̅̅̅ = (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎

𝑖 + 𝐸𝐶𝑌
𝑖 . 

By summing up these emissions across all years, we obtain the national budget of country i in the 

convergence period: 

𝐵𝑖 =∑ 𝐸𝑡
𝑖̅̅̅

𝐶𝑌

𝑡=𝐵𝑌+1
= 

=∑ 𝐸𝐶𝑌
𝑖 +∑ (𝐸𝑡 − 𝐸𝐶𝑌) ∗ 𝑎

𝑖
𝐶𝑌

𝑡=𝐵𝑌+1

𝐶𝑌

𝑡=𝐵𝑌+1
 

= 𝐸𝐶𝑌
𝑖 ∗ (𝐶𝑌 − 𝐵𝑌) + (𝐵 − 𝐸𝐶𝑌 ∗ (𝐶𝑌 − 𝐵𝑌)) ∗  𝑎

𝑖 

  □ 

Remark 9 (national budget depending only on the global budget)  

This theorem also shows, that the national budget of country i in the convergence period only depends 

on – besides the national emissions of country i and the global emissions in BY and in CY – the global 

budget in the convergence period, but not on the global emissions 𝐸𝐵𝑌+1, 𝐸𝐵𝑌+2, …, 𝐸𝐶𝑌−2, 𝐸𝐶𝑌−1. 

Under certain conditions, this results in an implicit national budget that is independent of the global 

pathway chosen. 

2.3 Convertibility of the convergence models 

2.3.1 Equivalence of the Generalised C&C and LIMITS Model 

In both models, the population is frozen and the convergence amount of a country i is defined by 

𝐸𝐶𝑌
𝑖  =  

𝑃𝑖

𝑃
 ∗  𝐸𝐶𝑌. 

G-C&C is given by 

𝐸𝑡
𝑖̂: = ((1 − 𝐶𝑡̂) ∗

𝐸𝑡−1
𝑖̂

𝐸𝑡−1
+ 𝐶𝑡̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

with a weighting function 𝐶𝑡̂ that takes the value 0 (or approximately 0) in BY and the value 1 in the 

CY. Here 𝐸𝑡
𝑖̂ is defined recursively. 

The G-Limits is given by 
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𝐸𝑡
𝑖̃: = ((1 − 𝐶𝑡̃) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

with a weighting function 𝐶𝑡̃ that takes the value 0 (or approximately 0) in BY and the value 1 in 

CY. 

Theorem 4 (equivalence of G-C&C and G-LIMITS) 

For any weighting function 𝐶𝑡̂ of G-C&C there is a weighting function 𝐶𝑡̃ for G-LIMITS, so that the 

results of G-C&C and G-LIMITS are the same.  

For any weighting function 𝐶𝑡̃ of G-LIMITs there is a weighting function 𝐶𝑡̂ for G-C&C, so that the 

results of G-C&C and G-LIMITS are the same. 

Proof: 

If we know the weighting function 𝐶𝑡̂ of G-C&C, the weighting function 𝐶𝑡̃ of G-LIMITS is given 

by 

𝐶𝑡̃ ≔  1 − ∏ (1 − 𝐶𝑙̂) for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

𝑡

𝑙=𝐵𝑌+1

. 

We proof the first part of the theorem by aid of mathematical induction. 

Base case: For t = BY + 1 we obtain 𝐶𝐵𝑌+1̃ = 𝐶𝐵𝑌+1̂ and  

𝐸𝐵𝑌+1
𝑖̃ : = ((1 − 𝐶𝐵𝑌+1̃) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝐵𝑌+1̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝐵𝑌+1 

= ((1 − 𝐶𝐵𝑌+1̂) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝐵𝑌+1̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝐵𝑌+1 = 𝐸𝐵𝑌+1

𝑖̂  

Inductive step: Assuming that if 𝐸𝑡−1
𝑖̂ = 𝐸𝑡−1

𝑖̃ = ((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡−1, we show that 

𝐸𝑡
𝑖̂ = 𝐸𝑡

𝑖̃. Algebraically 

𝐸𝑡
𝑖̂ = ((1 − 𝐶𝑡̂) ∗

𝐸𝑡−1
𝑖̂

𝐸𝑡−1
+ 𝐶𝑡̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡, 

=

(

  
 
(1 − 𝐶𝑡̂) ∗

((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡−1

𝐸𝑡−1
+ 𝐶𝑡̂ ∗

𝑃𝑖

𝑃

)

  
 
∗ 𝐸𝑡 
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= ((1 − 𝐶𝑡̂) ∗ ((1 − 𝐶𝑡−1̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶𝑡̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶𝑡̂) ∗ ((1 − (1 − ∏ (1 − 𝐶𝑙̂)

𝑡−1

𝑙=𝐵𝑌+1

)) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶𝑡̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶𝑡̂) ∗ (( ∏ (1 − 𝐶𝑙̂)

