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Abstract. Software Product Lines (SPLs) make use of Variability Mod-
els (VMs) as an input to automated reasoners, which are mainly used
to generate optimal product configurations according to certain Quality
Attributes (QAs). However, VMs and more specifically those including
numerical features (i.e., NVMs), do not natively support QAs, and con-
sequently, neither do automated reasoners commonly used in variability
resolution. However, those satisfiability and optimisation problems have
been covered and refined in other relational models such as databases.
Category Theory (CT) is an abstract mathematical theory typically used
to capture the common aspects of seemingly dissimilar algebraic struc-
tures. We propose a unified relational modelling framework subsuming
the structured objects of VMs and QAs and their relationships into al-
gebraic categories. This abstraction allows a combination of automated
reasoners over different domains to analyse SPLs. The solutions optimi-
sation can now be natively performed by a combination of automated
theorem proving, hashing, balanced-trees and chasing algorithms. We
validate this approach by means of the edge computing SPL tool HADAS.

Keywords: numerical variability model · feature · non-functional re-
quirement · quality attribute · category theory

1 Introduction

Variability Models [22] (VMs) are used in highly configurable systems to repre-
sent their common and variable features, usually represented as a rooted tree
graph, and some constraints. These models define two types of constraints: the
hierarchical ones or tree constraints, and the cross-tree constraints, where the
absence or value of some features instantiates or precludes other features (e.g.,
featureA implies/excludes featureB). Variability models are the key asset in
Software Product Lines (SPLs) [31], where valid configurations are generated by
reasoners called solvers, such as Choco [21] and Z3 [11], that take into account
some external requirements. The most used VMs are the Feature Models (FMs),
but our problem formulation is agnostic of the VM type, so we will always refer
to VMs throughout the rest of the paper.
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One of the most valuable uses of VMs is the generation of optimal solu-
tions [8] based on Quality Attributes (QAs) or Non-Functional Requirements
(NFRs), e.g., maximise performance or minimise energy consumption [27]. This
becomes a tough issue when tackling some emergent domains characterised by
intensive variability such as Internet of Things (IoT) and/or Edge Computing
(EC) systems [32] that present variations at the hardware (e.g. sensors and edge
devices), communication network (e.g. WiFi, BLE), application (e.g. filtering,
mixing, collecting tasks) and infrastructure (e.g. virtualization) dimensions. Re-
garding to these application domains, one possible scenario is to use VMs to
specify the variability dimensions and use a solver to generate optimal appli-
cation deployments in certain IoT/EC environments considering certain NFRs,
such as latency or energy consumption. However, VMs cannot natively repre-
sent non-functional properties, especially if we need to express a relationship
between one product and a NFR measured with a quality metric represented as
a measurement function [16]. For example, the feature ’WiFi’ of an IoT device
consumes more or less energy, depending on other feature ’distance’ to the Edge
or Cloud device. The same happens with VMs automated reasoners that neither
consider NFRs, nor quality metrics as a built-in characteristic.

This problem has been tackled in different ways in recent years. For instance,
Extended VMs [5] proposed to extend features with attached attributes, and they
are used to indicate a QA value (e.g. energy consumption, latency) of that spe-
cific feature. For example, we can only express that the ’WiFi’ feature consumes
’x’ Joules or has a latency of ’y’ Seconds – Joules and Seconds are attributes.
Extended VMs cannot represent that a certain QA is measured as a function
of several features. But, QAs usually depend on several features representing a
complete running product [30]. Another approach is having independent VMs
extended with a bunch of variables representing QA measurements and lots of
cross-model constraints as part of a constraint satisfaction problem [20], but not
as part of the VM itself. This results in improper semantics, and variables and
constraints overloading. A hybrid model that rudimentary links a VM with a
QAs database is our previous work HADAS [29]. But again, the management
of two different and interconnected models as well as two independent reasoners
(i.e., Choco/database) is complex and computationally overloading.

The goal of this work is to extend the core definition of VMs with NFRs asso-
ciated to product solutions, so that we can reason and generate optimal solutions
that fit certain QA. We propose Category Theory (CT) as a means to abstract
and unify dissimilar relational models. We present a CT framework aiming to
represent that: “each SPL product, which is defined as a set of ’n’ features, is
related to a set of QAs with concrete values that fulfil certain NFRs”. In our CT
framework, relational models are specified as objects and their relationships. As
a result, we have unified in a category VMs and the definition of NFRs and QA
metrics as measurement functions.

