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ABSTRACT
When designing their performance evaluations, networking re-
searchers often encounter questions such as: How long should a
run be? How many runs to perform? How to account for the vari-
ability across multiple runs? What statistical methods should be
used to analyze the data? Despite their best intentions, researchers
often answer these questions differently, thus impairing the repli-
cability of their evaluations and the confidence in their results.

To support networking researchers, we propose a systematic
methodology that streamlines the design and analysis of perfor-
mance evaluations. Our approach hierarchically partitions the per-
formance evaluation in a sequence of stages building on top of each
other, following the principle of separation of concerns. The idea
is to first understand, for each stage, the temporal characteristics
of variability sources, and then to apply, for each source, rigorous
statistical methods to derive performance results with quantifiable
confidence in spite of the inherent variability. We implement an in-
stance of that methodology in a software framework called TriScale.
For each performance metric, TriScale computes a variability score
that estimates, with a given confidence, how similar the results
would be if the evaluation were replicated; in other words, TriScale
quantifies the replicability of evaluations. We apply TriScale to four
different use cases (congestion control, wireless embedded systems,
failure detection, video streaming), demonstrating that TriScale
helps to generalize and strengthen previously published results.

Improving the standards of replicability in networking is a cru-
cial and complex challenge; with TriScale, we make an important
contribution to this endeavor by providing for the first time a ratio-
nale and statistically sound experimental methodology.

1 INTRODUCTION
The ability to replicate an experimental result is essential formaking
a scientifically sound claim. In networking research, replicability1
is a well-recognized problem due to the inherent variability of the
experimental conditions: the uncontrollable dynamics of real net-
works [17, 51] and the time-varying performance of hardware and
software components [11, 49, 73] cause major changes in the exper-
imental conditions, making it difficult to replicate results and quan-
titatively compare different solutions [4]. In addition, differences in

1Different terminology is used to refer to different aspects of replicability research [8,
59]. In this paper, we refer to replicability as the ability of different researchers to
follow the steps described in published work, collect new data using the same tools,
and eventually obtain the same results, within the margins of experimental error. This
is usually called replicability [1] but sometimes referred to as reproducibility.

the methodology used to design an experiment, process the mea-
surements, and reason about the outcomes impair the ability to
replicate results and assess the validity of claims reported by other
researchers. Without replicability, any performance evaluation is
questionable, at best.

To be replicable, performance evaluations must account for the
inherent variability of networking experiments on different time
scales. Therefore, experiments are typically repeated to increase
the confidence in the conclusions. To facilitate this, the networking
community has put great efforts into developing testbeds [55] and
data collection frameworks [83]. However, we lack a systematic
methodology that specifies how to design and analyze performance
evaluations. The literature is currently limited to generic guide-
lines [5, 52, 63] and recommendations [38, 43, 57], which leave open
critical questions before an experiment (How many runs? How long
should a run be?) and after (How to process the data and analyze
the results?). Without a systematic methodology, networking re-
searchers often design and analyze similar experiments in different
ways, making them hardly comparable [12]. Yet, strong claims are
being made (“our system improves latency by 3×”) while confidence
is often discussed only in qualitative ways (“with high confidence”),
if at all [73, 82]. Furthermore, it is currently unclear how to as-
sess whether an experiment is indeed replicable. We argue that a
systematic methodology is needed to help resolve this situation.

We identify four key challenges that must be addressed in the
design of such a methodology.

Rationality The methodology must rationalize the experiment
design by linking the design questions (e.g., Howmany runs?)
with the desired confidence in the results.

Robustness The methodology must be robust against the variabil-
ity of the experimental conditions. The data analysis must
use statistics that are compatible with the nature of network-
ing data and be able to quantify the expected performance
variation shall the evaluation be replicated.

Generality The methodology must be applicable to a wide range
of performance metrics, evaluation scenarios (emulator, test-
bed, in the wild), and network types (wired, wireless).

Conciseness The methodology must describe the experimental
design and the data analysis in a concise and unambiguous
way to foster replicability while minimizing the use of highly
treasured space in scientific papers.
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This paper presents the following four contributions:
• We propose a systematic methodology that streamlines the
design and analysis of performance evaluations and supports
the replicability of networking evaluations by addressing the
four challenges mentioned above (§ 2). We adopt a hierar-
chical approach that partitions the performance evaluation
into a sequence of stages that build on top of each other,
following the principle of separation of concerns [81].

• We present TriScale, a concrete instance of this methodol-
ogy that is applicable to a wide spectrum of performance
evaluation (§ 4). Based on an analysis of the temporal char-
acteristics of variability sources in networking experiments,
TriScale applies, for each variability source, a set of appropri-
ate and rigorous statistical methods to derive performance
results with quantifiable confidence. For each performance
metric, TriScale computes a variability score that estimates,
with a given confidence, how similar the results would be if
the evaluation were replicated.

• We illustrate the benefits and generality of TriScale through
four different case studies (§ 5) involving both testbed experi-
ments and network emulations: congestion control, wireless
embedded systems, failure detection, and video streaming.
These case studies demonstrate how the lack of a systematic
methodology has led to erroneous or unfair comparisons
between protocols or, conversely, that TriScale helps to gener-
alize and strengthen previously published results and claims.

• We implement and release TriScale as an extensible and pub-
licly available software framework [35].

Most prior work toward replicable networking research focus on
data collection, e.g., [55, 83]. We complement these efforts by pro-
viding the first systematic methodology, implemented in TriScale,
that concretely guides networking researchers through the design
of their experiments and the analysis of the gathered data, while
quantifying the replicability of the performance evaluation.

We strive tomake this paper itself “replicable”: all data and source
code are openly available [35, 37]. Most plots were created using
TriScale and are interactive: the plots themselves are hyperlinks to
online versions allowing for dynamic data visualization.

2 OVERVIEW OF TRISCALE
This section illustrates how TriScale improves the analysis of exper-
imental results with a concrete example (§ 2.1), and then presents
the core principles of the underlying methodology (§ 2.2).

2.1 How TriScale Improves Data Analysis
Assume you are new to the field of congestion control and would
like to understand the strengths and weaknesses of the state of the
art. Luckily, the community has developed useful tools like Pan-
theon [83], a data collection framework that facilitates comparisons
of congestion-control schemes.

You are particularly interested in the throughput and one-way
delay of full-throttle flows, i.e., flows whose performance is only
limited by the congestion control. You start with one flow and
evaluate performance using MahiMahi [53], a traffic and network
emulator integrated in Pantheon, using the same settings as in [83]:
10 runs of 30 seconds each for all the congestion-control schemes

available. Pantheon assists you in collecting the data, but not in their
analysis or interpretation. Yet, these are two non-trivial tasks. For
example, consider the results shown in Fig. 1a (replicated from [83])
where the dots indicate the mean performance across all runs for
two metrics: the mean throughput and 95th percentile of the one-
way delay; the ellipses show the 1𝜎 variation across runs, where 𝜎
is the standard deviation. Multiple questions arise:
(Q1) Can the schemes be compared? It appears that TCP Vegas

performs better than, e.g., TaoVA-100x. However, since the
ellipses capture the results’ variability, what can we conclude
about the actual performance of these schemes? Can we
conclude anything when the ellipses are overlapping? E.g.,
can we say that TCP Vegas performs better than PCC-Expr?

(Q2) What is the confidence in the comparison? Intuitively, the
results of, e.g., PCC-Allegro, which have a large variability, are
less trustworthy than those of, e.g., FillP-Sheep, for which the
ellipse is hardly visible. How does the difference in variability
affect your confidence in the overall comparison? Can you
quantify this confidence?

(Q3) Is a runtime of 30 seconds sufficiently long to fairly compare
the different schemes?

These questions relate to the robustness and rationality chal-
lenges (§ 1) and are left unanswered by the analysis shown in Fig. 1a.
In fact, the figure may even suggest wrong interpretations. Ellipses
are a two-dimensional representation of the standard deviation
across runs, suggesting that one can expect about 68% of the data
points to fall in that region. However, this is correct only if the
underlying distribution is normal, which is hardly ever true (§ 3).

Fig. 1b illustrates the same data analyzed with TriScale. The dots
now represent TriScale’s key performance indicators (KPIs). A KPI
estimates a given percentile of a performance metric’s underlying
distribution—i.e., the unknown distribution we would obtain with
infinitely many samples—with a certain confidence. We use the
same performance metrics: the mean throughput and the 95th per-
centile of the one-way delay, for which we have 10 samples (one per
run). Based on these 10 samples, instead of computing the mean and
standard deviation, TriScale computes two KPIs: the 25th percentile
of the throughput metric (higher throughput is better) and the 75th
percentile of the one-way delay metric (lower delay is better), which
we aim to estimate with a 75% confidence level.2 In other words,
with a 75% confidence, 75% of the runs yield a performance that is
at least as good as the KPI values (e.g., equal or higher throughput).
Hence, we use the same performancemetrics (mean throughput and
95th percentile of the one-way delay), but a different aggregation
strategy (KPIs instead of mean and standard deviation). Note that,
in this paper, we simply consider multiple performance dimensions
(e.g., throughput and delay) independently. The approach can be
extended towards multi-objective performance evaluations using
the principles of Pareto-dominance, but such extension is beyond
the scope of this work.

