
An Application of Kubernetes Cluster Federation
in Fog Computing

Francescomaria Faticanti∗,‡, Daniele Santoro∗, Silvio Cretti∗, Domenico Siracusa∗

Abstract—This demonstration aims at showcasing an appli-
cation of a cluster federation to increase the elasticity and
resilience of a Fog Computing system. Federation is performed
by means of the Kubernetes Cluster Federation (KubeFed), a
framework we augmented with a two-phase workload placement
mechanism that smartly distributes applications’ microservices
among the federated infrastructure. Despite KubeFed has been
generally used in a multi-cloud environment for workloads
split on different cloud providers avoiding the lock-in, in this
demonstration we show that it can also be used for implementing
a decentralized control plane in a highly distributed architecture
where networking issues should be taken into account.

I. INTRODUCTION

Fog Computing [1] aims to extend the concept of Cloud
Computing offering cloud services and functionalities, such
as computational, storage and network resources, throughout
the whole Cloud-to-Things continuum, i.e., among all different
tiers between the world of the IoT devices and the traditional
Cloud Computing ecosystem. The Fog paradigm offers new
challenges and increases the complexity of the management
and the orchestration of such a distributed computing infras-
tructure with respect to the traditional centralized Cloud Com-
puting environment. In this context, application deployment,
resource allocation and workload placement must be conceived
in a heterogeneous, widespread environment where locality,
context-awareness and network performances must be taken
into account.

FogAtlas [2] is a Fog Computing software platform, based
on Open Source technologies, such as OpenStack and Kuber-
netes [3], [4], offering (i) service-aware workload placement,
(ii) zero-touch deployment and (iii) negotiation of resources
(both computational and network ones) along the Cloud-
to-Things continuum. However, the ability of FogAtlas to
support not only distributed but also decentralized systems
has yet to be demonstrated. In this paper we will describe
how the Kubernetes Cluster Federation, namely KubeFed [5],
can be used to achieve a good degree of decentralization and
robustness in a Fog environment. Indeed, the use of KubeFed
results to be innovative in this context given its sole usage
in cloud. In fact, such an approach is frequent to guarantee
multi-cloud distribution of the workload, high availability of
applications, and support for hybrid clouds. Furthermore, all
the existing cloud technologies such as Kubernetes [4] present

∗Fondazione Bruno Kessler, Italy, ‡University of Trento, Italy. This work
has received funding from the EU H2020 R&I Programme under Grant Agree-
ment no. 815141 (DECENTER: Decentralised technologies for orchestrated
Cloud-to-Edge intelligence).

high availability mechanisms that can recover from failures
within a given cluster and/or when clusters’ resources are inter-
connected with a stable and robust network. However, in case
of highly and remotely distributed resources interconnected
with unstable and low quality networks (frequent conditions
in Fog Computing), such mechanisms can not guarantee a
reasonable degree of robustness.

The demonstration compares two different scenarios, the
first one where FogAtlas manages a single Kubernetes cluster
covering the entire Fog infrastructure, and the second one
where the infrastructure is split, according to the geographical
location, in different and independent Kubernetes clusters
federated among each other. In the first scenario, we show that
the single centralized control plane is not able to guarantee the
continuity of the operations in case of a fault in the control
plane or in the networking side. On the other hand, the second
scenario, while still offering the possibility to coordinate the
entire multi-cluster system (it would not be possible in case
of multiple isolated/not federated clusters), is also able to
guarantee a higher level of resilience and availability. In fact,
despite the “host cluster” (the cluster that exposes the KubeFed
API and runs the KubeFed control plane) could undergo a
disruption of the service, still the “member clusters” (the
clusters registered to the federation) can continue to operate
locally on their own resources.

The main contribution of this demonstration is represented
by: (i) the introduction of a federation-based approach to
subdivide the infrastructure; (ii) the conception of a new
application modeling method allowing the split of an appli-
cation into different chunks that can be deployed on different
clusters of the federation; (iii) a two-phase placement scheme
compatible with the cluster federation. In this manner, we
obtain a more scalable and resilient system for dealing with a
highly distributed scenario such as the Fog Computing one.

