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Abstract

The importance of studying non-self-adjoint differential operators is becoming more and more obvious to scientists. The non-
self-adjoint operators appear in many branches of science. Today, these operators have many applications in kinetic theory and
quantum mechanics to linearization of equations of mathematical physics. The spectrum of these operators is unstable and their
resolvent is very unpredictable. In these operators, there is no general spectral theory and this causes problems in the study of
these operators. In this paper, we consider a non-self-adjoint elliptic differential operator and study its resolvent.
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1 Introduction

The spectrum of self-adjoint operators is real, and a lot of valuable work has been done on this model of operators
because of the general spectrum theory. Of course, these operators have many and varied applications in other sciences.
But the fact is that there are many operators that are not self-adjoint. On the other hand, the study of these operators
has proven to be important in the physical sciences, including quantum and thermodynamics.This article is based on
the work of K.Kh. Boimatov [2, 3, 4, 5, 6]. We have generalized the operator used as well as the method used by
him. A. Samaripour’s research work has also been used in writing this article [10, 11, 16]. To get a feeling for the
history of the subject under study, refer to papers [10, 11, 14, 16]. Indeed this paper was written in continuing on
earlier our papers, the paper is sufficiently more general than earlier our papers, which here, we obtain the resolvent
estimate of the operator P, that satisfying the special and general conditions, This operator is a second-order elliptic
differential operator and is more general than the Sturm-Liouville operators and Schrödinger operators. We consider
the weighted Sobolev spaceH` =W 2

2,α (0,1)×W 2
2,α (0,1)× ...×W 2

2,α (0,1) (`-times) as the space of vector functions

u(t) = (u1(t), . . . ,u`(t)) defined on (0,1) with the finite norm |u|+ =

(
1∫
0

e2αt
∣∣∣ du(t)

dt

∣∣∣2
C`

+
1∫
0
|u(t)|2

C`
dt
) 1

2

. Here the

notions | du(t)
dt |

2
C` , |u(t)|2C` stand for the norm in space C`. The above definition of norm has been previously used.

(See [2], [3],[5]). By
◦
H` we denote the closure of C∞

0 (0,1)
` with respect to the above norm (i.e.,

◦
H` is closure of

C∞
0 (0,1)

` in theH`). C∞
0 (0,1) denotes the space of infinitely differentiable functions with compact support in (0,1).

If ` = 1, then, H = H1, H = H1, and
◦
H=

◦
H1. We now consider a non-selfadjoint elliptic differential operator of

type (Pu)(t) =− d
dt

(
e2αtq(t) du(t)

dt

)
, acting in space H` = L2(0,1)` with Dirichelet-type boundary conditions. Here

0 ≤ α < 1, t ∈ [0,1] , q(t) ∈ C2
(
[0,1] ,End C`

)
. Assume that for each t ∈ [0,1] the matrix function q(t) has `-

simple non-zero eigenvalues µ1(t), . . . ,µ`(t) in the complex plane. Let µ j(t) ∈C2([0,1],C) j = 1, . . . , `. Moreover, let
Φ = {z ∈ C : |arg z| ≤ ϕ}, ϕ ∈ (0,π) be some closed sector with vertex at zero. We now consider different locations
for the eigenvalues µ j(t) in view of Φ⊂ C. For a closed extension of the operator P according to space

H` =W 2
2,α(0,1)

` above, we need to extend its domain to the closed domain D(P)⊂ {u∈
◦
H`∩W 2

2,loc(0,1)
` : eαtu′ (t)∈
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H`,
d
dt

(
e2αtq(t) du(t)

dt

)
∈ H`} (see [7]). Here W 2

2, loc(0,1)
` = W 2

2, loc(0,1)× ·· · ×W 2
2, loc(0,1) (`− times) where

W 2
2, loc(0,1) is the space of the functions u(t) (0 < t < 1) in the form

2

∑
i=0

∫ 1−ε

ε

|u(i)(t)|2dt < ∞. ∀ε ∈ (0,
1
2
).