Using the methodology further detailed in § 2.2 and § 4, TriScale
allows to answer the three open questions mentioned previously:

275% is a low confidence value (95% would be more common). However, estimating
the 25th and 75th percentiles with 95% confidence requires at least 11 data points (see
Eq. (4)) whereas Pantheon performs series of 10 runs. To compare TriScale’s and
Pantheon’s analysis methods in this example, we chose to lower the confidence level
and keep the same number of samples.
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(a) Data analysis with Pantheon (replicated from [83]). Dots repre-
sent the mean performance across all runs; metrics are the mean throughput
and 95th percentile of the one-way delay; ellipses represent the 1𝜎 perfor-
mance variation across all runs, where 𝜎 denotes the standard deviation.
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(b) Data analysis with TriScale. Dots represent Key Performance Indicators
(KPIs) across all runs: the 25th percentile of the throughput metric and the 75th
percentile of the one-way delay metric (same metrics as in Fig. 1a). KPIs are
estimated with 75% confidence.

Figure 1: Sample data from our congestion-control case study (§ 5.1). The same data may be analyzed in different ways. Compared with
Pantheon’s analysis (Fig. 1a), TriScale’s analysis allows for a more intuitive interpretation of the results (Fig. 1b). The performance of each scheme
is reduced to a single point, a TriScale’s KPI, which makes the comparison between the schemes unambiguous. These KPIs are not arbitrary;
they are robust non-parametric statistics estimating, with a given confidence level, the expected performance if the experiment was repeated.
Thus, TriScale’s KPIs inherently account for the variability in the results.

(A1) Since the KPIs are individual dots, we can unambiguously
compare different schemes with respect to the two perfor-
mance metrics. Contrary to what Fig. 1a suggests, we ob-
serve in Fig. 1b that TCP Vegas is not strictly better than
TaoVA-100x, as TCP Vegas performs worse in terms of one-
way delay; also, PCC-Expr performs better than TCP Vegas
in both performance metrics.

(A2) The confidence level of the KPIs explicitly state how confi-
dent we are with these results. The independence of measure-
ments is empirically tested, which guarantees the soundness
of the performance estimation; data from, e.g., Copa appears
correlated and are therefore not shown in Fig. 1b.

(A3) TriScale tests whether the different schemes have conver-
ged (§ 4.5), i.e., the metrics have reached stable values within
the experiment runtime; 30 seconds are actually not enough
for certain schemes (§ 5.1), which biases the comparison.

Summary. Tools like Pantheon [83] support data collection, but
leave the design of the experiments and the data analysis up to the
researcher, leading to ambiguous interpretations and non-replicable
results. TriScale aims to fill this gap.

2.2 Core Principles of TriScale
TriScale is a framework for networking experiments (Fig. 2); it is
based on a systematic methodology that streamlines the design and
analysis of performance evaluations to improve the replicability
of networking evaluations. Its hierarchical approach partitions the
performance evaluation in a sequence of stages that build on top of
each other and follow the principle of separation of concerns [81].
Specifically, it splits a performance evaluation into three timescales,
hence the name TriScale.

Given the user’s objectives (e.g., the KPIs to analyze and the
confidence levels to reach), TriScale helps answer questions such
as: How many runs should be done? How long should the runs
be? When to perform the runs? Based on the answers, the user can
then proceed with the data collection. In the analysis phase, the
user provides those data to TriScale which automatically produces
expressive and easy-to-interpret performance reports together with
variability scores that quantify the replicability of the evaluation.

It is important to note that the specific models and methods
within each of the timescales are dependent on the specific class of
systems and performance evaluations that will be undertaken. In
this paper, we provide a concrete instance of TriScale that is appli-
cable to a wide spectrum of networking performance evaluations,
exemplified by four case studies (§ 5).

In the rest of this section, we explain TriScale’s main building
blocks. We start by describing the three timescales underlying the
methodology, then describe how TriScale concretely supports the
users with the design and analysis of their performance evaluations.

Timescales. We structure TriScale’s methodology around three
timescales: runs, series (of runs), and sequels (of series). These
timescales intuitively capture the different sources of variability
underlying performance evaluations in networking.

A run is one execution of an evaluation scenario, e.g., a 30 s exe-
cution of TCP BBR. During a run, some performance dimensions
are measured, e.g., packet delay, which vary due to different sources
of variability such as protocol dynamics and cross-traffic. The per-
formance during a run is summarized by a metric, for example, the
95th percentile of the run’s measurements. Depending on the sce-
nario, one may want the metric to estimate long-term performance,
for example, in case of long-lasting flows; the run should then be
sufficiently long to let the metric value converge.

https://nbviewer.jupyter.org/github/TriScale-Anon/triscale/blob/master/triscale_plots.ipynb#Figure-1a
https://nbviewer.jupyter.org/github/TriScale-Anon/triscale/blob/master/triscale_plots.ipynb#Figure-1b


Figure 2: Overview of TriScale. TriScale is a framework supporting the design and analysis of networking experiments. TriScale assists the
user in the design phase with a systematic methodology to answer important experiment design questions such as “How many runs?” and “How
long should the runs be?”. After the raw data are collected, TriScale supports the user by automating the data analysis. The framework implements
robust statistics that handle the intrinsic variability of experimental networking data and returns expressive performance reports along with a
variability score that quantifies the replicability of an experiment.

Typically, one executes multiple runs to measure performance;
we call such a set of runs a series. For example, one may execute
100 runs within one week, from which one obtains a set of metric
values, one for each run. We summarize the performance of a series
with a key performance indicator (KPI) that measures the expected
performance for any run by estimating, e.g., the median of the
metric distribution within the time span of the series (i.e., the time
interval in which runs are performed; e.g., one week). The intuition
is that with a series of runs one randomly samples the distribution
of possible experimental conditions during that week, which allows
to estimate the distribution of a performance metric.

In general, variability sources such as cross-traffic vary with an
a priori unknown temporal long-term correlation; in other words,
the distribution of conditions during a series may not be stationary
but time-varying. Therefore, in order to generalize the results, one
should perform multiple series, which we call sequels. Intuitively,
sequels allow to estimate the expected performance for any series
(e.g., the expected KPI for any week). Our method uses sequels to
compute a variability score that serves to quantify the replicability of
an experiment by computing a confidence interval for the expected
results one would obtain shall new series of runs be performed.

TriScale uses these three timescales of runs, series, and sequels
to structure the experiment design and data analysis pipelines.

Experiment design. The design phase starts with the definition of
the evaluation objectives (Fig. 2, left). For each performance dimen-
sion,the user defines the metric, the convergence requirements, a
KPI, and a variability score (§ 4). Given these inputs, TriScale derives
the minimum number of runs (#runs) and series (#series) needed to
compute the chosen KPIs and variability scores, thus answering the
question of how many runs to perform. Using data from test runs
or previous experiments, TriScale can assess whether the runtime
appears long enough to let the metric values converge. Additionally,
TriScale can make use of these test runs to identify time-dependent

patterns in the experimental conditions (§ 4.6). This is important
in order to understand the root cause of the statistical behavior
of the measurements, and helps to answer the question of when
the runs should be performed. Note that the congestion-control
example presented previously uses network emulation; thus, there
is no time dependency, and it does not matter when the experiment
is performed (i.e., span: anytime). The design phase produces in
a report (Fig. 2, right) summarizing how to run the experiments.
Based on this report, the user can collect the raw data and then
moves on to the analysis phase.

Data analysis. Once the experiment has been designed and the
data collected, the raw data are passed to TriScale for a three-stage
analysis, one per timescale. First, the raw data from one run are
processed, i.e., convergence is assessed and the performance metrics
are computed, producing one number per run and per metric. The
short-term variability in the experimental conditions is accounted
for by performing a series of runs. This timescale leads to one
number per series and per metric: the KPIs (§ 4.2). Finally, the
sequels (repetition of series) are used to compute a variability score
capturing the long-term variability of the KPIs. This timescale leads
to one number per metric (§ 4.3).

Using TriScale. TriScale is implemented as a Python module [35]
(details in § 6). For each timescale, a dedicated function performs
the corresponding test or analysis. The functions take as input raw
data in the form of CSV files, Pandas DataFrames, or Python arrays;
the outputs are returned and optionally saved as CSV files. These
same functions optionally produce data visualizations such as those
shown in Fig. 3 to 5. We aimed to make TriScale intuitive and easy
to use. For a better impression of TriScale’s usability, an interactive
demo is available and can be run directly in your web browser [36].



3 STATISTICS FOR REPLICABILITY
This section briefly reviews classes of statistical approaches and
motivates the choice of the methods we use in TriScale to handle the
variability inherent to networking evaluations. Note that, in this
paper, we consider a safe evaluation approach: we do not suppose
any knowledge about the statistical distributions underlying the
variability of the measurements. Of course, tighter estimates are
possible if additional reliable information is available, which would
lead to a different instance of the framework (discussed in § 7).

Descriptive and predictive statistics. A statistic is a number
computed from some data using a mathematical formula; it can
always be calculated and provides a factual description of the un-
derlying data. This is referred to as a descriptive statistic. In addition,
certain statistics have some inference power; i.e., based on the col-
lected data, one may infer the shape of the (unknown) underlying
data distribution. These are then referred to as predictive statistics.

