DOI 10.5281/zenodo.4405448

Resource Sharing Models —
A Mathematical Description

Author:

Glnter Wittmann, Master of Mathematics

save-the-climate@online.ms (mail to)

http://save-the-climate.info

Version: 14/03/2021


https://doi.org/10.5281/zenodo.4405448
mailto:save-the-climate@online.ms
http://save-the-climate.info/

Resource Sharing Models - A Mathematical Description page 2 of 30

Contents
I 1411 7o [FTox {[o] o I PRSI PR PR RP 3
2. CONVErgenCe MOUEIS ........coiviiieiie ettt be et e e e sbaeaeeneesraeteaneenreas 4
2.1 Models breaking down the global pathway in a simple way ...........ccccocooniiiiiniiicneen, 4
2.1.1 Contraction & Convergence MOAE! ...........coeiiiiiiiiiiiieee e 4
2.1.2 LIMITS MOGEI ...ttt bbb 5
2.1.3 Generalised C&C Model and Generalised LIMITS Model ..........cccocvvvvivniiiiinnnnn, 5
2.1.4 Common but Differentiated Convergence Model ..., 7
2.2 The Regensburg FOrmula (RF) ......c.ooiiiiiiiiee e 8
2.2.1 The RF as aweighting fUNCLION .........cccooeiiiii i 8
2.2.2 The RFas astraight liN€.........cocviiiiiiie e 9
2.2.3 The RF @S @ FECUISION .....ueeuiiieieiiieiesiee sttt sttt sree st sreesteenaesneesne e ens 11
2.2.4 Implicit national BUAQELS .........ccoiiiiiieee e 12
2.3 Convertibility of the convergence Models...........coovvveiiiicieciecc e 13
2.3.1 Equivalence of the Generalised C&C and LIMITS Model...........c.ccccovvveiivennnnne. 13
2.3.2 RF as a special case of the Generalised C&C and LIMITS Model....................... 15
2.4 Implicit weighting of the population in convergence models............cccccooviiiniiicicnene 17
3. SMOOth PathWay IMOTEIS...........cciiiiiiieiee e 19
3.1 Smooth Pathway Formula from Raupach (SPFR).........ccccccivviiiiieiieie e, 19
3.2 Generalised Smooth Pathway Formula (GSPF) ........cccccviieiiiiecccecce e 21
3.3 Extended Smooth Pathway Model (ESPM)........cccoooiiiiiiiiiiiiicceee e, 22
4. Emission Probability MOGEl ..o e 24
4.1 General case: The Lorenz Curve obtained from a PDF...........ccccooiiiiiiniiinnece e, 24
4.2 Special case: The Lorenz Curve obtained from a gamma probability distribution ......... 25
4.3 Description Of the EPIM ........coiiiiiiie e 26
T I 1S o - Lo o=V - 4 ] SR 27

B, RETOIEINCES ...ttt ettt ettt nnne 30



Resource Sharing Models - A Mathematical Description page 3 of 30

1. Introduction

This paper shines the spotlight on the mathematical formulae of resource sharing models. It
contributes to greater transparency and comparability through a uniform mathematical representation,
by showing generalisations and mergers as well as similarities and differences between currently used

models. It also contains mathematical proofs for specified properties of the models.

In Chapter 2 we consider models with a limited convergence period, at the end of which global
emissions are allocated to countries according to population only. The Smooth Pathway Approaches
in Chapter 3 calculates national pathways starting from allocated remaining national budgets. The
Emission Probability Model in Chapter 4 determines country specific emission density functions and

caps the emissions of individuals.

Excel tools for calculating national emission pathways for all countries in the world compatible with
the Paris Agreement using the Regensburg Formula (see Chapter 2.2) or the Extended Smooth

Pathway Model (see Chapter 3.3) can be downloaded from our website http://www.save-the-

climate.info/.


http://www.save-the-climate.info/
http://www.save-the-climate.info/
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2. Convergence models

All convergence models presented here start with a global pathway that meets a remaining global
budget usually corresponding to a certain degree of global warming.! Then the models break down
the annual global emissions on country level, transforming the actual emissions in a base year (BY)
into emissions based on a per capita allocation in a convergence year (CY) at the end of a limited

convergence period

2.1 Models breaking down the global pathway in a simple way

2.1.1 Contraction & Convergence Model

The Global Commons Institute already propounded the following Contraction & Convergence Model
(C&C Model) in the early 1990s. This model defines the emissions of country i in the year t (E\;)

recursively (cf. Meyer, No date):

—_— i

{ ~ Etl—l Pt‘
(1—Ct)*—+Ct*P— *E,forBY +1 <t <CY
t_

= ipg o B . )
P_t* E;, forCY <t
where
E; global emissions in the year t,
P, global population in the year t and
P} population of country i in the year t.

C, denotes the weight of the population when allocating global emissions to countries.