In this article, we investigate the spectral properties, and the asymptotic distribution of eigenvalues of the non- self
adjoint differential operator P, which is defined in space H` = L2(0,1)` for two boundary conditions. Here, and in
the sequel, the value of the function arg z ∈ (−π,π] and ‖T‖ denotes the norm of the bounded arbitrary operator
T acting in H or H`. Assume that for each t ∈ [0,1] the matrix function q(t) has `-simple non-zero eigenvalues
µ j(t) ∈C2[0,1], j = 1, . . . , `, arranged in the complex plane in the following way:

µ1(t), . . . ,µν(t) ∈ R+, µν+1(t), . . . ,µ`(t) ∈ C\Φ,

then, we will estimate the resolvent of differential operator P, acting in space H` = L2(0,1)`.

2 On the resolvent estimate of the differential operator A in H = L2 (0,1)
Theorem 2.1. Let Φ ⊂ C be some closed sector with vertex at 0, and set P = A, q(t) = µ(t) in the definition of the

operator P, as in Section 1. Then, we obtain (Av)(t) =− d
dt

(
e2αt µ(t) dv(t)

dt

)
, acting in H = L2(0,1).

Assume that µ(t) ∈C\Φ , t ∈ [0,1]. Then, for sufficiently large in modulus λ ∈Φ, the inverse (A−λ I)−1 exists and is
continuous in the space H = L2(0,1), and the following estimates hold;

‖(A−λ I)−1‖ ≤MΦ|λ |−1 (λ ∈Φ, |λ |>CΦ), (2.1)

‖eαt d
dt
(A−λ I)−1‖ ≤M′Φ|λ |−

1
2 (λ ∈Φ, |λ |>CΦ), (2.2)

where the numbers MΦ, M′
Φ

and CΦ > 0 are sufficiently large numbers depending on Φ where Φ = {z ∈ C : |arg z| ≤
ϕ}, ϕ ∈ (0,π)

Proof. Here, to establish Theorem 2.1, we will first prove the assertion of Theorem 2.1 together with estimate (2.1).
As in Section 1, for the closed extension the operator A, (for more explain see chapter 6 of [8]), we need to extend

its domain to the closed set D(A) = {v ∈
◦
H∩W 2

2,loc(0,1) : eαtu′ (t) ∈ H,
(
e2αt µ (t)v′ (t)

)′ ∈ H}. There exists a real
γ ∈ (−π,π], such that for the complex number eiγ we have:

c′ ≤ Re{eiγ
µ(t)}, c′|λ | ≤ −Re{eiγ

λ}, c′ > 0 , t ∈ [0,1], λ ∈Φ (2.3)

let h(t) = e2αt by integrating from both sides of c′ ≤ Re{eiγ µ(t)} for v ∈ D(A) we will have

c′
∫ 1

0
h(t)|v′(t)|2dt ≤ Re

∫ 1

0
eiγ h(t)µ|v′(t)|2 dt = Re{eiγ(Av , v)}. (2.4)

Here the symbol (,) denotes the inner product in H. Notice that the above equality in (2.4) obtains by the well known
theorem of the m-sectorial operators, which are closed by extending its domain to the closed domain in H. These
operators are associated with the closed sectorial bilinear forms that are densely defined inH (for further explanation
see the well known Theorem 2.1, chapter 6 of [8]). This is why, we extend the domain of the operator A to the closed
domain in spaceH, above.
By (2.3), we have: c′|λ | ≤ −Re{eiγ λ}, c′ > 0, ∀λ ∈Φ. Multiplying the latter inequality by

∫ 1
0 |v(t)|2 dt = (v , v) =

‖v‖2 > 0, then

c′|λ |
∫ 1

0
|v(t)|2 dt ≤−Re{eiγ

λ}(v , v).

By the latter inequality, and (2.4), and by considering c′ = 1/M, it follows that∫ 1

0
h(t)|v′(t)|2dt + |λ |

∫ 1

0
|v(t)|2dt ≤ MRe{eiγ(A,v)− eiγ

λ (v,v)}

= MRe{eiγ((A−λ I)v,v)}
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≤ M‖eiγ‖‖v‖‖(A−λ I)v‖
= M‖v‖‖(A−λ I)v‖. (2.5)

Or ∫ 1

0
h(t)|v′(t)|2dt + |λ |

∫ 1

0
|v(t)|2 dt ≤M‖v‖ ‖(A − λ I)v‖.