Predictions are always uncertain and rely on specific hypothe-
ses. If the hypotheses hold for the collected data, then predictive
statistics estimate, with a quantifiable level of confidence, some
property of the underlying distribution such as the mean or the
median. One can then predict expected values of data samples that
have not been collected. A common hypothesis is that the collected
data is independent and identically distributed (i.i.d.). Informally,
this means that the underlying distribution of the data does not
change and that successive data samples are uncorrelated. It is also
common to presume the nature of the data distribution, such as a
normal or a Poisson distribution. For example, one can estimate
the mean 𝜇 and standard deviation 𝜎 of a distribution based on an
i.i.d. data sample. If the underlying data distribution is normal (the
hypothesis), we can infer that about 68% of all data points will be
contained within 𝜇±𝜎 (the prediction). However, if the distribution
is not normal, the statistics 𝜇 and 𝜎 are only descriptive—they do
not predict anything about unseen samples.

Statistical methods. There are two common classes of statistical
approaches: hypothesis testing and estimation.

Hypothesis testing consists of formulating a so-called null hy-
pothesis that the test aims to reject. Based on the collected data, one
computes the probability, called the 𝑝-value, that the null hypothe-
sis is correct. If the 𝑝-value is sufficiently low, the null hypothesis is
rejected and considered proven incorrect. For example, the one-way
ANOVA [78] is a common method to test for significant differences
in the mean of multiple data samples.

Estimation consists of computing confidence intervals (CIs) for a
given parameter (e.g., the mean of a distribution). A CI is always
associated with a certain confidence level (e.g., a 95% CI) which can
be seen as the probability that the interval includes the true value
of the parameter; e.g., [𝑎, 𝑏] is a 95% CI for the mean if the true
mean value is between 𝑎 and 𝑏 with a probability of at least 95%.3

3Note that this is a frequentist probability: that is, for many repetitions of the distribu-
tion sampling, if [𝑥𝑛, 𝑥𝑚] is a 95% CI for the mean (with 𝑛 and𝑚 two sample indices),
then the true mean value will be contained in [𝑥𝑛, 𝑥𝑚] approximately 95% of the time.
However, once a specific sample is collected, it is no longer mathematically correct
to talk about probability: the distribution mean has an exact—albeit unknown—value
which is thus contained in a given numerical interval [𝑎,𝑏] with “probability” of either
0 or 1. This is not an issue per se, but simply a semantic clarification: a confidence
level is not exactly a probability, although the two are often confounded.

These approaches are further classified as parametric if the nature
of the underlying distribution is known and as non-parametric if no
assumptions are made about the underlying distribution. For exam-
ple, the Kruskal-Wallis test [77] is the non-parametric equivalent
of the one-way ANOVA. The tests are similar, but the former does
not assume that the underlying distribution is normal. The central
limit theorem [80] offers another alternative to handle unknown
distributions, but it only allows to argue about the arithmetic mean.

Statistics for replicability in networking. Informally, replica-
bility is the principle that the “same experiment” leads to the “same
results.” Thus, assessing replicability entails predicting whether
future data (the results of a newly-performed experiment) will be
the same as the known data (the results of previous experiments);
it is a prediction. One important idea of TriScale is to try to predict
the expected amount of variability in an evaluation, and to use this
prediction as a measure of replicability.

Literature reports that experimental data are rarely normally
distributed and hence recommends using non-parametric statis-
tics [49, 64]. One should also consider robust statistics (e.g., using
median instead of mean) that is, statistics that are not overly skewed
by outliers, which are common in experimental networking data.
While hypothesis testing is commonly used, statisticians argue that
the methods are misunderstood and misused [44] and are thus call-
ing for a change in scientific practices [23, 75]. We favor estimation
over hypothesis testing because CIs are more legible than 𝑝-values
and easier to interpret. Furthermore, the confidence level of an esti-
mation only depends on the sample size, which is useful to guide
the experimental design.

In 1936, Thompson introduced a method to compute non-para-
metric CIs for percentiles [72]. This approach is found in statis-
tics [24] and computer science [45] textbooks, but it is rarely used
today ([9, 49, 64] are the few exceptions). As Thompson’s method
is well-suited to handle the variability of experimental networking
data, we use it in the described instance of TriScale’s methodol-
ogy (§ 4.5). We illustrate the potential of the approach (§ 5) and
facilitate its use by providing the necessary software support (§ 6).

4 DESIGNING TRISCALE
In this section, we first describe the data analysis performed by
TriScale and how the analysis procedure is linked to the design of
an experiment (§ 4.1 to § 4.3). We then illustrate how the formalism
introduced by TriScale allows to unambiguously describe an entire
performance evaluation with only a handful of parameters (§ 4.4).
We further detail the robust and non-parametric statistical meth-
ods used by this instance of TriScale (§ 4.5), and discuss how the
framework assists a user in deciding the required time span for a
series of runs (§ 4.6). Finally, we discuss how TriScale’s variability
score allows to assess the replicability of experiments (§ 4.7).

4.1 Runs and Metrics
In TriScale, metrics evaluate a performance dimension across a run;
for example, the mean throughput achieved by a congestion-control
scheme over 30 s runtime of a full-throttle flow. Computing a metric
takes the following inputs.
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Figure 3: Example plots produced by TriScale during the data analysis. Fig. 3a: computation of the metric (95th percentile on one-way
delay) with convergence test (confidence 95%, tolerance 5%). Fig. 3b: computation of the KPI (75th percentile with 75% confidence). Fig. 3c:
computation of the variability score (25-75th percentile range with 75% confidence). Sample data from the case study in § 5 (TCP Cubic).

Inputs. • The metric measure, e.g., mean, maximum;
• The convergence requirements
{ expected : True/False ,
confidence : 𝐶 (default: 95%) ,
tolerance : 𝑡 (default: 5%) };

• The raw data of the run.
In general, any measure can be used. The current implementation
of TriScale (§ 6) supports the arithmetic mean, the minimum, the
maximum, and any percentile. The definition and usage of the con-
fidence and tolerance are detailed with the convergence test (§ 4.5).

Procedure. If the run is expected to converge,4 TriScale starts by
performing a convergence test (§ 4.5) whose purpose is to estimate
whether the metric has reached a stable value by the end of the run—
and if it is thus a reliable estimate of the long-running performance.
Note that the performance dimensions and convergence behavior
can vary between systems. Therefore, suitable methods to test for
convergence may vary and need to be considered during the design
of an experiment. In the current instance of TriScale, we implement
an approach that seems well-suited to a variety of networking
experiments (§ 5).

The implemented convergence test starts by computing metric
values over a sliding window of the raw data points, with a fixed
size of half the data points. For each window, one metric value
is computed, starting with the first half of the data. The window
repeatedly slides by a 100th of the number of points until all data
are used, leading to a set of 100 metric values. TriScale performs
its convergence test (detailed in § 4.5) on these metric values. Note
that this procedure tests the convergence of the metric—which is
the focus of the analysis—and not of the raw data. Using a sliding-
window approach helps reduce the impact of the transient behavior
in the raw data on the convergence test. If the test is passed, TriScale
returns the median of the converged metric values as run metric.

4Not all runs should necessarily converge. For example, consider the evaluation of
an FTP client by downloading a 10MB file. One may be interested in the throughput
during the file transfer (e.g., to study fairness), but it does not matter whether the
throughput actually converges, since there is a finite task to perform.

If convergence is not expected, TriScale simply computes the run
metric over the whole raw data.

Outputs. • The result of the convergence test (if any);
• The metric value for the run;
• Textual logs, plot of the input and metric data.

Link to the experiment design. The computation of metrics is
linked to the definition of the runtime, i.e., how long a run should be.
If the evaluation scenario is finite (e.g., transmit 1MB of data), the
runtime must be long enough to complete the task. If the evaluation
is long-running (e.g., estimate battery lifetime), the runtime must be
long enough for the metric (e.g., energy consumption) to converge.
Details about the specific convergence test are described in § 4.5.
As illustrated in § 5, TriScale can analyze experiments to estimate
whether the runtime appears long enough i.e., it can assess with
quantifiable confidence that the metric values are stable for a given
runtime.However, TriScale cannot guarantee that the runtime is
long enough for a sound evaluation of long-running performance,
as this requires context-specific knowledge.5

4.2 Series and KPIs
TriScale’s KPIs evaluate performance dimensions across a series
of runs. Performing multiple runs allows to mitigate the inherent
variability of the experimental conditions. KPIs capture this variabil-
ity by estimating percentiles of the unknown metric distributions.
Concretely, in TriScale, a KPI is a one-sided CI of a percentile; e.g.,
a lower bound for the 75th percentile of the throughput metric
estimated with a 95% confidence level.

Inputs. • The KPI definition
{ percentile : 𝑝 ,
confidence : 𝐶 };

• The metric values from a series of runs.