The Global Commons Institute considered two specifications of C,:

t—-BY
CY-BY

e exponential (C&C-exp): C; = exp (—a (1— )) with the parameter a > 0 to be

determined. “The higher the value [a], the more the convergence happens towards the end of

the convergence period, and vice-versa. Choosing a = 4 gives an even balance.” (Meyer,

! The formulae in Chapter 3 Smooth Pathway Models, for deriving national emission pathways that adhere to a specified
budget can also be used to derive global pathways. In our Regensburg Model (Sargl, et al., 2017), which uses the
Regensburg Formula to calculate national pathways (see Chapter 2.2), we use the RM Scenario Types (Wolfsteiner &

Wittmann, 2021), which are also used in our Extended Smooth Pathway Model (see Chapter 3.3).
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1998, p. 21)

t —BY
CY-BY'

e linear (C&C-lin): C; =

2.1.2 LIMITS Model

LIMITS, aresearch project funded by the EU, uses the following formula for the emissions of country

i in the year t (EY) (cf. Tavoni, et al., 2013):

( ~ Eey  ~ P
(1-C)*—+C,x—|*E, forBY + 1 <t<C(CY
Bl — Epy Py 2
. )
P
—=x* Ey, forCY <t
Py

C, denotes the weight of the population when allocating global emissions to countries. LIMITS

).

t—-BY
CY-BY

considered only the linear specification of C; (C, =

The LIMITS Model (LIMITS) uses formula (2) to determine emissions pathways for different regions

of the world.
2.1.3 Generalised C&C Model and Generalised LIMITS Model

C&C and LIMITS consider only certain specifications of C,. However, any non-decreasing weighting
function C, that takes the value 1 in the convergence year (CY) can be used. Numerous such weighting
functions are conceivable. Thus we obtain the Generalised Contraction & Convergence Model (G-
C&C) and the Generalised LIMITS Model (G-LIMITS). National emissions pathways with weighting
functions that take the value 0 (or approximately 0) in the base year (BY) normally do not have a step

after the base year. Therefore we only list the most intuitive weighting functions with this property:

e linear (lin): C, = ——— (C&C-linand LIMITS)

CY-B

e exponential (exp_a): C; = exp (—a (1 - Cif;y)) with the parameter a > 0 to be determined
(C&C-exp)
_ 2
e convex quadratic (conv quadr): C; = (Cty_?;)

t—BY)2

e concave quadratic (conc quadr): C; = 1 — (1 ~ ov-Br

e general quadratic: C, = a(t — BY)? + b(t — BY) + ¢, where a, b and ¢ are parameters to be

determined in such a way that Czy = 0, C,y = 1 and with a third constraint, e. g. a given
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value for the year after the base year. The linear, the convex quadratic and the concave

quadratic specifications of C; are special cases of the general quadratic specification.

e cubic: C; = -2 ( t-BY )3 +3 ( t—BY )2

CY—-BY CY—-BY

t —BY
CY—-BY

n
e convex polynomial (conv pol_n): C; = ( ) , Where n is a natural number

t—-BY
CY—-BY

n
e concave polynomial (conc pol_n): C; = 1 — (1 — ) , Where n is a natural number

The weighting functions above depend directly on the year (t). Another class of weighting functions
is obtained by introducing the emissions in the year t (E;). Thus these weighting functions depend on
the global emissions and only indirectly on the year. We only show the linear specification as an
Epy—Et

example: linear in E, (lin_E_t): C, = Epy—Foy

Figure 1 depicts the trajectories of some weighting functions.

Ce
1,0

0,9

conc pol_10
0,8 pol_

—8— Conc quadr
0,7

— - linEt

0,6

0,5

0,4

------- conv quadr

0,3 ——==exp_ 4

0,2 - =t conv pol_10

0,1 +

0,0

Figure 1: Trajectories of the different specifications of C;
Figure 1 shows that, if n is great enough, the allocation key “population”

- in the concave polynomial specification comes fully into effect already in the first year after

the base year (equity, immediate climate justice).

- in the convex polynomial specification comes into effect only in the convergence year

(inertia).
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2.1.4 Common but Differentiated Convergence Model

The Common but Differentiated Convergence Model is described in (cf. Hohne, et al., 2006). This
source does not contain any formulae, so the formulae presented here are our interpretation of the
description of the CDC model.

First a threshold TH, in the year t is defined, which decreases if the global emissions decrease:
TH, =2 « PT,
Py

where PT is a given percentage, e. g. 0.95. If the average emissions of country I in the year tin a

i_bau

. . E
business as usual scenario ( i
t

) are below or equal to the threshold, i. ez < TH,, the country

t

is allocated emissions according to the business as usual scenario and we define

Ef = EFP™

Otherwise, if the average emissions of country i in the year t in the business as usual scenario are

above the threshold (%

and we define

Et = ((1 - Ct) * oTH T+ Ct oTH) * EOTH,
t 1

where

C; weighting of per capita emissions in the year t,

EPTH  remaining emissions in the year t for the countries over the threshold in the year t, i. e.