𝑡−1

𝑙=𝐵𝑌+1

) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡−1̃ ∗

𝑃𝑖

𝑃
) + 𝐶𝑡̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ( ∏ (1 − 𝐶𝑙̂)

𝑡

𝑙=𝐵𝑌+1

∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (1 − 𝐶𝑡̂) ∗  (1 − ∏ (1 − 𝐶𝑙̂)

𝑡−1

𝑙=𝐵𝑌+1

) ∗
𝑃𝑖

𝑃
+ 𝐶𝑡̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶𝑡̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ ((1 − 𝐶𝑡̂) − (1 − 𝐶𝑡̃)) ∗

𝑃𝑖

𝑃
+ 𝐶𝑡̂ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 

= ((1 − 𝐶𝑡̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 = 𝐸𝑡

𝑖̃ 

Second part of the theorem: If we know the weighting function 𝐶𝑡̃ of G-LIMITS, we solve the 

definition of 𝐶𝑡̃ for 𝐶𝑡̂ and obtain recursively the weighting function 𝐶𝑡̂ of G-C&C: 

𝐶𝑡̂ = 1 −
1 − 𝐶𝑡̃

∏ (1 − 𝐶𝑙̂) 
𝑡−1
𝑙=𝐵𝑌+1

 for 𝐵𝑌 +  1 ≤ 𝑡 ≤ 𝐶𝑌 

𝐶𝑡̂ is well defined because CY is by definition the year when the convergence amount is reached. 

  □ 

2.3.2 RF as a special case of the Generalised C&C and LIMITS Model 

Theorem 5 (The RF as a special case of G-LIMITS) 

With the weighting function 

𝐶𝑡̃ =

𝐸𝑡
𝑖̅̅̅

𝐸𝑡
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌

 

the results of G-LIMITS and the RF are the same. 
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Proof: 

The weighting function 𝐶𝑡̃ is obtained by transforming G-LIMITS for country i using 
𝑃𝑖

𝑃
=

𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
 and 

assuming that 𝐸𝑡
𝑖̃ = 𝐸𝑡

𝑖̅̅̅. Thus we have to proof that we obtain the same weighting function 𝐶𝑡̃ for any 

other country j: 

𝐸𝑡
𝑖

𝐸𝑡
−
𝐸𝐵𝑌
𝑖̅̅ ̅̅ ̅

𝐸𝐵𝑌
𝐸𝐶𝑌
𝑖

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌

=

𝐸𝑡
𝑗

𝐸𝑡
−
𝐸𝐵𝑌
𝑗̅̅ ̅̅ ̅

𝐸𝐵𝑌

𝐸𝐶𝑌
𝑗

𝐸𝐶𝑌
−
𝐸𝐵𝑌
𝑗

𝐸𝐵𝑌

 

𝐸𝑡
𝑖̅̅̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝑡
𝐸𝑡 ∗ 𝐸𝐵𝑌

∗
𝐸𝐶𝑌 ∗ 𝐸𝐵𝑌

𝐸𝐶𝑌
𝑖 ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝐶𝑌
 =

𝐸𝑡
𝑗̅̅ ̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝑡

𝐸𝑡 ∗ 𝐸𝐵𝑌
∗

𝐸𝐶𝑌 ∗ 𝐸𝐵𝑌

𝐸𝐶𝑌
𝑗
∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝐶𝑌

  

0 = (𝐸𝑡
𝑖̅̅̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑖 ∗ 𝐸𝑡) ∗ (𝐸𝐶𝑌
𝑗
∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗ 𝐸𝐶𝑌) 

−(𝐸𝑡
𝑗̅̅ ̅ ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌

𝑗
∗  𝐸𝑡) ∗ (𝐸𝐶𝑌

𝑖 ∗ 𝐸𝐵𝑌 − 𝐸𝐵𝑌
𝑖 ∗ 𝐸𝐶𝑌). 

Since 𝐸𝑡
𝑖̅̅̅ and 𝐸𝑡

𝑗̅̅ ̅ can be seen as a function of 𝐸𝑡 whose images are on a straight line (Theorem 1), the 

right side of this equation can be seen as a function of 𝐸𝑡 whose image is on a straight line. Therefore, 

it is sufficient to proof that two points of the image are 0. These two points are obviously 𝐸𝐵𝑌 and 

𝐸𝐶𝑌. 

  □ 

Remark 10 (The RF as a special case of G-C&C) 

Since the results of G-LIMITS can be obtained with G-C&C using an appropriate weighting function 

(theorem 4), The RF is also a special case of G-C&C. 