Since,
∫ 1

0 h(t)|v′(t)|2dt is positive, we will have either

|λ |‖v(t)‖2 = |λ |
∫ 1

0
|v(t)|2 dt ≤M‖v‖‖(A −λ I)v‖, (2.6)

i.e.,
|λ |‖v(t)‖ ≤M‖(A −λ I)v‖.

The above relation ensures that the operator (A − λ I) is one- to- one, which implies that ker(A − λ I) = 0. Therefore,
the inverse operator (A− λ I)−1 exists and its continuity follows from the proof of the estimate (2.1) of Theorem 2.1.
To prove (2.1), we set v = (A−λ I)−1 f , f ∈ H in (2.6), so that

|λ |
∫ 1

0
|(A−λ I)−1 f |2 dt ≤M‖(A− λ I)−1 f‖‖(A −λ I)(A−λ I)−1 f‖.

Since, (A − λ I)(A−λ I)−1 f = I( f ) = f it follows that

|λ |
∫ 1

0
|(A −λ I)−1 f |2 dt ≤M‖(A −λ I)−1 f‖| f |.

Therefore,
|λ |‖(A −λ I)−1( f )‖2 ≤M‖(A −λ I)−1( f )‖| f |.

By canceling the positive term ‖(A−λ I)−1( f )‖ from both sides of the latter inequality we will find

|λ |‖(A −λ I)−1( f )‖ ≤M| f |,

and since λ 6= 0, we imply that ‖(A−λ I)−1( f )‖ ≤M|λ |−1| f |.The end result is

‖(A−λ I)−1‖ ≤MΦ|λ |−1.

This estimate completes the proof of the assertion Theorem 2.1, together with the estimate (2.1).
To complete the proof of Theorem 2.1, here, we must prove estimate (2.2), therefore, we begin to prove the

estimate (2.2) of Theorem 2.1. As in the first arguments to prove estimate (2.1) above, here, we drop the positive term
|λ |
∫ 1

0 |v(t)|2 dt from ∫ 1

0
h(t)|v′(t)|2dt + |λ |

∫ 1

0
|v(t)|2 dt ≤M|v| ‖(A − λ I)v‖.

It follows that ∫ 1

0
h(t)|v′(t)|2dt ≤M|v| ‖(A − λ I)v‖.

Set v = (A−λ I)−1 f , f ∈ H in the latter inequality, and as above, by proceeding with similar calculations, we then
obtain: ∫ 1

0
h(t)| d

dt
(A−λ I)−1 f (t)|2dt ≤M‖(A−λ I)−1 f‖‖(A − λ I)(A−λ I)−1 f‖.

Since, (A − λ I)(A−λ I)−1 f = f , and∫ 1

0
h(t)| d

dt
(A−λ I)−1 f (t)|2dt ≤M‖(A−λ I)−1 f‖| f |,

consequently by (2.1) we have ‖(A−λ I)−1 f‖ ≤M| f ||λ |−1. Then,∫ 1

0
h(t)| d

dt
(A−λ I)−1 f (t)|2dt ≤M‖(A−λ I)−1 f‖| f | ≤MM|λ |−1| f |2.
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Therefore, ∫ 1

0
h(t)| d

dt
(A−λ I)−1 f (t)|2dt ≤M′Φ|λ |−1| f |2;

i.e., ‖h 1
2 d

dt (A−λ I)−1 f‖2 ≤M′
Φ
|λ |−1| f |2. i.e.,

‖h
1
2

d
dt
(A−λ I)−1 f‖ ≤M′Φ|λ |−

1
2 | f |.

Consequently,

‖h
1
2

d
dt
(A−λ I)−1‖ ≤M′Φ|λ |−

1
2 .

This estimate completes the proof of (2.2); Theorem 2.1 is thereby proved.

3 On the resolvent estimate of the differential operator in H`

Theorem 3.1. Let P, h(t), q(t), Φ be defined as in Section 1. Suppose that for each t ∈ [0,1] the matrix function q(t)
has `- distinct non-zero simple eigenvalues µ j(t) ∈C2[0,1](1≤ j ≤ `) located in the complex plane C, in the form

µ1(t), . . . ,µ`(t) ∈ C\Φ. (3.1)

As in Theorem 2.1, but here we let the operator P acting in the space H` = L2(0,1)` with Dirichelet-type boundary
conditions. Then, for sufficiently large in modulus λ ∈Φ, the inverse operator
(P−λ I)−1 exists and is continuous in the space H` = L2(0,1)` and the following estimate holds;

‖(P−λ I)−1‖ ≤MΦ|λ |−1 (3.2)

where MΦ, CΦ > 0 is sufficiently large number depending on Φ and |λ |>CΦ.