E{™ = E, — Z Ef,

i
i_bau
if —L <TH;
P/

EOTHE emissions in the year t-1 of the countries over the threshold in the year t, i. e.

oTH_t __ i
EZ- = E E; 4 and
i
i_bau
if tPti >TH;

PPTH  population in the year t of the countries over the threshold in the year t, i. e.
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PPTH = z Pt.

i_bau

if tPl. > TH;

Remark: Obviously the equation

M= ) E

i
i_bau
if tP > TH;

i
t

holds, but this equation cannot be used to define EPTH, because E; is defined with the help of ESTH.

2.2 The Regensburg Formula (RF)

We will present three equivalent notations of the Regensburg Formula?
e as a weighting function with an annual degree of achieving the global convergence amount
e as a straight line with a conversion factor for the reduction of emissions

e as arecursion with an annual rate of change

and show how they are derived from each other. Then we show the derivation of a formula for the

national budget in the convergence period of an individual country.
2.2.1 The RF as a weighting function

The notation of the RF as a weighting function (cf. Sargl, et al., 2017) uses the annual degree of

achieving the global convergence amount Ey in year t

— Egy — E
C, = BY t
Epy — Ecy
as weighting factor for the national convergence amount EL, (in case of the national convergence
amount being directly proportional to the population, it is also a per-capita weighting factor) for the

calculation of emissions of country i in year t:

E:= (1 - C)*ELy+ C,+ ELy, BY + 1 <t < (Y

Directly from this definition of the RF we obtain the following results:

2 The Regensburg Formula is part of the Regensburg Model, in which global pathways are derived using the RM Scenario
Types (Wolfsteiner & Wittmann, 2021).
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Remark 1 (equal proportions in all countries and the world)

In each year t, the proportion of emissions still to be reduced and the proportion of emissions already

reduced in relation to the emissions to be reduced altogether are equal in all countries and globally:

E,—Ecy _ E_tl_ECi‘Y

= — — (= 1—C,) and
Epy — Ecy  Epy —Egy ‘

Epy — E¢ . EEY_E_tl

) T Y
Epy — Ecy  Epy —Egy ‘

In each year t, therefore, the degree of achieving the global convergence amount and the degree of

achieving the national convergence amount are identical.
Remark 2 (national convergence amounts in all countries in CY)

In CY emissions calculated with the RF and the national convergence amount are the same in each
country.
Remark 3 (Uniqueness of C,)
There is only one weighting function C, so that the equation
E{ = (1 — C)*Epy+ Ci* Egy
Ep

L=t This can be shown by summing up

holds for each country. This weighting function is C,: = -
BY —ECY

the equation across all countries, yielding an equation that can be solved for C,.

2.2.2 The RF as a straight line

Theorem 1 (notation of the RF as a straight line)

The emissions of each country i as a function of the global emissions are on a straight line:

E:=(E,~Ecy)*a' +ELy, BY +1 <t <(Y,

. . . i E;?Y B z'Y
with the conversion factor for the reduction: a': = ———.
Epy — Ecy
Proof:
Ef =
=Ely*x (1 — C) + C, = EéY:
. EBY - Et EBY - Et .
= mhy+(1- )+ (g o =
B\ T Epy — Eey) " \Epy —Egy) Y
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Epy — Ecy Epy — Ecy
by cY -
=(E,—E +Ely =
(E¢ cy) * Epy — Ecy cYy

= (E; — E¢cy) *xa' + Ely

Remark 3 (stepwise approximation)

By presenting the RF as a straight line, it becomes clear that a stepwise approximation of the global

emission pathway to the global convergence amount is transmitted to all national emission pathways.
Remark 4 (construction of national graphs)

This theorem also shows that, when applying the RF, the national graph (t, EY) for country i with a
reduction  amount  (Eiy > EL,) can be derived from the global graph
(t, E;) by changing the scaling on the ordinate and by vertically shifting the abscissa. For countries
with a national convergence amount permitting increasing annual emissions (EL, < Ety), the global

graph additionally needs to be reflected across the abscissa to obtain the national graph.

Remark 5 (factor for converting reductions = proportional factor)

Because of ; a' = 1 the factor for converting the reduction is also called “proportional factor”.
Corollary 1 (constant factor for converting reductions)

For each country i there is a constant proportional factor o' that allows converting annual global

reductions to annual reductions of country i:
E_LE — By = (E—Er4) * a'.

Factor a* for converting reductions can be determined by the ratio between emissions that remain to
be reduced by country i in year t and emissions which remain to be reduced globally:
Ef — E¢

i cY
=— (BY <t<CY-1).
O B T Eey )
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Remark 6 (monotonicity)

This corollary also shows that monotonicity of the global emission pathway is transferred to the

national emission pathways.
Corollary 2 (complete distribution of global emissions)

The emissions determined according to the RF of all countries together sum up to the amount of

global emissions:
Z E! = E, for every yeart.
i

Proof by using the notation of the RF as a straight line:

Y-
i

= Zi ((Et —Ecy) xa' + Eci‘Y) =

= (E; — Ecy) * Z'ai + Z,Eéy =
l l

=(E; —Ecy) * 1+ Ecy = E;

2.2.3 The RF as a recursion

Theorem 2 (notation of the RF as a recursion)

We have:®
E:=E _,—CR,_,*(E:_,—EL), BY+1<t<C(CY
. _ E,,—E,
with the annual rate of change CR;_{: = ————.
E, s —Ecy
Proof:

CR;_; is well defined, because E;_; # Ecy forBY +1 <t < CY .