  



Resource Sharing Models - A Mathematical Description  page 17 of 30 

2.4 Implicit weighting of the population in convergence models 

Each convergence model allocates a country i until the year t a national budget that can be considered 

as a weighting of the two extreme allocations “emissions in the past” and “frozen population”: 

𝐵𝑡
𝑖 = ((1 − 𝐶̌𝑡

𝑖) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶̌𝑡

𝑖 ∗
𝑃𝑖

𝑃
) ∗ 𝐵𝑡  (3) 

where 

𝐵𝑡
𝑖 (= ∑ 𝐸𝑙

𝑖𝑡
𝑙=𝐵𝑌+1 ) emissions of country i until the year t (national budget of country i 

until the year t), 

𝐶̌𝑡
𝑖  weighting of population of country i in the year t (this parameter is defined 

implicitly), 

𝐸𝐵𝑌 global emissions in the base year, 

𝐸𝐵𝑌
𝑖  emissions of country i in the base year, 

P (frozen) global population and 

𝑃𝑖 (frozen) population of country i. 

Theorem 6 (Identical weighting of the population in all countries)  

If the population is frozen, then for any convergence model, the population weighting in the 

convergence period is the same for each country: 𝐶̌𝑡
𝑖  =  𝐶̌𝑡. Convergence models thus show an 

implicit weighting of the population.4 

Proof: 

We proof this theorem for the G-LIMITS by aid of mathematical induction. The rest follows from 

the equivalence of G-C&C and G-LIMITS (theorem 4) and the fact that the RF is a special case of 

G-LIMITS (theorem 5). 

Base case: For t = BY + 1 the national budget of country i until the year BY + 1 is 𝐸𝐵𝑌+1
𝑖  and the global 

budget is 𝐸𝐵𝑌+1. By comparing equation (2) with equation (3) we obtain 𝐶̌𝐵𝑌+1
𝑖  =  𝐶𝐵𝑌+1̃. 

Inductive step: Assuming that if 𝐶̌𝑡−1
𝑖  =  𝐶̌𝑡−1 for each country i we show that 𝐶̌𝑡

𝑖  =  𝐶̌𝑡. 

For the national budget of each country i until the year t we obtain 

 
4 In our Excel tool for the Regensburg Model, this implicit weighting can be calculated for different framework data. 
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𝐵𝑡
𝑖 = 𝐸𝑡

𝑖 + 𝐵𝑡−1
𝑖 = 𝐸𝑡

𝑖 + ((1 − 𝐶̌𝑡−1
𝑖 ) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶̌𝑡−1

𝑖 ∗
𝑃𝑖

𝑃
) ∗ 𝐵𝑡−1= 

= ((1 − 𝐶𝑡̃) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶𝑡̃ ∗

𝑃𝑖

𝑃
) ∗ 𝐸𝑡 + ((1 − 𝐶̌𝑡−1) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶̌𝑡−1 ∗

𝑃𝑖

𝑃
) ∗ 𝐵𝑡−1= 

=(𝐸𝑡 + 𝐵𝑡−1 − 𝐶𝑡̃ ∗ 𝐸𝑡 + 𝐶̌𝑡−1 ∗ 𝐵𝑡−1) ∗
𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (𝐶𝑡̃ ∗ 𝐸𝑡 + 𝐶̌𝑡−1 ∗ 𝐵𝑡−1)*

𝑃𝑖

𝑃
. 

We define 𝐶̌𝑡: =
𝐶𝑡̃∗𝐸𝑡+𝐶̌𝑡−1∗𝐵𝑡−1

𝐵𝑡
 and obtain 

𝐵𝑡
𝑖 = (𝐵𝑡 − 𝐶̌𝑡 ∗ 𝐵𝑡) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ (𝐶̌𝑡 ∗ 𝐵𝑡)*

𝑃𝑖

𝑃
 = ((1 − 𝐶̌𝑡) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
+ 𝐶̌𝑡 ∗

𝑃𝑖

𝑃
) ∗ 𝐵𝑡. 

  □ 
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3. Smooth Pathway Models 

Smooth Pathway Models derive national budgets directly from a global budget. These approaches 

represent resource sharing models in the narrower sense. However, these approaches are only 

complete when in a second step national emission paths are derived from the national budgets. 

The following chapters describe the derivation of pathways that adhere to a specific emissions budget. 

The methods for deriving emission paths can also be used for global or national paths. 

Basically, there are the following mathematical options for deriving emission paths that adhere to a 

certain budget: 

• Impose a function for the emission pathway directly (see Chapters 3.1 and 3.2). 

• Determine emission pathways indirectly via an assumption about the course of the annual 

reduction rates or the course of the annual reduction amounts (see Chapter 3.3). 