In the IoT/EC, it is common that some features (e.g. different message sizes)
are numerical features; different numerical values can influence the energy con-
sumption or the computation time NFRs. Therefore, our CT proposal considers
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to effortlessly represent and reason about Numerical VMs (NVMs), something
that it is not straightforward with traditional VMs [28]. This can be done only
if they are part of the variability tree hierarchy when generating valid products.
Contrarily to many of the existing Boolean VMs (e.g., FeatureIDE, Glencoe,
UVL), NVMs (e.g. Clafer [2], Z3 [11]) additionally support numerical features,
and the relationships between them (i.e., variables and equations). However, the
limitations of NVM solvers have prevented software developers from intensively
consider modelling numerical features [28]. Our contributions are:

1. A unified CT framework to model NVMs and QAs with NFRs, and their
relationship, to generate products as solutions with a sufficient quality.

2. As a proof of concept, we transform HADAS [29], a SPL to reason about
energy consumption of IoT/Edge applications, into a category. We perform
optimisation analyses with a combination of different reasoners, including
a theorem prover and relational search algorithms, each one acting as one
being able to reason about both VMs and quality metrics at the same time.

This paper is organised as follows. Section 2 focus on the VMs and QAs,
while Section 3 defines CT while presenting the framework to subsume VMs and
QAs into categories. In Section 4 we test our approach transforming an SPL tool
into a category, and then reasoning about a EC case study. Section 5 reviews
and discusses the pertinent related work, ending in Section 6 with a summary
highlighting the next steps of this research.

2 Motivation

Our goal is to use CT to define a joint model encompassing variability and NFRs
modelling to reason about solutions that satisfy certain quality attributes. In this
section we discuss some background on both variability and NFR modelling. The
third part of our proposal, the CT, is explained in detail in Section 3.

2.1 Variability Modelling

Feature-oriented Domain Analysis (FODA) was the first formalisation of vari-
ability modelling and reasoning [22] as FMs. FMs are used to model the com-
monality and variability, and external solvers are used mainly to automatically
generate the product variants. FMs are represented as a rooted tree graph – one
parent, many children, composed of features as Boolean variables, and relation-
ships (see Figure 1). Relationships among features are specified as propositional
logic, including tree (e.g., And, Or) and cross-tree constraints. Consequently, it
is possible to reason about FMs as a Boolean satisfiability (SAT) problem [6].

Several application domains, such as our IoT/EC illustrative example, require
additional constructs that traditional feature models do not include. In fact,
more than 45 extensions have been proposed for different needs [7], being the
NVM [28] one of the most relevant for intensive variability domains. NVMs
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Fig. 1. Example: Relationship of NVM Solutions with QAs

represent systems that also contain numerical features along with arithmetic
cross-tree relationships (e.g., automated reasoner GreenScaler [9]).

NVMs consider both Boolean (B) and discrete numerical domains such as
Integers (Z) 4. As depicts the rooted tree graph of top-Figure 1, a NVM sup-
ports the variables and operations of those domains together, allowing mixing
B conditions and arithmetic (e.g., FeatureZY1 ∗ 3 ≥ 9→ FeatureAB). Another
extension to FODA that we also consider in this work (see Figure 1) is the spec-
ification of the exact number of children features (i.e. feature cardinality [10]).
One more extension required by variability intensive systems is the sub-tree la-
belling presented in top-Figure 1, which allows: (1) variability tree composition
of layered NVMs [29], (2) partial instances [2], (3) cloneables like T3 [14], and
(4) intrinsic hierarchy between trees [17]. In summary, VMs cover the functional
requirements – the actions that a system must be capable of doing. However,
optimisation analyses of SPLs require NFRs - the non-behavioural aspects under
which the system must operate [15] and, as previously stated in the introduction,
this is not natively included as part of VMs.