By using corollary 1 for the factor for converting reductions, we can say:

3 Alternative notation with TA = E.y, TA' :== Et, and CR,_, == — CR,_, = %: E! =E!_, + CR,_, * (El_, —
t—-1—

TAY).
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E; =
= ELE—l + (Ey — Ep—q) * al =

By —Ep

- F -
-t Et—l_ECY

(Eé—1 - Eéy) =
=E; 1 —CR._q * (E{_; — Eéy)

Remark 7 (identical annual rates of change)

The notation as a recursion offers another interpretation of the RF: The annual emissions of country
i in the year t are determined by transferring the rates of change which are derived from the global
emission pathway, to national emission pathways. Therefore, in each year t, the national and global

annual rates of change are identical.
Remark 8 (national convergence amounts in all countries in the convergence year)

From the notation of the RF as a recursion, you can see that the convergence amounts are achieved
in all countries in the year CY, if you take into consideration that the rate of change CR.y_, takes

value 1.
2.2.4 Implicit national budgets

The emissions of country i in the convergence period are also referred to as national budget of country

i in the convergence period:

. CY .

L. — l

Bi:= E EL.
t=BY+1

The global emissions in the convergence period are denominated are also referred to as global budget

in the convergence period:
cYy cY ] cY ] ]
=Y w (=Y YE-YYT m-Ya)
t=BY+1 t=BY+1 i i t=BY+1 ;
Theorem 3 (national budget in the convergence period)
For the national budget of country i in the convergence period we have:

B! = EL, * (CY — BY) + (B — Ecy * (CY — BY)) * a',

. ELy —Ef
with the factor a = ———< for converting reductions.

EBY - bcy
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Proof:

According to the notation of the RF as a straight line, the following applies to the emissions of country

i inyeart:
Ef = (B, — E¢y) * a' + Efy.

By summing up these emissions across all years, we obtain the national budget of country i in the

convergence period:

. CY —
1 — | A—
Bi = E El =
t=BY+1

cYy . cYy ,
= Z Eéy + Z (Et - ECY) *at
=BY+1 t=BY+1

= EL, * (CY — BY) + (B — E¢y * (CY — BY)) = a'

Remark 9 (national budget depending only on the global budget)

This theorem also shows, that the national budget of country i in the convergence period only depends
on — besides the national emissions of country i and the global emissions in BY and in CY — the global
budget in the convergence period, but not on the global emissions Egy.1, Egy+2, ---» Ecy—2, Ecy—-1-
Under certain conditions, this results in an implicit national budget that is independent of the global

pathway chosen.

2.3 Convertibility of the convergence models

2.3.1 Equivalence of the Generalised C&C and LIMITS Model

In both models, the population is frozen and the convergence amount of a country i is defined by

i P!
Ecy = 7 * Ecy.

G-C&C is given by

_ _ E! _ Pt
Etl:=((1—Ct)*Et—_1+Ct*?>*Et,forBY +1<t<cCYy

t—1

with a weighting function C, that takes the value 0 (or approximately 0) in BY and the value 1 in the

CY. Here E} is defined recursively.

The G-Limits is given by
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i

. P

= <(l»—-62)*
with a weighting function C, that takes the value 0 (or approximately 0) in BY and the value 1 in

CY.

Theorem 4 (equivalence of G-C&C and G-LIMITYS)

For any weighting function C, of G-C&C there is a weighting function C, for G-LIMITS, so that the
results of G-C&C and G-LIMITS are the same.

For any weighting function C, of G-LIMITs there is a weighting function C, for G-C&C, so that the
results of G-C&C and G-LIMITS are the same.

Proof:

If we know the weighting function C, of G-C&C, the weighting function C, of G-LIMITS is given
by

G=1- ] (-a)forsy +1<c=cy.

l=BY+1

We proof the first part of the theorem by aid of mathematical induction.

Base case: For t = BY + 1 we obtain Czy1, = Cgy4q and

_ EL, Pt
Epyyq:= (1 CBY+1) *—— Eyy L+ Cpy+1 *— P * Egy i1
BY

i

EL, pt _
= ((1 Coy+1) * — £ ~+ Cpys1 * P) * Egyy1 = Epyyq

BY

—

Inductive step: Assuming thatif E}_, = E}_, = <(1 —Ci4) * ?’J + Cpq * %) * E,_,, we show that
BY

E! = E[. Algebraically

El_, P!
:<(1 Ct)* S G P)*Et'

t—1
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_ ELy, P! _ Pt
=((1—Ct)* (1-C—) * +Ct1*P +Ct*?>*Et