3.1 Smooth Pathway Formula from Raupach (SPFR) 

Raupach et al. propose a simple weighting formula that includes emissions and the population in a 

base year in order to distribute a global remaining budget to the countries (cf. Raupach, et al., 2014): 

𝑅𝐵𝑖 = (𝐶 ∗
𝑃𝐵𝑌
𝑖

𝑃𝐵𝑌
+ (1 − 𝐶) ∗

𝐸𝐵𝑌
𝑖

𝐸𝐵𝑌
) ∗ 𝑅𝐵, 

where 

𝐸𝐵𝑌 resp. 𝐸𝐵𝑌
𝑖  global emissions resp. emissions of country i in the base year 

𝑃𝐵𝑌 resp. 𝑃𝐵𝑌
𝑖  global population resp. population of country i in the base year 

𝑅𝐵 global remaining budget 

𝑅𝐵𝑖 remaining budget of country i 

𝐶 weighting of population 

Then Raupach et al. propose a formula for deriving a national path from a national budget. This so-

called Smooth Pathway Formula for the emission power, i. e. the derivative of emissions with respect 

to time (the emissions per unit of time), of country i at a point of time 𝑧 ≥ 𝐵𝐽 + 1 is: 

𝐸̇𝑖(𝑧)  =  𝐸̇𝐵𝑌+1
𝑖 (1 + (𝑟𝑖 +𝑚𝑖)(𝑧 − 𝐵𝑌 − 1))𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1), (4) 

where 

𝐸̇𝐵𝑌+1
𝑖   emission power of country i at the end of the base year, 
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𝑟𝑖  change rate of the emission power of country i at the end of the base year 

(
𝑑𝐸̇𝑖

𝑑𝑧
(𝐵𝑌 + 1) 𝐸̇𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖) and 

𝑚𝑖  the mitigation rate (or the decay parameter) of country i. 

The mitigation rate 𝑚𝑖 is determined such that the allocated remaining budget of country i (𝑅𝐵𝑖) is 

met: 

∫ 𝐸̇𝑖(𝑧) 𝑑𝑧 =  𝑅𝐵𝑖.
∞

𝐵𝑌+1

 

Thus, we obtain 

∫ 𝐸̇𝑖(𝑧) 𝑑𝑧 = 
∞

𝐵𝑌+1

 

= ∫ 𝐸̇𝐵𝑌+1
𝑖 (1 + (𝑟𝑖 +𝑚𝑖)(𝑧 − 𝐵𝑌 − 1))𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧 = 
∞

𝐵𝑌+1

 

= 𝐸̇𝐵𝑌+1
𝑖 ∫ 𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧 + 𝐸̇𝐵𝑌+1
𝑖 (𝑟𝑖 +𝑚𝑖)∫ (𝑧 − 𝐵𝑌 − 1)𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) 𝑑𝑧
∞

𝐵𝑌+1

 = 
∞

𝐵𝑌+1

 

= 𝐸̇𝐵𝑌+1
𝑖 [

−1

𝑚𝑖
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1)]
𝑧=𝐵𝑌+1

𝑧=∞

 

+𝐸̇𝐵𝑌+1
𝑖 (𝑟𝑖 +𝑚𝑖) [

−(𝑧 − 𝐵𝑌 − 1)

𝑚𝑖
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1) −
1

(𝑚𝑖)2
𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1)]
𝑧=𝐵𝑌+1

𝑧=∞

 

= 𝐸̇𝐵𝑌+1
𝑖 [

1

𝑚𝑖
] + 𝐸̇𝐵𝑌+1

𝑖 (𝑟𝑖 +𝑚𝑖) [
1

(𝑚𝑖)2
] = 𝑅𝐵𝑖. 

With the time 𝑇𝑖 = 
𝑅𝐵𝑖

𝐸̇𝐵𝑌+1
𝑖  defined by the remaining budget of country i and the emission power of 

country i at the end of the base year we obtain 

𝑇𝑖(𝑚𝑖)
2
− 2𝑚𝑖 − 𝑟𝑖 = 0. 

Thus, if 𝑟𝑖 > − 1/𝑇𝑖, the mitigation rate 𝑚𝑖 is given by 

𝑚𝑖  =  
1 + √1 + 𝑟𝑖𝑇𝑖

𝑇𝑖
, 

There is otherwise no solution for the mitigation rate 𝑚𝑖. In this rare case a simple exponential decay 

function is used:  

𝐸̇𝑖(𝑧)  =  𝐸̇𝐵𝑌+1
𝑖 𝑒−𝑚

𝑖(𝑧−𝐵𝑌−1). 
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Since we are more interested in the emissions of country i in the year t (𝐸𝑡
𝑖) than in the emission power 

at a point of time z, we integrate equation (4) and obtain: 

𝐸𝑡
𝑖 = ∫ 𝐸̇𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡

= 

−𝐸̇𝐵𝑌+1
𝑖

𝑒−𝑚
𝑖(𝑡−𝐵𝑌)

(𝑚𝑖)2
[(𝑟𝑖𝑚𝑖 + (𝑚𝑖)

2
) (𝑡 − 𝐵𝑌) + 2𝑚𝑖+𝑟𝑖] 

+𝐸̇𝐵𝑌+1
𝑖

𝑒−𝑚
𝑖(𝑡−𝐵𝑌−1)

(𝑚𝑖)2
[(𝑟𝑖𝑚𝑖 + (𝑚𝑖)

2
) (𝑡 − 𝐵𝑌 − 1) + 2𝑚𝑖 + 𝑟𝑖]. 