2.2 Non-Functional Requirements Modelling

For this work, we define a QA model (QAM) as any model that specifies and hosts
QAs being name-domain-metric with NFRs. Quality models [1] are a broader
type of models not used in this work. QAs whose values can be quantified, such as
Performance and EnergyConsumption of bottom-Figure 1, can be modelled as a

4 Real (R), and other continuous domains, are not completely supported by SPL au-
tomated reasoners because they generate unlimited solutions.
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set of measurements. To reason about the quality of a certain VM solution, these
measurements need to be somehow linked to the variability model. In bottom-
Figure 1 there is as an example of a user NFR “Performance < 10 Seconds”
for the defined QA (e.g., performance measured as execution time). To clarify,
the QAM in the example potentially encodes the total performance and energy
consumption of each possible valid solution (i.e., product).

There is no consensus on how QAs measurements should be linked to features
in a VM, existing two main approaches. One in which measurements are linked
to individual features (i.e., each feature contributes individually to the system
QA). Another, which is in line with our approach, considers that the set of
measurements of a QAM should be univocally linked to a VM valid solution.

The first specific SPL solution for QAs is Extended Variability Model [5]
already cited in Section 1, where the concept of feature in FODA is extended
with attributes. Attributes have a name and a domain, and they are linked to
individual features. This is useful if we consider that a feature can be assessed by
a single quality measurement (e.g., an encryption code consumes 1.3 Joules). But,
the quality of certain features usually cannot be assessed using a single feature.
For example, to adequately assess the energy consumption of an encryption code,
we need to specify several features, modelling the different key sizes, modes
and paddings [25]. Therefore, we cannot model the energy consumption of an
encryption code with an attribute, we need a way to link a complete solution,
for example, composed by the features: AES algorithm, Mode CBC, NoPadding,
key size = 256, to an energy measurement. Another argument is that with this
approach, we can only assess the overall quality of the system as a simple direct
addition of individual QAs. But, first of all, not even linear equations adjust
real-world QA metrics, and second, the process of adjusting a function to a
set of measurements is computationally costly, not immutable, and probably
inaccurate in average [34].

Another common approach to model QAs in SPLs is a balanced tree graph
alike hierarchical activity/data models describing metrics in a top-down ap-
proach [15]. However, hierarchical trees cause extreme repetition, as each solu-
tion must be intrinsically modelled in order to connect them to their NFRs [17].
To overcome this limitation, multi-NVMs interconnected with a bunch of cross-
model constraints have been proposed [20]. However: (1) hierarchical trees are
useless to optimisation-type metrics (e.g., energy consumption constraining run-
time metrics), and (2) so many cross-model constraints complicate the model,
while decreasing reasoning performance. Nonetheless, most of these solutions are
not directly compatible with automated reasoners.

We use the HADAS tool [29] as a running example, where a NVM defines the
systems components, and an entity-relationship schema defines the QAM. The
Clafer [2] and the database reasoners are supported with a direct Solution-to-
QAs mapping procedures allowing automatic reasoning of that hybrid model.
Databases functionality, as querying in batches or random sampling, offers poten-
tial advantages for SPL analyses. However, the drawback of maintaining two in-
dividual but different models, and the computational overhead of two co-existing
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reasoners, break the balance negatively for very large NVMs. Hence, SPL reason-
ing lack of a unified model that appropriately supports Boolean and numerical
variability with non-functional metrics.

Every alternative contains a high degree of interlocking relationships – we are
dealing with relational models. While originally, they dealt with different prob-
lems developing different methods, there are overlaps – different methods to solve
the same problem. But yet, there are specific limitations of each alternative [19].
Contrarily to these approaches, we propose to abstract SPLs systems into a sin-
gle relational modelling framework, where a unified semantics can jointly define
seemingly dissimilar structures and the connections between them.

3 Category Theory for Software Product Lines

In this section we give a light-weight description of Category Theory (CT) and
the way we use it as a unifying modelling and reasoning framework. For a deeper
introduction to CT, we refer the interested reader to, e.g., [3].

Category Theory is a general mathematical theory of algebraic structures
that allows the common aspects of different structures to be captured and re-
lated, while abstracting from the individual specifics. Informally speaking, a
category C is any collection of objects representing spaces that can be related to
each other via arrows (i.e., morphisms). Two standard examples are the cate-
gories: (1) Vec with objects vector spaces and arrows linear maps, and (2) Bool
with objects Boolean algebra entities and arrows first-order logic. CT is built
from the following main concepts:

– Object: a structured class X ∈ Ob(C), graphically depicted as a node •X .
– Arrow: a structure-preserving function a ∈ Arr(C) with source and target

objects X = src(a) and Y = tgt(a), respectively, depicted
X• a−→ Y•.