. 1 . A\ By — P\ _ P
“(a-cy«|[1-(1- 1—[ (1-C) ) |+ 5+ T s |+ Cx o | < B
l=BY+1 BY

t—1 . . .
. \\ Eky —— P P
=((1-Cp) = (ﬂ (1—Cl)>*E—By+Ct_1>»<F +Ct*F * E,

[=BY+1
. . Ely R - ) P P
:( 1_[ (1—Cl)*EBY Ce) * <1— 1_[ (1_Cl)>*F+Ct*F)*EC
[=BY+1 l=BY+1
~ P! P!
=<(1—Ct)* +(a--(1-0))+ +Ct*F>*Et

. EL, _ P —

Second part of the theorem: If we know the weighting function C, of G-LIMITS, we solve the

definition of C, for C, and obtain recursively the weighting function C, of G-C&C:

_ 1-C,
C,=1- z forBY + 1 <t <CY
l BY+1(1 )

C, is well defined because CY is by definition the year when the convergence amount is reached.

2.3.2 RF as a special case of the Generalised C&C and LIMITS Model

Theorem 5 (The RF as a special case of G-LIMITS)
With the weighting function

B _Epy
~ E. E
Co=——r

Ecy  Epy

EhY EﬁY

the results of G-LIMITS and the RF are the same.
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Proof:

The weighting function C, is obtained by transforming G-LIMITS for country i using PFL = gﬁ and
CcYy

assuming that EE = E}. Thus we have to proof that we obtain the same weighting function C, for any
other country j:

Ef_Ep Bl _Ey

Et EBY — Et EBY

By Epy Egy Epy

ECY EBY Ecy EBY

E_tl*EBy—Eéy*Et* Ecy x Epy _Et]*EBY_ELJ?Y*Et* Ecy * Egy

E¢ * Epy Efy * Egy — Eby % Ecy E; x Epy Eé

v * Epy — Eéy * Ecy
0= (E_tl * Epy — Etiay * Et) * (Eé‘y * Epy — Eéy * Ecy)
_(E_t] * Egy — Eéy * E) * (Ely * Egy — Eby * Ecy).
Since E} and E_t’ can be seen as a function of E; whose images are on a straight line (Theorem 1), the
right side of this equation can be seen as a function of E, whose image is on a straight line. Therefore,
it is sufficient to proof that two points of the image are 0. These two points are obviously Egy and
ECY.

Remark 10 (The RF as a special case of G-C&C)

Since the results of G-LIMITS can be obtained with G-C&C using an appropriate weighting function
(theorem 4), The RF is also a special case of G-C&C.
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2.4 Implicit weighting of the population in convergence models

Each convergence model allocates a country i until the year t a national budget that can be considered

as a weighting of the two extreme allocations “emissions in the past” and “frozen population”:

Béz((l—é,{)*gi:+é,f*%i>*3t 3)

where

B! (= Xt_py+1 EL) emissions of country 7until the year ¢ (national budget of country 7
until the year ?),

Ct weighting of population of country 7 in the year ¢ (this parameter is defined
implicitly),

Egy global emissions in the base year,

EL, emissions of country i in the base year,

P (frozen) global population and

P! (frozen) population of country i.

Theorem 6 (ldentical weighting of the population in all countries)

If the population is frozen, then for any convergence model, the population weighting in the
convergence period is the same for each country: ¢} = C,. Convergence models thus show an

implicit weighting of the population.*
Proof:

We proof this theorem for the G-LIMITS by aid of mathematical induction. The rest follows from
the equivalence of G-C&C and G-LIMITS (theorem 4) and the fact that the RF is a special case of
G-LIMITS (theorem 5).

Base case: For t = BY + 1 the national budget of country i until the year BY + 1 is E}y ., and the global

budget is Egy 1. By comparing equation (2) with equation (3) we obtain €§y+1 = Cpy+1-
Inductive step: Assuming that if C}_, = C,_, for each country i we show that ¢} = C,.

For the national budget of each country i until the year t we obtain

“In our Excel tool for the Regensburg Model, this implicit weighting can be calculated for different framework data.
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Bé = Eé + Bti'—l - Et <(1 Ct 1) EBY + Ct 1 ) Bt 1_

((1 - Ct) * — + Ct * _> * Et ((1 - Cv‘t_l) * ?j: + Cvt_l * P;l> * Bt—lz

:(Et + Biq — Et * Ep + ét—l * Bt—l) » 2BY + (Et * By + Ct—l * Bt—l)*P_
Egy P

Ce*Er+Cr_1*Br_q
Bt

We define C,: = and obtain

Bi = (B, — C.*B,) *~ +(Ct*Bt)_:<(1_Ct) +Ct*_)*Bt
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3. Smooth Pathway Models

Smooth Pathway Models derive national budgets directly from a global budget. These approaches
represent resource sharing models in the narrower sense. However, these approaches are only

complete when in a second step national emission paths are derived from the national budgets.

The following chapters describe the derivation of pathways that adhere to a specific emissions budget.
The methods for deriving emission paths can also be used for global or national paths.

Basically, there are the following mathematical options for deriving emission paths that adhere to a

certain budget:
e Impose a function for the emission pathway directly (see Chapters 3.1 and 3.2).

e Determine emission pathways indirectly via an assumption about the course of the annual

reduction rates or the course of the annual reduction amounts (see Chapter 3.3).