Supplementary information containing mathematical details on the properties of the formula in 

equation (4) can be retrieved from the “Supplementary Text“ at  https://static-

content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclima

te2384_MOESM461_ESM.pdf. 

3.2 Generalised Smooth Pathway Formula (GSPF) 

In order to allow for net negative emission we generalise equation (4) using the following function 

for the emission power, i. e. the derivative of emissions with respect to time or the emissions per unit 

of time, of country i at a point of time 𝑧 ≥ 𝐵𝐽 + 1: 

𝐸̇
𝑖
(𝑧)  =  𝑝

∞
+ (𝑝

0
+ 𝑝

1
(𝑧 − 𝐵𝑌 − 1))  𝑒−𝑝2(𝑧−𝐵𝑌−1), (5) 

where 

the parameter 𝑝∞ is the emission power at infinity and the parameters 𝑝0, 𝑝1 and 𝑝2 are determined 

in a way that the following constraints hold 

(1) 𝐸̇𝑖(𝐵𝑌 + 1) = 𝐸̇𝐵𝑌+1
𝑖 , 

(2)  
𝑑𝐸̇𝑖

𝑑𝑧
(𝐵𝑌 + 1) 𝐸̇𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖 

(3)  ∫ 𝐸̇𝑖(𝑧) 𝑑𝑧 = 
2101

𝐵𝑌+1
𝑅𝐵𝑖 

with 

𝐸̇𝐵𝑌+1
𝑖   emission power of country i at the end of the base year, 

𝑟𝑖  change rate of the emission power of country i at the end of the base year, 

𝑅𝐵𝑖 remaining budget of country i in the period starting at the end of the base year and ending in 

at the end of the year 2100. 

https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf


Resource Sharing Models - A Mathematical Description  page 22 of 30 

The first constraint leads to 𝑝0 = 𝐸̇𝐵𝑌+1
𝑖 − 𝑝∞.  

The second constraint leads to 𝑝1 = 𝐸̇𝐵𝑌+1
𝑖 𝑟 + (𝐸̇𝐵𝑌+1

𝑖 − 𝑝∞)𝑝2. 

The emissions of country i in the year t (𝐸𝑡
𝑖) are obtained by integrating equation (5): 

𝐸𝑡
𝑖 = ∫ 𝐸̇𝑖(𝑧) 𝑑𝑧

𝑡+1

𝑡

= 

[𝑝∞(𝑧 − 𝐵𝑌 − 1) −
𝑝0

𝑝2
𝑒−𝑝2(𝑧−𝐵𝑌−1) −

𝑝1(𝑧−𝐵𝑌−1)

𝑝2
𝑒−𝑝2(𝑧−𝐵𝑌−1) −

𝑝1

𝑝2
2 𝑒

−𝑝2(𝑧−𝐵𝑌−1)]
𝑧=𝑡

𝑧=𝑡+1

. 

Thus the parameters  𝑝1 and 𝑝2 are defined implicitly by one linear and one non-linear equation. In 

general, this system of equations can only be solved iteratively. 

3.3 Extended Smooth Pathway Model (ESPM) 

In a first step the ESPM (cf. Wiegand, et al., 2021) uses the Raupach et al. weighting formular (see 

Chapter 3.1) as a possible approach to determine a national budget. 

In a second step in the ESPM national emissions pathways meeting a national budget are derived 

indirectly via an assumption about the property of the annual changes in emissions. The annual 

changes in emissions can be described via annual reduction rates (𝑅𝑅𝒕) or annual reduction amounts 

(𝑅𝐴𝒕). This leads to the following approaches for the emissions of country i in the year t: 

𝐸𝑡
𝑖 = 𝐸𝑡−1 ∗ (1 + 𝑅𝑅𝒕) (6) 

𝐸𝑡
𝑖 = 𝐸𝑡−1 + 𝑅𝐴𝑡. (7) 

A large variety of functions for 𝑅𝑅𝒕 resp. 𝑅𝐴𝒕 are imaginable. In practice, these functions should map 

a meaningful course that can be justified, for example, economically, technologically or politically. 

If you want to indicate a concrete continuous function in one section such, that the resulting emissions 

meet a given budget, you can start with a family of curves with a free parameter and then determine 

this parameter iteratively. 

The functions for 𝑅𝑅𝒕 resp. 𝑅𝐴𝒕 can also be defined in more than one section. This can be useful 

when taking into account net negative emissions. For example, a constant reduction amount can be 

used when the emissions fall below a threshold until the emissions reach a predefined minimum value. 