– Category: consists of Ob(C) and Arr(C). It is depicted as a directed graph.
– Functor: a mapping F between categories C = src(F ) and D = tgt(F ),

depicted
C• F−→ D• , which preserves identity and function composition.

In addition, we shall need the following concepts and terminology, borrowed
from a CT framework for algebraic data integration [33]:

– Path: a concrete sequence of arrows
X• a1−→ Y• . . . an−−→ Z•.

– Element: one of the distinct components x ∈ X that belong to an object X.

Its domain is defined with an arrow, for example x
Integer−−−−−→ Z.

– Instance: a set-valued functor that populates Ob(C) with elements.

In the following subsections we illustrate on intuitive examples how to rep-
resent NVMs and QAMs as related categories. In summary, each model will be
represented as a category with objects variability trees (for NVMs) and metrics
sets (for QAMs), and relationships will be represented as arrows. This will allow
us to generate joint solution spaces (i.e., SPL products with their QAs) with any
automated reasoner for any type of model.
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3.1 Category of Numerical Variability Models (NVM)
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Fig. 2. NVM category: 4 composing variability trees (T3 cloned), and 2 domains

The NVM from Figure 1 is transformed into the category NVM, depicted
in Figure 2. Since the NVM is a composition of trees, Ob(NVM) is a set of
four variability trees: T1 and T2 having numerical features, and T3 and its clone
T3∗ having Boolean features. Arr(NVM) is the set of relationships in NVMs:
hierarchy (i.e., Parent/Child), cardinality, and Boolean and arithmetic cross-tree
constraints. A tree trace is an NVM path, and an instance is populating NVM-
features with values. The basic datatype objects are programming languages
library types. In summary, the NVM category is Ob(NVM) ∪ Arr(NVM).
While the example objects are mono-type, multi-type is supported.

3.2 Category of Quality Attributes Model (QAM)

The QAM from Figure 1 is transformed into the category QAM, depicted in
Figure 3. Since the QAM is a set of QAs, Ob(QAM) consists just of a sin-
gle object, QA, and Arr(QAM) representing the data-type and the NFRs.
Its elements measurement ∈ MS are name-domain-metric, where the arrow is

measurement
metric−−−−→ String × Z× String. Now we connect NVM and QAM.

3.3 Solution Space Categories Isomorphism

While we have unified the models, we still did not cover how to connect a spe-
cific set of features with its specific set of QAs and values. NVM and QAM
are solution-space related categories as illustrated in Figure 4. Each solution
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space structure is defined as a results object, similarly to the resulting table in
a database query. In the case of NVM, the complete solution object CS com-
prises sets (CSx) of elements of category solutions according to Arr(NVM) – in
other terms, the satisfiable products of the model. Similarly, in QAM the object
MS comprises the measurements setsMSx according to Arr(QAM). The basic
automated reasoners for categories are mathematical theorem provers; however,
they are typically supported by other optimisation engines for specific tasks, such
as a Knuth-Bendix completion prover with a Chase searching algorithm [33].

Some CSx solutions do not correspond to MSx measurements (Figure 4).
The reason is that we need to consider that not every system has been mea-
sured. Hence, MNVM is the sub-category of measured NVM, where the CS
object has a bijective (i.e., one-to-one) arrow cs/ml to theML object of QAM.
Consequently, there is an isomorphic functor5 [18] betweenMNVM and QAM.

4 Validation and Discussion

To validate our framework, we deploy a CT prototype of a running SPL tool6

– the NVM and QAM optimisation assistant for Edge Computing HADAS [29].