3.1 Smooth Pathway Formula from Raupach (SPFR)

Raupach et al. propose a simple weighting formula that includes emissions and the population in a

base year in order to distribute a global remaining budget to the countries (cf. Raupach, et al., 2014):
RB! = (C*@+ (1—6)*@>*RB,
Ppy Epy
where

Egy resp. Ey  global emissions resp. emissions of country i in the base year

Pgy resp. Pk, global population resp. population of country i in the base year

RB global remaining budget
RB! remaining budget of country i
C weighting of population

Then Raupach et al. propose a formula for deriving a national path from a national budget. This so-
called Smooth Pathway Formula for the emission power, i. e. the derivative of emissions with respect

to time (the emissions per unit of time), of country i at a point of time z > BJ + 1 is:

Ei(2) = Elyo (14 (' +mi)(z — BY — 1))e ™ (=BY=1), 4)
where

EL, ., emission power of country i at the end of the base year,
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rt change rate of the emission power of country i at the end of the base year
dE? i ;

(= (BY + D/E(BY +1) =) and

m!  the mitigation rate (or the decay parameter) of country i.

The mitigation rate m® is determined such that the allocated remaining budget of country i (RBY) is

met:
f E'(z) dz = RB.
BY+1

Thus, we obtain

f Ei(z)dz =
BY+1

= f Elyii(1+ (' +mb)(z—BY — 1))e_mi(Z_BY_1) dz =
BY+1

oo [ee]

= EéY—flf e—mi(Z—BY—l) dz + E}éy+1(ri + mi) (Z —BY — 1)e—mi(Z—BY—1) dz =
BY+1 BY+1
-1 ) z=00
= EL [__e—m‘(z—BY—l)]
P Imi z=BY+1
1 Z=00

—mi(z—BY—
p—m'(z—BY~-1)

o . - [-(z—=BY —=1) i
+Epy 1 (rt +mb) [ . e~mi(z=BY-1) _ ____
m! (m?)? Z=BY+1

.. 1 .. ) ) 1 )
= Epy+1 [E] + Epys1 (rt + mh) [W] = RB'.

.fBi defined by the remaining budget of country i and the emission power of

BY+1

With the time Tt =

country i at the end of the base year we obtain
Ti(mi)2 —2mt —rt=0.
Thus, if vt > — 1/T*, the mitigation rate m' is given by

141+ 7riTt

Tt '

mt =

There is otherwise no solution for the mitigation rate m®. In this rare case a simple exponential decay

function is used:

E! (2) = Eli3Y+1e_mi(Z_BY_1)-
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Since we are more interested in the emissions of country i in the year t (E}) than in the emission power

at a point of time z, we integrate equation (4) and obtain:
] t+1 ..
El = f E'(z)dz =
t

—El M [(rimi + (mi)z) (t —BY) + 2mi+ri]
BY+1 (mi)z

e—mi(t—BY—l)
(m?)?

Supplementary information containing mathematical details on the properties of the formula in

+Ehby e [(rimi + (mi)z) (t—BY —1) +2m’ + ri].

equation (4) can be retrieved from the “Supplementary Text“ at https://static-
content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558 2014 BFnclima
te2384 MOESM461 ESM.pdf.

3.2 Generalised Smooth Pathway Formula (GSPF)

In order to allow for net negative emission we generalise equation (4) using the following function
for the emission power, i. e. the derivative of emissions with respect to time or the emissions per unit

of time, of country i at a point of time z > BJ + 1:
Ei(z) =p,_+ (po + pl(z — BY — 1)) e—Pz(Z—BY—l)’ (5)
where

the parameter p., is the emission power at infinity and the parameters p,, p, and p, are determined
in a way that the following constraints hold

(1) Ei(BY +1)= E}é’Y+1:
agt
d

(2) —(BY + 1)/EY(BY + 1) =1t

@) [ Ei(2)dz = RB!
with
EL,., emission power of country i at the end of the base year,

rt change rate of the emission power of country i at the end of the base year,

RB!  remaining budget of country i in the period starting at the end of the base year and ending in
at the end of the year 2100.


https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fnclimate2384/MediaObjects/41558_2014_BFnclimate2384_MOESM461_ESM.pdf
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The first constraint leads t0 py = Eby.+1 — Poo-
The second constraint leads to p; = Efy 417 + (Ebys+1 — Poo)P2-

The emissions of country i in the year t (E}) are obtained by integrating equation (5):
] t+1 .
El = f E'(z)dz =
t

[poo(z —BY —1) - ? o~P2(z-BY-1) _ P1Z=BY—1) _p,(z-BY-1) _ D1 o =p2(2-BY-1)

]Z=t+1
2 | P2 z=t

Thus the parameters p, and p, are defined implicitly by one linear and one non-linear equation. In

general, this system of equations can only be solved iteratively.