5For example, if a system is configured to switch from its bootstrapping to its steady-
state behavior after e.g., an hour, and if we test for only a few minutes, it is impossible
for TriScale to “predict” the behavior change; it is limited to what is observed.

https://nbviewer.jupyter.org/github/TriScale-Anon/triscale/blob/master/triscale_plots.ipynb#Figure-3a
https://nbviewer.jupyter.org/github/TriScale-Anon/triscale/blob/master/triscale_plots.ipynb#Figure-3b
https://nbviewer.jupyter.org/github/TriScale-Anon/triscale/blob/master/triscale_plots.ipynb#Figure-3c


Procedure. To compute a KPI (i.e., to compute a CI for a given
percentile), TriScale uses Thompson’s method (§ 4.5) which requires
the input data to be i.i.d. Therefore, TriScale starts by performing an
independence test (§ 4.5) to check that the metric data empirically
appears i.i.d. before computing the KPI.

Outputs. • The result of the independence test;
• The KPI value for the series of runs;
• Textual logs, plot of the metric and KPI data.

Link to the experiment design. The computation of KPIs is
linked to the definition of the number of runs in a series (# runs) and
the series time span (span). The minimal number of runs in a series
directly follows from the definition of the KPI, i.e., the percentile
to estimate 𝑝 and the desired confidence level 𝐶 (see Eq. (4)). The
series time span refers to the time interval used for scheduling the
runs in a series; i.e., when to run the experiment. This is impor-
tant because networks often feature time-dependent conditions;
for example, there may be systematically more cross-traffic dur-
ing daytime than nighttime. Failing to consider such dependencies
may bias the results and yield wrong conclusions. This concept of
series also applies when “slicing” a long experiment into smaller
independent ones. In such a case, it is crucial to consider warm-up
and cool-down effects to avoid biasing the results. Note that such
slicing strategy is more likely to result in empirically non-i.i.d. data
than a random schedule of truly independent runs. TriScale helps
to detect certain classes of dependencies with a dedicated “network
profiling” function (example in § 5). Here, again, other dependency
analysis methods can be implemented to tailor TriScale to a specific
class of systems under evaluation.

4.3 Sequels and Variability Score
Sequels are repetitions of series of runs. TriScale’s variability score
evaluates the variations of KPI values across sequels. Sequels enable
TriScale to detect long-term variations of KPIs and ultimately to
quantify the replicability of an experiment.

Concretely, a variability score is made of two one-sided CI for
a symmetric pair of percentiles; e.g., a 75% confidence interval for
the 25-75th percentile range of the delay KPIs from all sequels.
Again, we attach a confidence value to the confidence interval or,
equivalently, to the percentile estimation.

Inputs. • The variability score definition
{ percentile : 𝑝 (or 1-𝑝),
confidence : 𝐶 };

• The KPI values of each sequel.

Procedure. The procedure is the same as for the KPIs: TriScale first
performs an independence test on the KPI data before computing
the variability score.

Outputs. • The result of the independence test;
• The variability score value across all sequels;
• Textual logs, plot of KPI values, and corresponding
variability score.

Link to the experiment design. The computation of the variabil-
ity score is linked to the definition of the number of series (#series).
The minimal number of series directly follows from the definition

of the variability score; i.e., the percentile to estimate 𝑝 and the
desired confidence level 𝐶 (Eq. (4)).

Why not just one big series? A common practice today is to
perform one series of many runs (say 100). The problem with this
approach is that it does not allow to estimate replicability, i.e., what
the expected performance is shall one re-do the experiment (i.e.,
one series of 100 runs). The purpose of sequels is to address this
problem. By running several independent series (e.g., 10 series of 10
runs),6 one can estimate how much the performance varies across
series and thus assess replicability (§ 4.7). This, of course, comes at
a cost. If the total number of runs remains fixed (e.g., 100), the KPI
estimates for each series will be worse, i.e., resulting in wider CIs
and/or using lower confidence levels—there is no free lunch.

4.4 Formalism Brings Conciseness
TriScale formalizes the definition of the evaluation objectives. As
illustrated in Fig. 2, for each performance dimension, the user de-
fines a metric together with its convergence requirements, a KPI,
and a variability score. TriScale links these objectives with the expe-
riment design, resulting in four additional parameters: the number
of runs per series (# runs), the number of series (# series), the length
of a run (runtime), and the time span of a series (span).

With this formalism, TriScale addresses the conciseness challenge:
altogether, 12 parameters are sufficient to formally describe the
entire performance evaluation. Since the data analysis in TriScale
is automated and deterministic, documenting these parameters
guarantees computational reproducibility, i.e., the ability to recreate
the results when all raw data are available [47].

Table 1 shows a few examples of concrete parameter settings for
typical networking evaluation use cases. For example, evaluating
the latency of a real-time protocol requires high confidence levels
for extreme percentiles. This quickly increases the number of runs
that must be performed, e.g., at least 90 for estimating the 95th
percentile with 99% confidence and at least 299 for estimating the
99th percentile with 95% confidence. This illustrates that it is “easier”
to increase the confidence level of an estimation than to estimate
a more extreme percentile with the same confidence level. Note
that both #runs and #series are only derived from the definition
of the KPI and the variability score; i.e., these parameters are not
influenced by the runtime or the time span of an experiment.

The second use case in Table 1 (bottom rows) illustrates two
different perspectives on “averages” using delay as an example. If
one uses the median and the 90th percentile as metric and KPI,
respectively, one can conclude that 90% of the runs have a median
delay equal or better than the KPI value. Conversely, if one uses the
90th percentile as metric and the median as KPI, one can conclude
that, in half of the runs, the 90th percentile of the delays in a run is
equal or better than the KPI. Both are “averages,” but with different
meanings and different requirements in terms of number of runs.
Only users can know what is more appropriate for their evaluation,
but it is important to understand this distinction when designing it.

6The statistical analysis requires the KPI values to be i.i.d. Therefore one should not
perform one batch of 100 runs and simply split them into chunks of 10 runs to produce
10 series, as this is likely to induce correlation between the series. The same holds true
for “making up” multiple runs by slicing a large measurement, e.g., making 60 1-minute
runs out of a measurement of one hour. To hold statistically relevant information, runs
and series must be collected independently of one another (as much as possible).



Table 1: Exemplary evaluation of typical parameters for networking. ∗TriScale returns the minimal number of runs (#runs) and series
(#series) based on the definition of KPI and variability score, respectively.

Evaluation Objectives
Experiment DesignUse case Metric Convergence KPI Var.Score

Measure Exp. Conf. Tol. Perc. Conf. Perc. Conf. #runs∗ #series∗ runtime span

Latency of 95 95% median 75% 59 3

Depend on
networks and
protocols

real-time max True 95% 5% 95 99% 75 75% 90 5
protocol 99 95% median 90% 299 5

Average median False - - 90 95% median 90% 29 5
delay 90th perc. median 95% median 90% 5 5

4.5 Statistics in TriScale
As discussed in § 3, performance evaluations in TriScale focus on
statistics that are both robust (i.e., tolerant to outliers) and non-
parametric (i.e., which make no assumption about the nature of the
data distribution).7 The instance of TriScale we present in this paper
uses three carefully-chosen statistical methods. We first present the
convergence test used in the computation of metrics, which is based
on the Theil-Sen linear regression [68, 71]. We then introduce the
computation of confidence intervals using Thompson’s method [72].
Since this method requires the data to be i.i.d., TriScale empirically
checks whether this requirement is satisfied with an independence
test, which we present last. We conclude with a discussion of the
consequences if one of the tests fails.

Convergence test. When an evaluation aims to estimate long-
running performance—the expected performance if the run would
continue for a very long time—one must verify whether the runs
appear long enough to produce reliable estimates. To this end,
TriScale implements a convergence test based on the Theil-Sen
linear regression [68, 71]. This approach computes the slope of the
regression line as the median of all slopes between any pair of data
points. A 𝐶% CI for the slope is defined as the interval containing
the middle𝐶% of slopes. TriScale’s convergence test is passed if the
𝐶% CI for the regression is included in the tolerance value (± 𝑡%).
The confidence 𝐶 and the tolerance 𝑡 can be specified by the user
in the evaluation objectives (see Fig. 2, left) and are otherwise set
to 95% and 5% by default, respectively.

Such a test is sensitive to the scale of the input data. To remove
this dependency, TriScale first maps the data to [−1, 1] using a linear
transformation, then performs the convergence test on the scaled
data. Hence, the convergence test becomes dimensionless and the
same tolerance value can be used to compare different protocols
or systems without bias. Fig. 3a shows an example of the Theil-
Sen slope (brown, solid), its CI (light blue, solid), and the tolerance
(black, dashed).

Note that this convergence test is based on some assumptions;
e.g., that the convergence of metric values is captured by the conver-
gence of the slopes toward zero. This does not hold if one measures,

7If reliable information about the underlying distribution of the data is available, one
can use other statistical approaches within TriScale to produce tighter estimates—see
§ 7 for more details. However, as this is generally not the case, we focus here on a
TriScale instance that does not require such information.

e.g., energy consumption since it is cumulative over time; one should
measure power draw instead.

Finally, note that convergence is not necessary for replicability;
an experiment can be replicable but not “converge,” e.g., due to a
too short runtime (Fig. 5). However, convergence is required to
assess whether the runtime is long enough to produce reliable
performance estimates (again, see Fig. 5), which is paramount to
fairly evaluate and compare different systems.

Confidence intervals. TriScale defines KPIs and variability scores
based on CIs for distribution percentiles, which can be computed
using a robust and non-parametric approach based on Thompson’s
method [72], which has been later on shown to be valid for any
independent sample of a continuous distribution [24].