5 Isomorphism is a one-to-one mapping between two sets of objects.
6 HADAS web-services: https://hadas.caosd.lcc.uma.es/

https://hadas.caosd.lcc.uma.es/
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In HADAS, edge devices are defined in a composed Clafer NVM, as illustrated
in Figure 5 on the left, with two main trees: (1) Hardware and (2) Software. The
last is composed of four trees: Operating System (OS), Programming Language
(PL), Operation and Context. Again, the latter is composed of Libraries and
Numerical Parameters trees. All the trees have Boolean features, besides Nu-
merical Parameters, which only contains Integer features (e.g., Encryption Key:
64 bytes [27]). HADAS QAM is a relational database that links NVM solution-
tree leaves with QAM dynamic identifiers (since parent features are irrelevant
when traceability is considered).

4.1 HADAS category
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Fig. 5. Transformation of HADAS NVM and QAM in a single NVM category

In Figure 5 we can see on the left the HADAS base NVM and QAM struc-
tures, and on the right its unified category HADAS by means of the framework
presented in Section 3. Our framework is as flexible as CT; existing models can
be transformed into categories differently and yet perform equally. For example,
an object could be modelled as a category with a single object and vice-versa.
Our philosophy in this proof-of-concept is to keep the category simple; hence,
we applied this example combining NVM and the single object category QAM
into HADAS, where the technical implication is switching the categories func-
tor by an objects arrow. In summary, data-types, NVM trees and QAM are 12
HADAS objects, and variability trees relationships, cross-tree constraints and
NFRs are a minimum of 6 arrows.HADAS consists of the following components:

– Ob(HADAS) 3 String, String × B, String × Z × String, Hardware,
Software, PL,OS,Operation, Context, Libraries, Parameters, Solutions.

– Arr(HADAS) 3 feature, metric, parent, cardinality (e.g., [0..2]), metadata,
crosstree NFR, solution, leaves.
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– Elements: based on Arr(HADAS), there are Boolean and integer features,
QA metrics with format name-domain-metric, QA metadata with string
domain, and solution as a set of object features leaves corresponding to QAs
(i.e., HADAS solution space).

4.2 Optimal deployment

The next step in this proof-of-concept is to instantiate (i.e., populate) HADAS,
to later generate the solution space (e.g., application deployments in IoT/EC
environments), and optimise its QAs. EC and IoT systems require fast real-
time processing of random amounts of data, and have relatively strict NFRs
on the performance and energy consumption [32]. Hence, we propose to turn
into a category the model shown in Figure 6 on the left, aiming to gain insights
of which features and solutions are affecting those QAs in transmitting and/or
compressing operations. The NVM contains 28 Boolean features and two nu-
merical features, while the QAM contains two QAs – performance in Seconds
and energy rate in milliWatts. Operations are partial configurable benchmarks
of the Phoronix Test Suite7.

Having a clear picture of the category base model on Figure 5, we need to
program and deploy it. While there are libraries aiming to add CT support to
SPL reasoners (e.g., Conal Elliot libraries for Z3 [12]), the only production-ready
Integrated Development Environment (IDE) is the Categorical Query Language
(CQL) IDE: an open-source software, commercialised by Conexus AI8. It is a
canonical functional IDE that generates CT graphs as the presented figures.
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7 Phoronix Test Suite details: https://openbenchmarking.org/tests/pts
8 CQL IDE main website: https://www.categoricaldata.net/

https://openbenchmarking.org/tests/pts
https://www.categoricaldata.net/
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On the right of Figure 6 there is a tiny snapshot of the code; the complete
CQL model can be downloaded from the HADAS server9. There one can find
the 30 NVM features and the 2 QAs distributed in the HADAS objects shown
in Figure 6 on the right. While cross-tree constraints exist in the NVM, we did
not include them in the graph due to extension limitations; however, they can
be found as cross-object arrows in HADAS.

4.3 Results and Discussion

CQL IDE reasoning is automatically performed with a combination of different
algorithms. The ones that apply to our work, in order of usage, are: automated
theorem prover with Knuth-Bendix completion [26] for logic and equations, and
hashing, balanced trees and chasing for data-type and cross-object arrows.

We have obtained 162 valid solutions with their respective 324 measurements
in 0.1 Seconds. If we reduce the category, the runtime is still 0.1 Seconds. Ex-
tending the category as a supra-category formed by a self-cross-product 3 times
results in 0.2 Seconds. Running CQL IDE in another computer did not change
the runtimes. This suggests that CQL IDE scales linearly, and that the minimum
runtime is 0.1 Seconds independently of the computer, probably due to being a
Java application running on a Java virtual machine.