3.3 Extended Smooth Pathway Model (ESPM)

In a first step the ESPM (cf. Wiegand, et al., 2021) uses the Raupach et al. weighting formular (see

Chapter 3.1) as a possible approach to determine a national budget.

In a second step in the ESPM national emissions pathways meeting a national budget are derived
indirectly via an assumption about the property of the annual changes in emissions. The annual
changes in emissions can be described via annual reduction rates (RR,) or annual reduction amounts

(RA,). This leads to the following approaches for the emissions of country i in the year t:

El =E,,+(1+RR,) (6)
Ef = E,_, + RA,. @)

A large variety of functions for RR, resp. RA, are imaginable. In practice, these functions should map

a meaningful course that can be justified, for example, economically, technologically or politically.

If you want to indicate a concrete continuous function in one section such, that the resulting emissions
meet a given budget, you can start with a family of curves with a free parameter and then determine

this parameter iteratively.

The functions for RR; resp. RA; can also be defined in more than one section. This can be useful
when taking into account net negative emissions. For example, a constant reduction amount can be

used when the emissions fall below a threshold until the emissions reach a predefined minimum value.

We use in the ESPM six scenario types. For a comprehensive mathematical description of these so-
called RM Scenario Types, we refer to the corresponding paper, which can be downloaded from our

website www.save-the-climate.info or use this link to Zenodo (cf. Wolfsteiner & Wittmann, 2021).



http://www.save-the-climate.info/
https://doi.org/10.5281/zenodo.4540475
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. course of the annual basic function type of course of the annual course of the
scenario type . the annual reduction : J
reduction rates rates reduction amounts | emission pathways
RM-1-const linear, — y = const concave convex
no curvature
Py concave, s
RM-2-exp curved to the right A y=e
. linear, _
RM-3-lin no curvature y=ax+b _ S-shaped
concave u-shaped (first concave then
_A- n = ax? convex
RM-4-quadr curved to the right ™ y=ax’+b )
convex, _
RM-5-rad curved to the left y=a'x+b
concave, .
RM-6-abs curved to the right B constant linear

Table 1: Overview of scenario types RM 1 — 6

RM-1, RM-2, ..., RM-5 represent a concretisation of the approach in formula 6 and in RM-6 the

approach in formula 7 is used.
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4. Emission Probability Model

Chakravarty et al. (cf. Chakravarty, et al., 2009) described three steps to obtaining and cutting an
emission probability density function (PDF) starting with the points of a Lorenz curve. We hence
summarize how to obtain a Lorenz Curve from a PDF in Chapter 4.1, show the results for a gamma
PDF in Chapter 4.2 and describe the Emission Probability Model (EPM) in Chapter 4.3.

4.1 General case: The Lorenz Curve obtained from a PDF

Let f be an income PDF.

Then

e the cumulative population share x is given by the cumulative distribution function (CDF) F,
1. e. the probability of an income equal to zor less is x = F(z) = f_zoo f(t)dt

JZ t () at

e the cumulative income share y is given by y = ™ o

f_zoo t f(t) dt: average income of the persons with an income equal to z or less

ffooo t f(t) dt: average income of the population

Thus a parametric representation of the Lorenz curve L is given by
x = F(2)
L@)=|,_ L.tf®adt (®)
I, tf@©at
If the inverse function F~1 of the CDF F exists, the Lorenz curve L is directly given by

SO ) dt
=L = To— ©
VM= T o

_— — =101 vi & _ (F1Y(h) = : = :
Substituting ¢ = F~'(8) yields Z: = (F™)'()) = 75 = 7y

and the Lorenz curve can be
written as

y=L(x) = 7@( : Egjz (10)

Theorem 7 (Scaling)

The Lorenz curve is independent of the scaling of the z-axis.

Proof: With a scaling factor s # 0 the scaled PDF f for a PDF f is given by
f(@) =sf(s2).

For the CDF F we obtain
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z z sz
Fz) = f f(®) dt = sf f(st)dt = f f(t)dt = F(s%).
Thus F~1, the inverse function of the CDF F, is given by

F1 =1F_1.
s

With the help of the representation (10). of the Lorenz curve we see that, the Lorenz curve from the
PDF f and the PDF f are the same.

4.2 Special case: The Lorenz Curve obtained from a gamma probability

distribution

In general, the evaluation of the integrals in equation (1) or (2) can cause trouble. However if Z is a
gamma distributed random variable all this work can be done by a spreadsheet programme, such as
EXCEL.

Let Z be a gamma distributed random variable. Then the PDF g is given by
0 forz <0
9(za,b) = {bar;@za‘le_% forz >0
with parametersa, b >0and I'(a) = fooo z% e % dz.
The CDF is denoted by

VA VA 1 1 t
G(z;a,b =f t; a,b dtzf t* e bdt
Gab = | g6 abydi= | re

Since I'(a+ 1) = a I'(a), the equation t g(t; a,b) = ab g(t;a + 1,b) holds. Thus

e the expected value (or mean) of Z is given by

o)

E[Z] Zf t g(t;a,b)dt = abf g(t;a+1,b)dt =ab
0 0

and

e using the representation (9). the Lorenz curve is given by

G~ 1(x;a,b) ) G~ Y(x;a,b) ]
) t g(t;a,b) dt _ ab |, g(t;a+1,b) dt

L(x) = *—%
J, tgt,a,b)dt ab

=G(G Y(x;a,b);a+ 1,b).