Let us denote by 𝑃𝑝 the 𝑝-th percentile of a distribution and by
P(𝑋 ) the probability of an event 𝑋 . By definition, a data sample 𝑥
is smaller than 𝑃𝑝 with probability 𝑝 (and larger with probability
1 − 𝑝). For a sorted list of i.i.d. samples 𝑥𝑖 (where 𝑖 = 1...𝑁 ), the
probability that 𝑃𝑝 lies between two consecutive samples follows
the binomial distribution [72]:

P(𝑥𝑘 ≤ 𝑃𝑝 ≤ 𝑥𝑘+1) =
(
𝑁

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑁−𝑘 , 𝑘 = 0...𝑁 (1)

where we assume that 𝑥0 → −∞ and 𝑥𝑁+1 → +∞. From this result,
it follows that the probability for 𝑃𝑝 to be larger than any sample
𝑥𝑚 (1 ≤ 𝑚 ≤ 𝑁 ) can be computed as:

P(𝑥𝑚 ≤ 𝑃𝑝 ) = 1 −
𝑚−1∑︁
𝑘=0

(
𝑁

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑁−𝑘 (2)

Note that these probabilities are symmetric; that is,

P(𝑥𝑚 ≤ 𝑃𝑝 ) = P(𝑥𝑁−𝑚+1 ≥ 𝑃1−𝑝 ) (3)

Thus, Eq. (2) provides either the upper or lower bound required for
computing a one-sided CI. If the probability distribution is discrete,
then Eq. (2) becomes an inequality (P(𝑥𝑚 ≤ 𝑃𝑝 ) ≥ . . . [24]), which
provides safe (i.e., conservative) estimates of which sample 𝑥𝑚 is
the bound of the CI of interest. Furthermore, one can derive the
minimum number of samples 𝑁 needed to compute a CI for any
percentile 𝑝 with any confidence level 𝐶 [64]:

𝑁 ≥ log(1 −𝐶)
log(1 − 𝑝) (4)

TriScale uses Eq. (4) to define the minimum number of runs and
series required for estimating the KPIs and the variability scores.



This approach provides robust estimates for distribution percentiles
and does not make any assumption on the nature of the underlying
data distribution. It does, however, require that the data samples
are i.i.d.; thus TriScale checks whether this requirement holds with
an empirical independence test, described next.

Independence test. Estimating the percentile of a distribution
requires often (if not always) that the samples are i.i.d. This is
also the case for Thompson’s method [72]. TriScale implements
an empirical independence test to check whether we can safely
treat the samples as i.i.d.8 This independence test is applied to the
metric data (resp. KPI data) before the computation of a KPI (resp.
a variability score). This poses the particular challenge that the
number of data samples may be very small (e.g., 3 or 5 KPI values).
TriScale’s independence test must therefore not be too strict.

The test proceeds in two steps. First, TriScale tests whether the
data are weakly stationary (i.e., no trend and constant autocorre-
lation structure [16]). TriScale verifies this empirically using its
convergence test with a confidence of 50% and a tolerance of 10%;
these “loose” parameters are used to compensate for (very) small
sample sizes. Second, TriScale computes the sample autocorrelation
coefficients, denoted by 𝜌𝑘 , which measure the linear dependence
between values of a weakly stationary data series, where 𝑘 is the lag
between data points. A series of size 𝑁 is i.i.d. with 95% probability
if |𝜌𝑘 | ≤ 1.95/

√
𝑁 for 𝑘 ≥ 1 [16].

What if a test fails? The user is responsible for designing the
evaluation in such a way that the collected data will (likely) pass
the tests. TriScale facilitates this by guiding the choice of runtime to
pass the convergence test and informing about any network time
dependencies (§ 4.6) to pass the independence test. Yet, the data may
still be correlated or unstable, leading to failing tests (see examples
in § 5). Even in such cases, the data may contain useful information.
TriScale’s metrics, KPIs, and variability scores can be computed.
However, since the required hypotheses do not hold, the statistics
are only descriptive (§ 3); that is, they do not allow to predict the
expected performance and, in particular, they cannot—and should
not!—be used to assess the replicability of the evaluation.

4.6 Network Profiling
TriScale can assist the user in deciding on the time span for a series
of runs, i.e., the time interval containing all the runs of one series.
This is important in order to avoid biasing the evaluation results
with time dependencies in the experimental conditions. Indeed, it
is common for networks to exhibit periodic patterns. For example,
there may bemore cross-traffic (i.e., interference) at specific times of
the day. In the statistics literature, these patterns are called seasonal
components. Neglecting these may bias experiments and lead to
wrong conclusions, as illustrated e.g., in § 5.2 and [73].

To address this, TriScale’s network profiling function analyzes
“network condition data.” Informally, such data should be measure-
ments of metrics that capture the “friendliness” of the experimental

8Generally, independence results from the experiment design. For networking ex-
periments, however, it is generally not possible to guarantee independence: e.g., the
experimental conditions cannot be fully controlled and may be correlated. In such
cases, it is common to empirically check whether the data are correlated. If the empiri-
cal dependence between data samples is sufficiently low, it is considered safe to treat
the samples as i.i.d.

environment for the system we evaluate. For example, this could
be noise floor data (in a wireless testbed) or congestion levels (in a
wired network). It is important that these data are collected prior
to the performance evaluation and at regular intervals; this may
be a significant overhead, but it is necessary to identify possible
seasonal components in the experimental conditions. Some aca-
demic testbeds regularly collect and make such data available, e.g.,
[39]. Practically, TriScale computes the autocorrelation coefficients
of the network condition data. Peaks in the autocorrelation plot
suggest seasonal components in the network conditions (see Fig. 4),
which helps to detect (sometimes unexpected) time dependencies.

To avoid biasing the results, the span of a series of runs should be
chosen as a multiple of the—assumed, known or observed—seasonal
components. The same care must be taken when choosing the time
to execute a run within a series; the most advisable strategy is to
randomly sample the entire span of a series.

4.7 Assessing Replicability
Replicability refers to the ability of obtaining “the same” results
when performing “the same” experiment. In statistics, such property
can be investigated using equivalence testing [44], which checks
whether the values of some parameter of interest, for example the
median, obtained for different samples are sufficiently close to be
considered “the same.” Unfortunately, there is no general way to
define “the same” or even “sufficiently close.” One must specify in
advance a threshold for the equivalence test based on expertise.

Then, how to assess replicability of networking experiments?
How to design a “replicability test” that fairly adapts to different
networking contexts and metrics? Setting fixed absolute thresh-
old values does not make much sense. The next natural idea is to
consider relative thresholds, e.g., ±5% of the median value. One
problem with this approach is that it measures how stable the re-
sults are, which does not exactly capture the notion of replicability:
one system can have large performance fluctuations, but these fluc-
tuations may be stable over time (e.g., the saw-tooth behavior of a
congestion window). The performance evaluation of such a system
should be assessed as replicable, but a relative threshold would be
biased to rule against it. Moreover, setting appropriate values (e.g.,
5%) appears difficult—if not impossible—to do in a context-agnostic
manner and would work against our objective of generality. We
conclude that defining a generic threshold for equivalence testing in
networking might not be possible. But it may also be unnecessary!

We argue that it is more important to confidently estimate the
variability of the results, which TriScale computes with its vari-
ability score (§ 4.3). This score quantifies replicability: the larger
the score, the less replicable are the results (see the example in
§ B.1). Shall a binary cut between “replicable” and “not replicable”
be desired, a threshold can be set based on the variability score, e.g.,
“Results are said replicable when the variability score is less than
20Mbps.” Clearly, such a threshold can only be context-specific.
Thus, deciding on threshold values is more related to benchmark-
ing and therefore goes beyond the scope of TriScale (see § 7).



5 TRISCALE IN ACTION
We now present four case studies which illustrate shortcomings in
performance evaluations that TriScale addresses (§ 5.1 and 5.2), and
show how TriScale allows generalizing performance claims with a
quantifiable confidence (§ 5.3 and 5.4). Further details on these case
studies (e.g., link to datasets, additional plots) are available in § B.

5.1 Congestion Control
The first case study illustrates that, for estimating long-running
performance, it is important to carefully set the length of runs (the
runtime) and to check whether the performance has converged for
the system under evaluation.

We continue the evaluation introduced in § 2.1, which compares
congestion-control schemes using Pantheon [83]. Assume we are
now interested in long-running flows; that is, our goal is to esti-
mate the performance one would obtain if the flows ran “forever.”
TriScale’s convergence test (§ 4.1) checks whether the length of a
run is long-enough to provide a robust estimate. Since all schemes
are different, it is hard to know a priori the minimum runtime
for which the schemes actually converge. For this reason, we test
runtimes from 10 to 60 s and check when the schemes pass the test.

For a runtime of 30 s (used by the maintainers of Pantheon [56]),
only 11 out of 17 schemes pass the test (i.e., converge) in most of
the cases. Verus, PCC-Allegro, and Copa only converge in less than
half of the runs (see § B.1), whereas QUIC Cubic, TCP Vegas, and
LEDBAT never pass the test, evenwith a runtime of 60 s. Fig. 5 details
the case of LEDBAT. The functioning of this congestion-control
scheme causes the throughput to ramp-up in the first 38 s and then
converge to about 92Mbps. Thus, if one uses a runtime of 30 s
without checking for convergence, the computed mean throughput
is about 40Mbps, which is a totally wrong estimation of LEDBAT ’s
long-running throughput.