We use in the ESPM six scenario types. For a comprehensive mathematical description of these so-

called RM Scenario Types, we refer to the corresponding paper, which can be downloaded from our 

website www.save-the-climate.info or use this link to Zenodo (cf. Wolfsteiner & Wittmann, 2021). 

http://www.save-the-climate.info/
https://doi.org/10.5281/zenodo.4540475
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scenario type 
course of the annual 

reduction rates 

basic function type of 

the annual reduction 

rates 

course of the annual 

reduction amounts 

course of the 

emission pathways 

RM-1-const 
linear, 

no curvature  y = const concave convex 

RM-2-exp 
concave, 

curved to the right  𝑦 = 𝑒𝑥 

u-shaped 
s-shaped 

(first concave then 

convex) 

RM-3-lin 
linear, 

no curvature  𝑦 = 𝑎𝑥 + 𝑏 

RM-4-quadr 
concave, 

curved to the right  𝑦 = 𝑎𝑥2 + 𝑏 

RM-5-rad 
convex, 

curved to the left 
 𝑦 = 𝑎√𝑥 + 𝑏 

RM-6-abs 
concave,  

curved to the right 
 - constant linear 

Table 1: Overview of scenario types RM 1 – 6 

RM-1, RM-2, …, RM-5 represent a concretisation of the approach in formula 6 and in RM-6 the 

approach in formula 7 is used. 
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4. Emission Probability Model 

Chakravarty et al. (cf. Chakravarty, et al., 2009) described three steps to obtaining and cutting an 

emission probability density function (PDF) starting with the points of a Lorenz curve. We hence 

summarize how to obtain a Lorenz Curve from a PDF in Chapter 4.1, show the results for a gamma 

PDF in Chapter 4.2 and describe the Emission Probability Model (EPM) in Chapter 4.3. 

4.1 General case: The Lorenz Curve obtained from a PDF 

Let f be an income PDF. 

Then 

• the cumulative population share x is given by the cumulative distribution function (CDF) F, 

i. e. the probability of an income equal to z or less is 𝑥 = 𝐹(𝑧)  =  ∫ 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
 

• the cumulative income share y is given by 𝑦 =   
∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧
−∞

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞
−∞

 

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
: average income of the persons with an income equal to z or less 

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞

−∞
: average income of the population 

Thus a parametric representation of the Lorenz curve 𝐿̅ is given by 

𝐿̅(𝑧) = (

𝑥 =  𝐹(𝑧)

𝑦 =   
∫ 𝑡 𝑓(𝑡) 𝑑𝑡
𝑧

−∞

∫ 𝑡 𝑓(𝑡) 𝑑𝑡
∞

−∞

) (8) 

If the inverse function 𝐹−1 of the CDF F exists, the Lorenz curve L is directly given by 

y = L(x) =  
∫ t f(t) dt
𝐹−1(x)

−∞

∫ t f(t) dt
∞

−∞

. (9) 

Substituting 𝑡 =  𝐹−1(𝑡̌) yields 
𝑑𝑡

𝑑𝑡̌
= (𝐹−1)′(𝑡̌) =

1

𝐹′(𝐹−1(𝑡̌))
=

1

𝑓(𝐹−1(𝑡̌))
 and the Lorenz curve can be 

written as 

y = L(x) =  
∫ F−1
x

0
(ť)dť

∫ F−1
1

0
(ť)dť

. (10) 

Theorem 7 (Scaling) 

The Lorenz curve is independent of the scaling of the z-axis. 

Proof: With a scaling factor s ≠ 0 the scaled PDF 𝑓 ̃for a PDF f is given by  

𝑓(𝑧̃) = 𝑠 𝑓(𝑠𝑧̃). 

For the CDF 𝐹̃ we obtain 
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𝐹̃(𝑧̃) = ∫ 𝑓(𝑡̃) 𝑑𝑡̃
𝑧

−∞

= 𝑠∫ 𝑓(𝑠𝑡̃)
𝑧

−∞

𝑑𝑡̃ = ∫ 𝑓(𝑡)𝑑𝑡 = 𝐹(𝑠𝑧̃
𝑠𝑧

−∞

). 

Thus 𝐹̃−1, the inverse function of the CDF 𝐹̃, is given by  

𝐹̃−1 =
1

𝑠
 𝐹−1. 

With the help of the representation (10). of the Lorenz curve we see that, the Lorenz curve from the 

PDF f and the PDF 𝑓 are the same. 

4.2 Special case: The Lorenz Curve obtained from a gamma probability 

distribution 

In general, the evaluation of the integrals in equation (1) or (2) can cause trouble. However if Z is a 

gamma distributed random variable all this work can be done by a spreadsheet programme, such as 

EXCEL. 

Let Z be a gamma distributed random variable. Then the PDF g is given by 

𝑔(𝑧; 𝑎, 𝑏)  =  {

0                            for z < 0
1

𝑏𝑎Γ(𝑎)
𝑧𝑎−1𝑒−

𝑧
𝑏 for 𝑧 ≥ 0 

with parameters a, b > 0 and Γ(𝑎) = ∫ 𝑧𝑎−1𝑒−𝑧
∞

0
𝑑𝑧. 