Scaling
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With a scaling factor s # 0 we easily find
b
d(Z;a,b) =59g(sZ;a,b) = g(Z; a,;)

This equation shows that the scaling of a gamma distribution with parameters a, b leads to another
gamma distribution with parameters a, g Since the Lorenz curve does not depend on scaling, the

Lorenz curve must be independent of the parameter b.

4.3 Description of the EPM
In a base year let there be (x/,y}) points of the Lorenz curve L of country i, i. e. y} = L* (x}).

In the first step, an income PDF fi(z; p") for each country i is determined. For this purpose the

parameters p' are estimated by adapting the Lorenz curves L (z; p') with a least square fit:
. . . . 2
min,  {5,((xfip) - 5/)°}
In the second step, for each country i an emission PDF £ is obtained by scaling the income PDF f.

fi(z;pi) — Si *fi(Si " Z;pi)

average emissions in country i

with the scaling factor s® :=

, . — of country i.
average income in country l

In the third step, in each year ta cap CA, is determined in such a way that the emissions in all countries
yield the underlying global emissions in the year t (E}):

CAt oo
ZE,§=Z Pt <] zfiz;p)dz +CA, | fi(z;pH) dz>= E;.
i i —

CA¢

Usually, it is assumed that each person earns a non-negative income. That is why the scaling in the
second step is possible. However, when global emissions are negative a different transformation,
which converts an income PDF, which is zero for negative incomes, into an emission PDF that
addresses negative emissions, must be found. Such transformations are conceivable, but they are not

indisputable.
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5. List of abbreviations

B global emissions in the convergence period (global budget in the convergence period)

B! emissions of country i in the convergence period (national budget of country i in the

convergence period)

B! (= Xi_py+1 EL) emissions of country 7until the year ¢ (national budget of country 7

until the year ?)

BY base year (space of time)

C weighting of population

C, weighting of population in the year ¢in C&C

C; weighting of population in the year ¢in LIMITS

C; weighting of population in the year ¢in the RF

Ct weighting of population of country 7in the year fused to obtain the national budget

of country 7

C&C Contraction and Convergence Model

CA; cap in the year ¢

CDC Common but Differentiated Convergence Model
cY convergence year

Egy global emissions in the base year

ELy, emissions of country i in the base year

Ecy global emissions in the convergence year

EL, emissions of country i in the convergence year
E; global emissions in the year t

E} emissions of country i in the year t

73} emissions of country i in the year t in C&C

El emissions of country i in the year t in LIMITS

E} emissions of country i in the year t in the RF
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i_bau
Et

oTH
E;

OoTH_t
Ebﬂ

E'(2)

EEY+1
EPM

ESPM

F—l
fi(zp"H
fi(zpH
G-C&C
G-Limits

GSPF

ii
LIMITS
P

Pi

emissions of country i in the year t in a business-as-usual scenario
remaining global emissions in the year t for the countries over the threshold in the year t
emissions in the year t — 1 of the countries over the threshold in the year t

emission power emission power (the derivative of emissions with respect to time,

emissions per unit of time) of country i at a point of time z
emission power of country i at the end of the base year
Emission Probability Model

Extended Smooth Pathway Model

income PDF of country i

emission PDF of country i, scaled PDF

cumulative distribution function, i. e. the probability of an income equal to z or less is
F(z) = [, f(©)dt

inverse function of the cumulative distribution function F
assumed income PDF of country i with parameters p' to be estimated
estimated emission PDF of country i with parameters p'
Generalised C&C

Generalised LIMITS

General Smooth Pathway Formula

country

mitigation rate (or the decay parameter) of country i
explicit representation of the Lorenz curve

parametric representation of the Lorenz curve

Lorenz curve of country i

LIMITS Model

(frozen) global population

(frozen) population of country i
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PBY
Py
P cYy
Pty
P

P
PtOTH
PDF

PT

RB
RB:

RF

SPF

SPFR

Ti

TH,

(%, ¥)

global population in the base year

population of country i in the base year

global population in the convergence year

population of country i in the convergence year

global population in the year t

population of country i in the year t

population in the year t of the countries over the threshold in the year t
probability density function

percentage

change rate of the emission power of country i at the end of the base year
(% By +1)/E'BY +1) = 1)

global remaining budget

remaining budget of country i (national budget of country 1)
Regensburg Formula

scaling factor

scaling factor of country i (average emissions in country i)

average income in country i
Smooth Pathway Formulae

Smooth Pathway Formula from Raupach et al.
year

time defined by the remaining budget of country i and the emission power of country i at

the end of the base year (Ti = .fBl )
BY+1

threshold in the year t
points of the Lorenz curve I’ of country i, i. e. y; = L (x/)

point of time (SPF), income (EPM)
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