Takeaway 1. Always check for empirical indepen-
dence; check for convergence whenever necessary.
TriScale’s convergence test checks whether the runtime of an
experiment is sufficiently long to produce a robust estimate
of the long-running performance. A failing convergence test
informs a user about the need to increase the runtime or to
take other measures (e.g., pruning the start-up time in the raw
data) in order to avoid wrong conclusions. Independence should
never be assumed and always empirically validated.

5.2 Wireless Embedded Systems
This case study shows the importance of carefully choosing the time
span for a series of runs. In particular, if there are strong temporal
patterns in the experimental conditions, one may derive wrong
results despite using a high confidence level.

We run a simple evaluation of Glossy [27], a low-power wireless
protocol based on synchronous transmissions [85]. A key parameter
of Glossy is the number of retransmissions 𝑁 . We are interested in
investigating the impact of 𝑁 on the reliability of Glossy, measured
as the packet reception ratio (PRR), for which we aim to estimate
the median value with a 95% confidence level—our evaluation’s KPI.
Refer to § B.2 for more details. We collect data using the FlockLab
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Figure 4: Autocorrelation plot for the wireless link quality
on FlockLab [46], based on the raw data collected by the test-
bedmaintainers [39]. The dataset contains one test every two hours,
and we show here the lag in days (i.e., at lag 1, we find the correlation
between tests that are 24h apart). The first peak at lag 1 indicates
the (expected) daily seasonal component. The data also show another
clear peak at lag 7, which corresponds to one week. Indeed, there is
less interference in the weekends than on weekdays! Data recording
during August 2019. See Appendix § B.2 for further details.

testbed [46], which is located in an office building where we expect
more interference during daytime than nighttime.9 To mitigate this
effect, we perform series of 24 runs scheduled randomly within
one day, one per value of 𝑁 . Computing the KPI leads to a PRR of
88% and 84% for 𝑁 = 1 and 𝑁 = 2, respectively. In other words, it
appears that two retransmissions instead of one reduces reliability.

The experiment led to this (incorrect) conclusion because we
(intentionally) neglected a weekly seasonal component revealed
by TriScale’s network profiling function (Fig. 4): there is more in-
terference on weekdays than on weekends. To account for this
dependency, we repeat the experiment but extend the overall span
to one week; this leads to KPI of 80% and 88% for 𝑁=1 and 2 respec-
tively, which matches our expectations on Glossy’s reliability.

Takeaway 2. Using a high confidence level does not
prevent wrong conclusions! Real networks exhibit short-
term variations that are unpredictable and often unavoidable,
which is why it is important to performmultiple runs in a series.
Moreover, there may also be systematic patterns; i.e., epochs
with consistently more or less interference. Knowing about
and accounting for these patterns is important to ensure fair
comparisons. The time span of a series should be long enough
such that it does not matter when the series of runs starts.
To avoid biasing the results, the span should be chosen as a
multiple of the seasonal components, which can be identified
using TriScale’s network profiling function.

9At least, we used to in pre-COVID times. . .

https://nbviewer.jupyter.org/github/TriScale-Anon/triscale/blob/master/triscale_plots.ipynb#Figure-4
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Figure 5: Egress throughput of the LEDBAT congestion-control scheme in MahiMahi [53]. A runtime of 30 s is clearly not sufficient
for LEDBAT’s throughput to converge (Fig. 5a). The scheme does converge eventually (Fig. 5b), but even with 60 s runtime, TriScale’s convergence
test fails as the impact of the start-up phase is too important when all data are considered. Two possible solutions would be to either (i) increase
the runtime or (ii) prune the start-up time from the raw data. See § B.1 for further details.
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Figure 6: Using data from a sample of prefixes, TriScale al-
lows generalizing and deriving performance estimates for
any random set of samples from the same Caida trace [18].
See Appendix § B.3 for further details.

5.3 Failure Detection
This case study illustrates how the methodology of TriScale allows
generalizing performance claims for large sets of input parameters
based on a relatively small sample. We focus on Blink [34], an
algorithm that detects failures and reroutes traffic directly in the
data plane. The authors evaluated Blink’s performance in terms
of the true positive rate (TPR—the fraction of failures successfully
detected) and the time needed to reroute the traffic based on 15
Internet traces [18, 20] containing data for thousands of prefixes. A
subset of prefixes was randomly selected, based on which synthetic
traces including artificial failures were generated.

Using TriScale, we can generalize the results. For each trace, the
evaluation of Blink on one prefix can be seen as a TriScale run. Since
the prefixes are randomly selected from a fixed set, runs are i.i.d.
and we can use TriScale’s KPI to derive the expected performance
of Blink for any set of prefixes (Fig. 6). § B.3 provides more details
about Blink’s analysis using TriScale, which allows claiming with
95% confidence that, for at least 50% of the prefixes, Blink always
detects link failures (TPR= 1) and reroutes traffic within 1 s (Fig. 8).

Takeaway 3. Using TriScale, one can generalize per-
formance results for a larger set of inputs. TriScale’s
methodology can handle any source of performance variability
as long as the variability source can be reasonably modeled by a
stationary distribution. Thus, one can use TriScale to generalize
performance claims for evaluations based on network emula-
tion: one can randomly select input traces or system parameters,
and derive the expected performance of any other random set.
However, the stationarity assumption cannot always be guar-
anteed (e.g., for cross-traffic over the Internet), which is why
TriScale includes an empirical independence test.

5.4 Video Streaming
This case study shows that the methodology of TriScale is easily
compatible with common data reporting practices in networking,
such as cumulative density functions (CDF).

In video streaming research, performance is often measured
using the quality of experience (QoE) for the user as metric, for ex-
ample, to compare state-of-the-art adaptive bitrate algorithms such
as RobustMPC [84] or Pensieve [48]. Since QoE typically varies a
lot, CDFs are often used to give a more global view on the perfor-
mance of an algorithm. For example, Fig. 7 (area) shows the CDF
achieved by Pensieve over a static set of synthetic network traces
(reproduced from [48], see § B.4). However, CDFs are no different
from other metrics: What is the confidence in the result? Howmuch
would it vary with a different set of traces?

A CDF is a representation of all percentiles of a given distribution.
Hence, TriScale can be used to estimate an entire CDF by computing
a large set of KPIs. For example, Fig. 7 (solid line) shows the 95% CI
for the 2th to the 98th percentile, which provides a lower-bound
on the expected performance. Hence, one can claim that, for any
set of traces that would be generated/obtained similarly, the QoE
of an algorithm is better than the CI CDF with 95% confidence.

Takeaway 4. Percentiles are useful to evaluate any
performance metric. Using percentiles as KPIs makes
TriScale metric-agnostic and it can handle any source of vari-
ability that can be modeled as a stationary distribution.
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Figure 7: A CDF and its 95% CI, computed by TriScale. Orig-
inal CDF reproduced from [48]. The CI provides a lower-bound on
the expected performance for any other random set of input traces
generated similarly. See § B.4 for details.

6 IMPLEMENTATION AND SCALABILITY
6.1 All-Included Software Package
One obstacle to the adoption of non-parametric statistics is the lack
of support in current scientific libraries; for example, the computa-
tion of CIs for percentiles, although present in textbooks, has no
public implementation available.10 To facilitate its use and adop-
tion, we have implemented TriScale as a Python module including
all necessary functions to apply our methodology. TriScale’s API
contains one function for each timescale of the data analysis, with
docstrings containing detailed information about each function’s
usage. The module also includes support tools, such as functions
producing visualizations. TriScale uses Plotly [60] to create interac-
tive plots in which one can zoom in and out, toggle the visibility of
individual traces, read data values on hover, etc. Most plots in this
paper have been produced using TriScale and all are “clickable”: the
figures are hyperlinks leading to dynamic versions of the plots. Our
implementation is available open source [35].11 We use Binder [40]
to provide an interactive demo of TriScale that runs directly in your
web browser [36]—that’s right, no need to install anything at all!

6.2 Scalability of TriScale Data Analysis
The data analysis proposed in TriScale induces no significant over-
head. The computation time for the data analysis scales linearly
with the input size, and it is fast (less than 1 s for one million data
points on a commodity laptop): this will almost always be negligible
compared to the data collection time. We evaluated the scalability
of TriScale by measuring its computation time, i.e., we measured
how the time needed for the data analysis scales with a growing
input size. To this end, we only considered the time required for
performing computations, and exclude other outputs such as logs
and plots (e.g., Fig. 3a). More details are presented in § A.

7 DISCUSSION AND FUTUREWORK

Data collection. TriScale is not responsible for the execution of
networking experiments: it does not perform the data collection.

10We are currently working to include this functionality into SciPy.
11The repository is currently anonymous as it was submitted for double-blind re-
view. Everything will be properly packaged and published on PyPI shall the paper be
accepted.