The CDF is denoted by 

𝐺(𝑧; 𝑎, 𝑏) =  ∫ 𝑔(𝑡;  𝑎, 𝑏) 𝑑𝑡
𝑧

0

= ∫
1

𝑏𝑎Γ(𝑎)
𝑡𝑎−1𝑒−

𝑡
𝑏

𝑧

0

𝑑𝑡 

Since Γ(𝑎 + 1)  =  𝑎 Γ(𝑎),  the equation 𝑡 𝑔(𝑡; 𝑎, 𝑏) =  𝑎𝑏 𝑔(𝑡; 𝑎 + 1, 𝑏) holds. Thus 

• the expected value (or mean) of Z is given by 

𝐸[𝑍]  =  ∫ 𝑡 
∞

0

𝑔(𝑡; 𝑎, 𝑏) 𝑑𝑡 =  𝑎𝑏 ∫ 𝑔(𝑡; 𝑎 + 1, 𝑏)𝑑𝑡 =
∞

0

𝑎𝑏 

and  

• using the representation (9). the Lorenz curve is given by 

𝐿(𝑥) =  
∫ 𝑡 𝑔(𝑡; 𝑎, 𝑏) 𝑑𝑡
𝐺−1(𝑥;𝑎,𝑏)

0

∫ 𝑡 𝑔(𝑡, 𝑎, 𝑏) 𝑑𝑡
∞

0

 =  
𝑎𝑏 ∫ 𝑔(𝑡; 𝑎 + 1, 𝑏) 𝑑𝑡

𝐺−1(𝑥;𝑎,𝑏)

0

𝑎𝑏
= 𝐺(𝐺−1(𝑥; 𝑎, 𝑏); 𝑎 + 1, 𝑏). 

Scaling 
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With a scaling factor s ≠ 0 we easily find  

𝑔̃(𝑧̃; 𝑎, 𝑏) = 𝑠 𝑔(𝑠𝑧̃; 𝑎, 𝑏) = 𝑔(𝑧̃; 𝑎,
𝑏

𝑠
) 

This equation shows that the scaling of a gamma distribution with parameters a, b leads to another 

gamma distribution with parameters a, 
𝑏

𝑠
. Since the Lorenz curve does not depend on scaling, the 

Lorenz curve must be independent of the parameter b. 

4.3 Description of the EPM 

In a base year let there be (𝑥𝑗
𝑖 , 𝑦𝑗

𝑖) points of the Lorenz curve 𝐿̌𝑖 of country i, i. e. 𝑦𝑗
𝑖 = 𝐿̌𝑖  (𝑥𝑗

𝑖). 

In the first step, an income PDF 𝑓𝑖(𝑧; 𝑝𝑖) for each country i is determined. For this purpose the 

parameters 𝑝𝑖 are estimated by adapting the Lorenz curves 𝐿𝑖(𝑧; 𝑝𝑖) with a least square fit: 

min𝑝𝑖  {∑ (𝐿𝑖(𝑥𝑗
𝑖; 𝑝𝑖) − 𝑦𝑗

𝑖)
2

𝑗 }. 

In the second step, for each country i an emission PDF 𝑓𝑖 is obtained by scaling the income PDF 𝑓𝑖 . 

𝑓𝑖(𝑧̃; 𝑝𝑖) =  𝑠𝑖 ∗ 𝑓𝑖(𝑠𝑖 ∗ 𝑧̃; 𝑝𝑖) 

with the scaling factor 𝑠𝑖 ≔
average emissions in country 𝑖

average income in country 𝑖
 of country 𝑖. 

In the third step, in each year t a cap 𝐶𝐴𝑡 is determined in such a way that the emissions in all countries 

yield the underlying global emissions in the year t (𝐸𝑡): 

∑𝐸𝑡
𝑖 =

𝑖
∑ 𝑃𝑡

𝑖 (∫ 𝑧 𝑓𝑖(𝑧; 𝑝𝑖) 𝑑𝑧 +
𝐶𝐴𝑡

−∞

𝐶𝐴𝑡∫ 𝑓𝑖(𝑧; 𝑝𝑖) 𝑑𝑧
∞

𝐶𝐴𝑡

)
𝑖

=  𝐸𝑡. 