The rest of the paper is organized as follows. The next sec-
tion describes the architectural view of the proposed solution.
Sec. III outlines the demonstration setup and workflow, and a
concluding section ends the paper.

II. ARCHITECTURE

We introduce some fundamental concepts of the system:
Federation: Framework that allows to coordinate the config-
uration of multiple Kubernetes clusters [5].
Host Cluster: Cluster containing the control plane of the
Federated Kubernetes.
Member Cluster: Cluster that takes part in the federation.

c©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.



a) b)

Fig. 1. a) Scenario 1: FogAtlas handles a single Kubernetes cluster covering the entire infrastructure; b) Scenario 2: The infrastructure is divided in different
independent and federated Kubernetes clusters.

Region: Set of computational resources in the same geograph-
ical location.
Master Region: For the non-federated scenario it is the region
where the control plane is hosted. For the federated scenario
it is the region containing the Host Cluster.

Figure 1 depicts the different scenarios mentioned in the
previous section. Figure 1a) shows a single cluster scenario
where Kubernetes and FogAtlas control planes are located in
the Master Region (generally hosted in cloud). The user can
interact with the system only through the Master Region and
the other regions trust it for operations related to the control
plane. As shown in [2], in this scenario FogAtlas can help the
user in modelling a cloud-native application, orchestrating its
workload on the distributed Fog infrastructure, and monitoring
its performance. This solution, based on the Kubernetes Cus-
tom Resource Definition (CRD) extension point, has a limited
overhead and works well in all the cases where we have
a reliable connection between the centralized control plane
and each region. However, in case of faults in the network
connecting the region hosting the control plane with the other
regions, it is no more possible to operate on the remote regions.

Figure 1b) shows a multi-cluster federated scenario where
the Master Region (generally the one hosted in cloud) plays
the role of Host Cluster while the other remote regions play the
role of Member Clusters. The control plane of the federation
(Fed CP) is hosted on the Master Region but each Region
hosts the control plane of its Kubernetes and FogAtlas cluster.
In this scenario we leverage two different levels of workload
orchestration, one at the federation level in order to select
the cluster candidate to host a given workload and another at
cluster level in order to select the sub-region/worker nodes1

where to deploy the workload. The FogAtlas implementation
of such a multi-layered orchestrator is again based on the
Kubernetes CRD extension. In this case the CRD FedFAApp
is the representation of a “federated”, cloud-native application
composed by a set of application pieces, namely application
chunks, and DataFlow between these different chunks. Each
chunk is a set of one or more microservices that should be
placed on a given cluster of the federation. Such a placement is
managed by the federated FogAltas controller. An application
chunk is represented by a federated version of the FADepl
CRD [2] that in turn is ingested by the corresponding FogAtlas

1Inside a region/cluster, the computational nodes can be grouped in order
to create smaller sets of resources, i.e. sub-regions.

Fig. 2. Models underlying a FedFAApp.

controller for a fine tuned and intelligent (based on resource
availability and constraints imposed) placement inside the
selected cluster. Figure 2 shows the FedFAApp models.

In terms of resilience, this federated solution is more
convenient than the single cluster one. In fact, in case of a
service interruption in the Host Cluster or a network failure,
the users can continue to interact directly with the control
plane of the region where their applications are deployed with
limited disruption of the services offered.

III. SETUP AND WORKFLOW

Environment and Setup. We set up two infrastructures, corre-
sponding to the scenarios mentioned above:
1) The single-cluster infrastructure is composed by two regions
all belonging to a single Kubernetes cluster;
2) The multi-cluster federated infrastructure is composed by
two clusters and one of them is composed by two sub-regions.
Figure 3 depicts these two different scenarios in an emulated
environment representing an application deployment around
the city of Trento. The application used for the experiment, as
depicted in Figure 3, is a simple and generic IoT data-intensive
application composed by three microservices:
Data Collector (DC): It collects data from a sensor/camera
and elaborates them obtaining some processed result.
Repository (REP): Database storing processed data.
Webserver (WS): It allows the access to processed data.
Storyboard and Workflow. The main objective of the demon-
stration is to show a new placement scheme for the applica-
tions in the new federated scenario, and the resiliency of the
federated environment in response to failure situations like
networking faults. The new placement scheme consists of two
steps: the first one where the application’s microservices are



a) b)

Fig. 3. a) First part of the demo with a single cluster; b) Second part of the demo with two federated clusters.

divided into application chunks and each chunk is assigned to
a specific cluster, and the second step where each microservice
of each chunk is deployed within the specific cluster assigned
to the chunk in the previous step. This last step, within a
specific cluster, is performed placing each microservice among
the subregions composing the cluster.