Other frameworks such as Pantheon [83] or Puffer [82] are special-
ized in data collection; other examples include low-power wireless
testbeds [46, 65, 66] and networking facilities [7, 25, 55]. TriScale
can be integrated into these frameworks to create a fully-automated
experimentation chain and build full-fledged benchmarking infras-
tructures, as envisioned by some networking communities [12]. In
such an infrastructure, TriScale could be used as part of a feedback
loop that would perform additional runs until a sufficiently narrow
CI is obtained; e.g., until a given replicability target is reached.

TriScale does not account for specific features of testbeds or
data collection tools, such as those discussed e.g., in [73]; this is
intentional, as it would otherwise restrict the scope and applicabil-
ity of the methodology. Moreover, one cannot magically “salvage”
a poorly designed evaluation or an unstable experimental setup;
what TriScale can do, however, is to observe and assess whether
the chosen parameters and experimental setup eventually lead to
replicable results. Furthermore, the links between the design and
analysis phases of our methodology allow to rationally advise on
how to design an experimental evaluation that is likely to produce
replicable and trustworthy results—a unique feature of TriScale.

Human-in-the-loop. TriScale automates the data analysis and
implements tests that verify whether the required hypotheses hold.
However, it is up to the user to critically assess why tests fail when
they do (e.g., because the runtime should be longer—§ 5.1), and
derive corresponding countermeasures (e.g., pruning the start-up
time in the raw data). Furthermore, some feedback and iterations
are likely between the first set of tests and the final evaluation, as a
larger set of experiments often uncover insights such as unknown
correlation or seasonal components in the system being evaluated.

Ranking solutions. TriScale measures performance, but it does
not rank. The evaluation results are always relative to a specific
network or evaluation scenario (e.g., a given cloud provider [73]).
It is not trivial to claim that a solution A is generally better than
a solution B. This problem relates to benchmarking and multi-
objective optimization, which goes beyond the scope of TriScale.

Community guidelines. TriScale formalizes evaluation objectives
(§ 4.4), but it does not dictate which parameters should be used. Sim-
ilarly, TriScale quantifies the replicability of an experiment rather
than concluding whether the evaluation is replicable or not (§ 4.7).
Building on TriScale’s formalism, networking communities can now
more easily set their own standards, metrics, reference parameters,
and acceptable requirements in order to make performance evalua-
tions more comparable, as it has been done in other disciplines [29].

Other instances. In this paper, we present amethodological frame-
work to streamline the design and analysis of performance evalua-
tions. TriScale is one instance of this framework—i.e., the combina-
tion of the methodology with a given set of statistical approaches—
and this instance is (probably) not universal: other systems may
have a behavior benefiting from or requiring other models or sta-
tistics. Relevant examples include the definition of convergence
(which may be different depending on the system), the normaliza-
tion of measurements using different scaling function, the sampling
of runs within series and series within sequels (periodic vs. random
vs. biased random), as well as the availability of knowledge about
the distributions or other statistical properties of measurements.

https://nbviewer.jupyter.org/github/TriScale-Anon/triscale/blob/master/triscale_plots.ipynb#Figure-7
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In such cases, one can build a different instance of TriScale
based on the same methodology—i.e., the concept of separating
the variability sources into different time scales and addressing
them independently— which can be generally applied with differ-
ent statistical approaches. Nevertheless, the specific instance we
present here appears well suited for a large class of performance
evaluation scenarios, as exemplified by the case studies in § 5.

Multi-objective evaluation. In this paper, we consider perfor-
mance dimensions independently of each other. In many cases
though, one is interested in comparing performance over multi-
ple metrics (e.g., delay and throughput). Our methodology can be
extended to multi-objective performance evaluations using the
principles of Pareto-dominance, which we leave for future work.

8 RELATEDWORK
The replicability of experiments and comparability of results are
cornerstones of the scientific method. In recent years, several stud-
ies have highlighted the inability of researchers from various dis-
ciplines to replicate their own experimental results [6, 58], of-
ten due to sloppy research protocols and faulty statistical analy-
sis [11, 13, 64]. This is a problem in computer science as well [22, 74],
where experiments are seldom replicable and artifacts rarely shared.

Promoting replicability. Recent work demonstrated that poor
experimental and statistical practices has led to wrong or ambigu-
ous conclusions. [73] presented a survey of recent cloud computing
works and concludes that more than 60% of papers reports poor or
no specification of the experiments, and that three-quarter of those
that do are using less repetitions than necessary to mitigate the per-
formance variability of cloud infrastructure. The Puffer project [82]
showed that, for adaptive bit-rate algorithms, even with 2.5 years
of data, the size of 95% CI of some performance metrics—i.e., the
uncertainty—is of the same scale as the performance “improve-
ments” claimed in the original papers. To address this “replicability
crisis” [6], many efforts aiming to incentivize a rigorous experi-
mentation have gained momentum in computer science, including
e.g., ACM’s badging system for publications [1]. In the networking
community, especially challenged by the need to carry out experi-
ments in dynamic and uncontrollable conditions [17, 51], several
workshops [4, 15, 31], surveys [28], and guidelines [5, 43, 52, 63]
have raised awareness on the replicability problem and promoted
better experimentation practices. This large body of work mostly
offers qualitative statements on how an experiment should be per-
formed and documented. Such statements emphasize, e.g., the need
to carefully choose when and how often to sample data [5], or
suggest which methodology to adopt during performance evalu-
ations [43]. However, there is no guarantee that following these
recommendations leads to replicable results, nor a concrete way to
assess whether an experiment can be considered replicable.

In contrast, TriScale provides researchers with quantitative an-
swers about how to concretely design an experimental evaluation
(e.g., howmany runs should be performed and how long they should
be), which are derived from a clear experimental methodology
grounded on robust non-parametric statistics. Moreover, TriScale
offers a way to assess and compare the replicability of experimental
results using clear performance indicators and variability scores.

Supporting replicability. A large number of experimental facili-
ties and tools have been developed to aid researchers in carrying
out replicable networking studies [55, 69]. Testbeds such as Em-
uLab [76] and FlexLab [61], as well as emulation tools such as
MiniNet [32] and the mini-Internet [33], enable the creation of arti-
ficial network conditions using a given specification or passively-
observed traffic. Emulated conditions offer a more controlled en-
vironment than experiments with real-world traffic (e.g., by trans-
mitting data over the Internet [10, 21], cloud [14, 25], or wireless
interfaces [2, 30, 50]). However, even emulation suffers from per-
formance variability caused by the underlying hardware and soft-
ware components, which hampers replicability [49]. To overcome
these problems, several solutions have been proposed [26], such
as revisiting OS libraries [70], using virtualization [32, 41, 42],
adaptable profiles [62], and fault patterns [3]. For “real-world”
evaluations, other tools have been developed to support mobil-
ity experiments [7, 19], maximize the repeatability of interference
generation [67], and enable researchers to consistently evaluate
congestion-control schemes [83].

All the aforementioned tools aim to improve replicability dur-
ing the experiments, while TriScale assists researchers before and
after their execution. It does so by informing about the number
and length of runs necessary to reach a given level of confidence,
as well as by computing a score quantifying the variability of the
results. Hence, TriScale complements the existing body of literature
promoting and enhancing replicability in networking research. The
most similar proposal to TriScale is CONFIRM [49], a tool aiming
to indicate how many runs are required when running cloud ex-
periments in order to obtain CIs of a given size; e.g., ±1% of the
empirical median. CONFIRM uses the same statistical approach to
compute CIs as TriScale (see § 4.5) but it also requires extensive
domain-specific knowledge about cloud environments in order to
predict the expected width for the CIs. By contrast, TriScale is more
general: it indicates, for any networking context, how many sam-
ples are required to compute a CI, but it does not say anything about
the expected interval size, which can only be known a posteriori.

9 CONCLUSIONS
A consistent methodology for the design and analysis of experi-
ments is crucial for a more rigorous and replicable scientific activ-
ity. In a prior workshop paper [38], we have argued that such a
methodology is of paramount importance for networking, which
is especially challenged by the need to carry out experiments in
dynamic and uncontrollable conditions. TriScale is the concrete
realization of our vision into a tangible framework: it implements
a methodology grounded on non-parametric statistics into a frame-
work that aids researchers in designing experiments and analyzing
data. In addition, TriScale improves the interpretability of results
and helps to quantify the replicability of experimental evaluations.

We hope that TriScale’s open availability and usability [35, 36]
will foster better experimentation practices in the short term and
for the networking community at large. The quest towards fully-
replicable networking experiments remains open, but we believe
that TriScale represents an important stepping stone towards an
accepted standard for networking experimental evaluations.
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A DETAILS ON THE SCALABILITY
EVALUATION

This appendix provides additional information about the evaluation
of TriScale’s scalability presented in § 6.2. We perform the evalu-
ation using a Jupyter notebook12 (i.e., an open-source web-based
interactive computational environment to create and share docu-
ments containing live code, equations, visualizations, and text) that
is available in the TriScale repository [35]. Such evaluation, which
we run on a commodity laptop, yields the results summarized in
Table 2.

Results – Metrics. The data shows two modes in the execution
time of the 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑚𝑒𝑡𝑟𝑖𝑐 () function: a step increase, followed
by a slow linear increase. This can be easily explained: the more
computationally expensive part of 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑚𝑒𝑡𝑟𝑖𝑐 () is the conver-
gence test, which includes the Theil-Sen regression (§ 4.5). The
latter works by computing the slopes between all pairs of points
and returns the median slope value; thus, the regression scales with
𝑂 (𝑛2).