Usually, it is assumed that each person earns a non-negative income. That is why the scaling in the 

second step is possible. However, when global emissions are negative a different transformation, 

which converts an income PDF, which is zero for negative incomes, into an emission PDF that 

addresses negative emissions, must be found. Such transformations are conceivable, but they are not 

indisputable. 
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5. List of abbreviations 

𝐵 global emissions in the convergence period (global budget in the convergence period) 

𝐵𝑖 emissions of country i in the convergence period (national budget of country i in the 

convergence period) 

𝐵𝑡
𝑖 (= ∑ 𝐸𝑙

𝑖𝑡
𝑙=𝐵𝑌+1 ) emissions of country i until the year t (national budget of country i 

until the year t) 

𝐵𝑌 base year (space of time) 

C weighting of population 

𝐶𝑡̂ weighting of population in the year t in C&C 

𝐶𝑡̃ weighting of population in the year t in LIMITS 

𝐶𝑡̅ weighting of population in the year t in the RF 

𝐶̌𝑡
𝑖  weighting of population of country i in the year t used to obtain the national budget 

of country i 

C&C Contraction and Convergence Model 

𝐶𝐴𝑡 cap in the year t 

CDC Common but Differentiated Convergence Model 

CY convergence year 

𝐸𝐵𝑌 global emissions in the base year 

𝐸𝐵𝑌
𝑖  emissions of country i in the base year 

𝐸𝐶𝑌 global emissions in the convergence year 

𝐸𝐶𝑌
𝑖  emissions of country i in the convergence year 

𝐸𝑡 global emissions in the year t 

𝐸𝑡
𝑖 emissions of country i in the year t 

𝐸𝑡
𝑖̂ emissions of country i in the year t in C&C 

𝐸𝑡
𝑖̃ emissions of country i in the year t in LIMITS 

𝐸𝑡
𝑖̅̅̅ emissions of country i in the year t in the RF 
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𝐸𝑡
𝑖_𝑏𝑎𝑢 emissions of country i in the year t in a business-as-usual scenario 

𝐸𝑡
𝑜𝑇𝐻 remaining global emissions in the year t for the countries over the threshold in the year t 

𝐸𝑡−1
𝑜𝑇𝐻_𝑡 emissions in the year t – 1 of the countries over the threshold in the year t 

𝐸̇𝑖(𝑧) emission power emission power (the derivative of emissions with respect to time, 

emissions per unit of time) of country i at a point of time z 

𝐸̇𝐵𝑌+1
𝑖  emission power of country i at the end of the base year 

EPM Emission Probability Model 

ESPM Extended Smooth Pathway Model 

𝑓𝑖 income PDF of country i 

𝑓𝑖 emission PDF of country i, scaled PDF 

𝐹 cumulative distribution function, i. e. the probability of an income equal to z or less is 

𝐹(𝑧)  =  ∫ 𝑓(𝑡) 𝑑𝑡
𝑧

−∞
 

𝐹−1 inverse function of the cumulative distribution function F 

𝑓𝑖(𝑧; 𝑝𝑖)  assumed income PDF of country i with parameters 𝑝𝑖 to be estimated 

𝑓𝑖(𝑧; 𝑝𝑖)  estimated emission PDF of country i with parameters 𝑝𝑖 

G-C&C Generalised C&C 

G-Limits Generalised LIMITS 

GSPF General Smooth Pathway Formula 

𝑖 country 

𝑚𝑖 mitigation rate (or the decay parameter) of country i 

𝐿 explicit representation of the Lorenz curve 

𝐿̅ parametric representation of the Lorenz curve 

Ľi Lorenz curve of country i 

LIMITS LIMITS Model 

P (frozen) global population 

𝑃𝑖 (frozen) population of country i 
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𝑃𝐵𝑌 global population in the base year 

𝑃𝐵𝑌
𝑖  population of country i in the base year 

𝑃𝐶𝑌 global population in the convergence year 

𝑃𝐶𝑌
𝑖  population of country i in the convergence year 

𝑃𝑡 global population in the year t 

𝑃𝑡
𝑖 population of country i in the year t 

𝑃𝑡
𝑜𝑇𝐻  population in the year t of the countries over the threshold in the year t 

PDF probability density function 

𝑃𝑇 percentage 

𝑟𝑖 change rate of the emission power of country i at the end of the base year 

(
𝑑𝐸̇𝑖

𝑑𝑧
(𝐵𝑌 + 1) 𝐸̇𝑖(𝐵𝑌 + 1)⁄ = 𝑟𝑖) 

𝑅𝐵 global remaining budget 

𝑅𝐵𝑖 remaining budget of country i (national budget of country i) 

RF Regensburg Formula 

𝑠 scaling factor 

𝑠𝑖 scaling factor  of country 𝑖 (
average emissions in country 𝑖

average income in country 𝑖
) 

SPF Smooth Pathway Formulae 

SPFR Smooth Pathway Formula from Raupach et al. 

𝑡 year 

𝑇𝑖 time defined by the remaining budget of country i and the emission power of country i at 

the end of the base year (𝑇𝑖 = 
𝑅𝐵𝑖

𝐸̇𝐵𝑌+1
𝑖 ) 

𝑇𝐻𝑡 threshold in the year t 

(𝑥𝑗
𝑖 , 𝑦𝑗

𝑖) points of the Lorenz curve 𝐿̌𝑖 of country i, i. e. 𝑦𝑗
𝑖 = 𝐿̌𝑖  (𝑥𝑗

𝑖) 

z point of time (SPF), income (EPM) 
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