Optimisation arrows are a step further of the solution space. Maximising
performance or minimising energy rate increases the reasoning runtime by 0.1
Seconds, independently of the solution space size. However, we expect linear
increments for larger models (i.e., linear scalability). Regarding the interaction
of features with regards to the QAs in our EC case study, the main insights are:

– Compressing/uncompressing while sending/receiving data improves the run-
times for large batches of data, but for small ones it is the opposite inde-
pendently of the original data size. In any case, compressing increased the
energy rate – more Joules per Second.

– The more powerful the CPU is, the lesser is the compressing time, and the
higher the energy rate; the maximum energy rate of Snapdragon 855 was
3.4 Watts, of A53 was 3.7 Watts, and of M5Y71 was 11.8 Watts. In case of
communication without compression, CPUs barely affected QAs.

– Communication peripherals affected equally the QAs. WiFi and Bluetooth
channels performed equally for small batches of data. WiFi has the tendency
to be faster above 300 MegaBytes, while the Bluetooth energy-rate is sub-
stantially lower (with an average of 0.5 Watts) than these 300 MegaBytes.

To check the internal validity of our proposal, we tested it by first trans-
forming an SPL tool into a category, and second, by modelling an EC case study
in a category. Additionally, we moved further implementing that category in
CQL IDE, performing reasoning to generate the solution space, and also per-
forming optimal search in order to obtain quality insights from the EC category.

9 HADAS CQL CT model: https://hadas.caosd.lcc.uma.es/ctprototype.cql

https://hadas.caosd.lcc.uma.es/ctprototype.cql
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To mitigate wrong scalability assumptions, we ran CQL IDE with different so-
lution spaces in different computers.

Concerning the external validity, we have identified two threats to validity.
First, we have not tested our approach on large models with other IDEs, since our
aim was a proof-of-concept. Second, as it is the first CT NVM/QAM framework
to the best of our knowledge, and we implemented it in just one IDE, we cannot
compare it with other CT alternatives.

5 Related Work

Table 1. Characteristics of abstraction alternatives for a unified NVM/QAM

→Model
↓Entity

NVM
Category
Theory

Set
Theory

FODA
Codd

Algebra
Order
Logic

Arith-
metic

Structured
Model

Labelled
NVM

Category
Finite

Set
Labelled

FM
Data

Schema
Logic

Formula
Plane

Entities

Sub-
tree,

Feature,
Solution

Sub-
Category
, Object,
Instance

Sub-Set,
Element

Sub-tree,
Feature,
Configu
-ration

Table
,Cell

Partial
Formula,
Variable

Sub-
System,

Equation
,Variable

Boolean
Type

B
Feature

B B Feature B B Pseudo-
B: [0,1]

Numerical
Type

N, Z, R
Feature

N, Z, R
N, Z
Finite
Sets

Un-
supported

N, Z, R Un-
supported

N, Z, R

Requi-
rements

Cross-
tree

Equation

Categories
Functor

Predicate
Cross-tree
Constraint

σ
Constraint

Formula Equation

Selection Assert ∆ ∈ Require π[Column] True =

Exclusion Not −∆ * Exclude −π[Column] False 6=

Con-
nectives

&&, ‖‖,
[x..y],
⇒, ≡

∑
[Functor]∏
[Functor]

, X

∧, ∨, ⊕,
If, ⇒, ≡

And, Or,
xOR, ⇒

, ≡

Foreign
Key,

⋂
,
⋃

,
⊎

,
Joins[X]

∧, ∨, ⊕,
If, ⇒, ≡

Equation
Systems

Equalities
=, 6=, >,
≥, <, ≤

=, 6=, >,
≥, <, ≤ =, 6= =, 6= =, 6=, >,

≥, <, ≤ =, 6= =, 6=, >,
≥, <, ≤

Mathe-
matics

+, -, *,
÷, %. . .

+, -, *,
÷, %. . .

Pre/Suc
-cessor

Un-
supported

Un-
supported

Un-
supported

+, -, *,
÷, %. . .