The initial phase of the demonstration consists of the appli-
cation composition where the user specifies the computational
requirements for each microservice of the application, and the
networking requirements, in terms of throughput and latency,
for each link between the application’s microservices. After
this preliminary step, the demonstration consists of two parts.

In the first part of the demo, the single cluster infrastructure
is used and the application described above is deployed on top
of it. As shown in Figure 3a), the application’s microservices
are split among the regions in the single cluster. According
to the FogAtlas placement algorithm, one instance of WS
is deployed on Cloud (Master Region), while DC and REP
are deployed on the Edge region (Region 1) taking into
account the application’s requirements. A network failure that
isolates the Cloud region causes a disruption of the service
of the application since the microservice placed in Cloud is
no more reachable by the ones in Region1. Furthermore, the
FogAtlas/Kubernetes control plane is no more available to
recover from this problem.

In the second part of the demo, the multi-cluster infrastruc-
ture is used. In this case the application is divided into two
chunks: one in the cloud cluster (Host Cluster), and the second
in the Region1 cluster (Member Cluster). Within each cluster
the second phase of placement mimics the allocation obtained
in the previous case with the DC and REP modules deployed
among the sub-regions of the Region1 cluster. However, in
case of a network failure between the two clusters, causing
a disruption of the application services, a recovery process
can be initiated requesting the FogAtlas control plane of the
Region1 cluster to deploy another instance of WS microservice
on the same cluster. In this way the WS can access the REP
data and the application services can be temporarily restored
thanks to this new placement, waiting for the recovery of the
network services.
Measurements. Finally, we report some measurements of the
overhead, in terms of time, added by FogAtlas controllers
in a single and in a multi cluster configuration for different

TABLE I
MEASUREMENTS

Microservices/chunks 1 2 5 10
Single cluster (ms) 180 255 479 2141
Multi cluster (ms) 552 686 1071 4572

numbers of microservices/application chunks to be placed,
with respect to Kubernetes vanilla. The measurements are
taken on a master node equipped with 2 vCPU and 2 GB
RAM and consider only the time needed by the FogAtlas
controllers in order to decide the placement. Please note that
the reported overhead includes the time taken by the call to the
Kubernetes API for submitting the resources to be scheduled,
for which we experienced a sharp increase when the number
of microservices to be deployed goes over 5 units. This aspect
will be further analysed in future works. As shown in Table I,
the overhead increases smoothly until a certain amount of
microservices/chunks (i.e. 5) but then the increment is more
than linear due to the saturation of the computational resources
on the master node. Reasonably, the overhead in the multi-
cluster case is bigger since it represents the sum of times
of the two phases of placement. However, the overhead for
deploying a mid sized application is around a second in the
worst case.

IV. CONCLUSIONS

We proposed a new application of KubeFed in Fog Comput-
ing showing a more resilient system to face network faults that
can compromise the application services on the infrastructure.
We set up a demo where two different scenarios are compared:
a single cluster scenario, and a federated multi-cluster one.
The latter, thanks to the presence of a control plane for each
cluster, is able to easily adapt to network faults situation with
a small overhead with respect to classical solutions. Future
works will investigate clusters configuration methods and new
application placement mechanisms.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing, 2012, pp. 13–16.

[2] FogAtlas. https://fogatlas.fbk.eu/.
[3] OpenStack.https://www.openstack.org/.
[4] Kubernetes. http://kubernetes.io/.
[5] KubeFed. https://github.com/kubernetes-sigs/kubefed.