However, TriScale does not perform the regression on the input
data directly. Instead, TriScale divides the input data in chunks. For
each chunk, a metric value is computed, leading to a new data series
of metric values. The purpose of the convergence test is to verify
that these metric values have converged; thus TriScale executes
the Theil-Sen regression on this new data series. The Theil-Sen
regression does not require many samples for producing a reliable
result; a few tens of data points are often considered sufficient [79].
Thus, we can cap the size of metric data series (TriScale caps it to 100
values – § 4.1), which bounds the execution time of the Theil-Sen
regression. Ultimately, this allows the 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑚𝑒𝑡𝑟𝑖𝑐 () function
to scale very well with the sample size.

The linear increase for a large number of raw samples is due
to the computation of the metric on increasingly large chunks.
The more complex the metric is, the longer the execution time. In
this evaluation, a percentile is used as metric, which is computed
efficiently with NumPy [54].

Overall, running 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑚𝑒𝑡𝑟𝑖𝑐 () takes about 1 s for up to one
million data points. The data collection time depends on the net-
working experiment, but it is unlikely that many experiments would
produce much more than a million of data points per second. Thus,
we conclude that the computation time of the 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑚𝑒𝑡𝑟𝑖𝑐 ()
function is negligible for networking experiments.

Results – KPIs. The data shows a clear linear correlation between
the sample size and the execution time of the 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑘𝑝𝑖 () func-
tion, which is not surprising: most computations are related to the
determination of the confidence interval using Thompson’s method,
which is an iterative process through the ordered data samples [72].

The input size for the KPI computation is the number of series
one performs for an experiment. Our results show the computation
takes less than 100ms for an input size of 1000; we thus conclude

12triscale_scalability.ipynb

Table 2: Scalability evaluation. TriScale data analysis is fast and
scales well with increasing input sizes. The most time-consuming
element is the convergence test (§ 4.5), which is performed before the
computation of metrics. Still, it generally takes less than one second
for inputs (i.e., the number of raw measurements in a run) of up to
one million data points.

Computation of Input size Execution time
(approx.)

1000 20ms
Metrics 10 k 50ms

1M 1 s

KPIs and 100 10ms
Variability scores 1000 100ms

that the computation time of the 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑘𝑝𝑖 () function is negli-
gible for networking experiments.

Results - Variability scores. Unsurprisingly, the data is very
similar as for 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑘𝑝𝑖 (): The two functions essentially per-
form the same computations. They only differ in the generation
of outputs (logs and plots). Since the outputs are not considered
in this scalability evaluation, we obtain very similar results for
both functions. Thus, we conclude that the computation time of
the 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠_𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 () function is negligible for networking
experiments.

B DETAILS ON CASE STUDIES
This appendix provides details on the four case studies presented
in § 5; in particular, it details each evaluation scenario and how we
have obtained the data. All case studies are performed using Jupyter
notebooks, which are available in the TriScale repository [35].

B.1 Congestion Control

Reproducing the case study. The entire case study is described
in detail in a Jupyter notebook13 that is available in the TriScale
repository [35].

Evaluation scenario. This case study compares the performance
of 17 congestion-control schemes using Pantheon [83]. We evaluate
the throughput and one-way delay of full-throttle flows, i.e., stable
flowswhose only throttling/limiting factor is the congestion control.
For a fair comparison between the schemes, we use the MahiMahi
emulator [53] (integrated in Pantheon) and focus on a single flow
scenario. We use only the calibrated path from AWS California to
Mexico, provided by Pantheon.14

Data collection.We build the Pantheon toolchain from the source
code provided by the authors15 and test all schemes locally based
on the aforementioned emulated network. We only modify the
authors’ code to save the throughput and delay raw data, such that
we can do the analysis of runs using TriScale. We perform two sets
of experiments with always 10 runs per series:

13casestudy_congestion-control.ipynb
14pantheon.stanford.edu/result/6539/
15github.com/StanfordSNR/pantheon
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• A set of 5 series with a runtime of 30 s;
• A set of series with a runtime of 10, 20, 40, 50, and 60 s,
respectively (one of each).

The data we collected are available on Zenodo [37].

B.2 Wireless Embedded Systems

Reproducing the case study. The entire case study is described
in detail in a Jupyter notebook16 that is available in the TriScale
repository [35].

Evaluation scenario.We run a simple evaluation of Glossy [27],
a low-power wireless protocol which includes as parameter the
number of retransmissions of each packet, called 𝑁 . We investigate
the impact of two values of 𝑁 on the reliability of Glossy, measured
as the packet reception ratio (PRR). During one communication
round, every node in the network initiates in turn a Glossy flood
and all the other nodes log whether they successfully received the
packet. This is repeated for 𝑁 = {1, 2}. In addition:

• The evaluation runs on TelosB motes17 (26 nodes);
• The motes use radio frequency channel 22 (2.46 GHz, which
largely overlaps with Wi-Fi traffic);

• The payload size is set to 64 bytes.

Data collection. We perform the experiments using the FlockLab
testbed [46]. For both settings of the number of retransmissions 𝑁 ,
we perform 24 randomly scheduled tests per day during 7 consecu-
tive days. The data we collected are available on Zenodo [37].

B.3 Failure Detection

Reproducing the case study. The entire case study is described
in detail in a Jupyter notebook18 that is available in the TriScale
repository [35].

Evaluation scenario. This case study re-uses one of the evaluation
scenarios from the original Blink paper (§ 6.1 in [34]). It considers
15 publicly available real Internet traces [18, 20]. For each trace,
30 prefixes are randomly selected among those that contain suffi-
ciently many active flows. For each prefix, the characteristics of
the traffic are extracted and used to run simulations where traffic
sources generate flows exhibiting the same distribution of parame-
ters than the one extracted from the real traces. Artificial failures
are introduced in the simulation, which Blink tries to detect. Blink
is compared against two baseline strategies:

• All flows, which monitors up to 10k flows for each prefix and
reroutes if at least 32 of them sees retransmissions within the
same time window. This strategy provides an upper-bound
on Blink’s ability to reroute upon actual failures, but ignores
memory constraints.

• Infinite Timeout, which is a variant of Blink where flows are
only evicted when they terminate (with a FIN packet) and
never because of the flow eviction timeout. This strategy
tests the effectiveness of Blink’s flow eviction policy.

16casestudy_glossy.ipynb
17www.advanticsys.com/shop/mtmcm5000msp-p-14.html
18casestudy_failure-detection.ipynb
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Figure 8: KPIs for Blink’s performance evaluation. 95% CI on
the median. Internet trace IDs listed in [34].

Data collection. The authors of Blink kindly provided the data
they collected for the original paper [34]. The data are now available
on Zenodo [37].

Evaluation objectives. Each prefix is used to generate five failure
scenarios, based on which we compute two metrics: (i) the true
positive rate (TPR), i.e., the ratio of failures that Blink successfully
detects (out of 5); (ii) the median rerouting speed, i.e., the time Blink
takes to reroute traffic once it detects the failure. For both metrics,
we use the 95% CI on the median as KPI, computed over the set of
prefixes for each Internet trace.

Results. Blink achieves a TPR KPI of one for all the Internet traces,
with a rerouting speed ranging between 0.5 to 1 s (Fig. 8). Hence,
we can claim with 95% confidence that these are the minimal per-
formance expected for Blink for any random set of prefixes within
each of the Internet trace.

B.4 Video Streaming

Reproducing the case study. The entire case study is described
in detail in a Jupyter notebook19 that is available in the TriScale
repository [35].

Evaluation scenario. This case study re-uses one of the evaluation
scenarios from the original Pensieve paper (§ 5.2 in [48]). Specif-
ically, it compares Pensieve against pre-existing adaptive bitrate
algorithms using different quality of experience (QoE) metrics. The
comparison is performed using the MahiMahi [53] network emula-
tor by replaying a set of synthetic traces generated from real-world
broadband datasets. We consider the set of traces generated from
the FCC dataset;20 these traces were created by the Pensieve au-
thors by concatenating randomly-selected traces from the “web

19casestudy_video-streaming.ipynb
20Federal Communications Commission. https://www.fcc.gov/reports-
research/reports/
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Figure 9: 95% CI on the CDF of various adaptive bitrate algo-
rithms.

browsing” category in the August 2016 collection. There are mul-
tiple definitions of QoE: we consider the “linear” one (see [48] for
details).

Data collection. The authors of Pensieve were not able to provide
the data they collected for the original paper [48]. Consequently,
we retrieved the QoE data directly from the paper plots using a
web-based application.21 The data we retrieved are available on
Zenodo [37].

Evaluation objectives. From the QoE metric values, we compute
the 95% CI (lower-bound) for the {2, 4, 6 . . . 98}th percentiles, based
on which we obtain a 95% CI for the entire CDF of QoE for the
different algorithms.

Results. Fig. 9 shows the 95% CI CDFs computed for the linear
QoE metric. The 95% CI are relatively close to the empirical CDFs,
as illustrated in Fig. 7, which shows both the empirical CDF and its
95% CI for Pensieve (the same applies to all algorithms).

21apps.automeris.io/wpd/
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