Having already presented the relevant publications for the foundations of
this paper, we now discuss further related work. Firstly, while we have discussed
the advantages of CT, one could argue that more simple structures could be
used instead to unify NVMs with QAMs. In Table 1 there is a summary of the
alternatives, where we highlight first the needs of NVMs, and second what CT
provided as a reference.

Whether we are talking about NVMs with/without QAMs, we need a com-
plete Boolean and Numerical domain. FODA, the first VM formalisation [22],
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has already been discussed and discarded due to its lack of support for numer-
ical features and constraints necessary in EC analyses. In fact, as identified in
Table 1, most of the alternatives lack numerical support. One of them is Set
Theory (ST), which, similarly to CT, is a branch of mathematical logic that
studies sets, which informally are collections of objects [13]. ST lacks support
for numerical equations, inequalities, and infinite data-types. Similarly, Order-
Logic deals just with declarative propositions, predicates and quantification (e.g.,
∀x) [24]. Codd Theory is the first and only formalisation of relational algebra,
which uses algebraic structures with well-founded semantics for modelling data
and defining queries on it. While databases support a wide range of numerical
components as datatypes, counting, grouping, arithmetic, etc., they are pro-
gramming workarounds outside of Codd Theory. In other words, it is not yet
clear that Codd relational algebra should be extended above a pure Boolean
domain [23]. On the other hand, Arithmetic is the study of numbers and their
operations; logic domain is just partially supported by a pseudo-Boolean (i.e.
[0,1]) domain [23]. As an interesting fact of the CT capability, ST, Order Logic,
Codd Algebra, etc. are already well-formalised categories in CT.

A computational design framework based solely on objects and arrows was
proposed in [4], where Model Driven Engineering meets (Boolean) SPLs. This ap-
proach was extended with an explicit use of CT in [35], where VMs and Domain
Models are unified. In Clafer SPL suite, VM are modelled as abstract classes,
literally an idea borrowed from CT [2]. A generic CT approach for different data
domains integration is formalised in [33], where as a case study entity-relational
models (i.e., database models) are transformed into a category in which tables
are objects, columns are elements, and foreign keys are arrows.

6 Conclusions and Future Work

In this paper, we uncovered the lack of automated tools to model and optimise
SPLs defined as an NVM related to sets of QAs with values. We aimed to
define a unified model supporting: (1) Boolean and numerical domains in the
form of features and their relationships, and (2) a map between the solution
spaces of NVMs and QAMs. For that, we propose a CT framework with two
categories. The first one is NVM where variability trees and data-types are
objects, and hierarchical and cross-tree constraints are arrows. The second one
is QAM where the sets of QAs and their data-types are objects, and NFRs are
arrows. Finally we establish a functorial relationship between measured products
of NVM with QAs sets of QAM. As a proof-of-concept we transformed the SPL
HADAS into the category HADAS. Then, we have implemented and deployed
it in the CQL IDE, and performed a brief EC case study using a combination
of theorem provers and database algorithms as automated reasoners. As future
work, we plan to improve the framework to support other proposed extended
functionalities of NVMs, as well as integrate quality models. In any case, we are
in the process of evaluating this approach with large SPLs.
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18. Gurrola-Ramos, L., Maćıas, S., Maćıas-Dı́az, J.: On the isomorphism of injective
objects in grothendieck categories. Quaestiones Mathematicae 40(5) (2017)

19. Hellendoorn, V.J., Sutton, C., Singh, R., Maniatis, P., Bieber, D.: Global relational
models of source code. In: Int. Conference on Learning Representations (2019)

20. Horcas, J.M., Pinto, M., Fuentes, L.: An automatic process for weaving functional
quality attributes using a software product line approach. Journal of Systems and
Software 112, 78 – 95 (2016)

21. Jussien, N., Rochart, G., Lorca, X.: Choco: an open source java constraint pro-
gramming library. In: HAL Archives Ouvertes (2008)

22. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (foda) feasibility study. Tech. rep., Carnegie-Mellon Univ Pitts-
burgh Pa Software Engineering Inst (1990)
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35. Taentzer, G., Salay, R., Strüber, D., Chechik, M.: Transformations of software prod-
uct lines: A generalizing framework based on category theory. In: 20th Int. Con-
ference on Model Driven Engineering Languages and Systems (MODELS) (2017)


	Category Theory Framework for Variability Models with Non-Functional Requirements