Proof. The conditions which we consider on the eigenvalues µ j(t) of the matrix function q(t) guarantee that one can
convert the matrix q(t) to the diagonal form

q(t) =U(t)Λ(t)U−1(t), where U(t),U−1(t) ∈C2([0,1],End C`)

where Λ(t) = diag{µ1(t), . . . ,µ`(t)}. Consider space H` = H⊕·· ·⊕H (`-times). Let us introduce the operator

B(λ ) = diag{(P1−λ I)−1, . . . ,(P̀ −λ I)−1}, (3.3)

acting on the space H`. Due to results of Theorem 2.1, if we set Pj = A for j = 1, . . . , `, then, here as previously, we
will have

(Pjv)(t) =−
d
dt

(
hµ j

dv(t)
dt

)
,

D(Pj) = {v ∈
◦
H ∩W 2

2, loc(0,1) : h
1
2 u′ ∈ H, h

1
2 u′ ∈ H,

d
dt

(
hµ j

du
dt

)
∈ H}.

According to the results that obtained in Section 2, it follows the operator B(λ ), defined in (3.3), exists and is
continuous for sufficiently large absolute values of λ ∈ Φ. We consider the operator Γ(λ ) = UB(λ )U−1 where
(Uu)(t) =U(t)u(t), (u ∈ H`). Consequently, it follows that

(P−λ I)Γ(λ )u =− d
dt

(
h(t)q(t)

d
dt
(U(t)B(λ )U−1(t)u(t))

)
= T1 +T2 +T3

where

T1 =−
d
dt

(
h(t)q(t)U(t)

d
dt

B(λ )U−1(t)u(t)
)
=− d

dt
(h

1
2 (t)U(t)Λ(t)

d
dt

B(λ )U−1u(t))

=−U
d
dt
(h

1
2 (t)Λ(t)

d
dt

B(λ )U−1u)−U ′(t)h(t)Λ
d
dt

B(λ )U−1u.

Using the equality

− d
dt

h(t)(Λ
d
dt

B(λ )V ) =V +λB(λ )V, V =U−1u.
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We can then write
−U

d
dt
(h(t)Λ(t)

d
dt

B(λ )U−1u) =−U(V +λB(λ )V ), V =U−1u.

Thus, we have

T1 = λUB(λ )U−1u−U ′(t)h(t)Λ
d
dt

B(λ )U−1u+UU−1u.

T2 =−
d
dt

(
h

1
2 qU ′B(λ )U−1u

)
, T3 =−λU(t)B(λ )U−1u.

Using (2.1), (2.2), and from the above relations, we will have

(P−λ I)Γ(λ ) = I +T 0
1 +T 0

2 where T 0
2 = (h)′RU ′B(λ )U−1,

‖T 0
1 ‖ ≤M|λ |−1/2 (λ ∈Φ, |λ | ≥ CΦ).

By the Hardy-type inequality (see Chapter 6 of [8]), we have∫ 1

0
t−1+ε ′1(1− t)−1+ε ′2 |y(t)|2dt ≤M(ε ′1, ε

′
2)
∫ 1

0
|y(t)|2 dt

+M(ε ′1, ε
′
2)
∫ 1

0
t1+ε ′1(1− t)1+ε ′2 |y′(t)|2 dt, ∀y ∈

◦
H, ε

′
1, ε

′
2 6= 0.

Since |q(t)U ′(t)|C`→C` ≤ M, and by (1.2′), we will estimate the operator T 0
2 as follows: Using the Hardy-type

inequality above, and taking W = B(λ )u, then we have∫ 1

0
|h′(t)|2|(B(λ )u)(t)|2C`dt =

∫ 1

0
|h′(t)|2|W (t)|2C`dt

≤ M2

∫ 1

0
tα−2+2ε ′1(1− t)β−2+2ε ′2 |W (t)|2C`dt

≤ M3

∫ 1

0
tα(1− t)β t2ε ′1(1− t)2ε ′2 |W ′(t)|2C`dt

+ M||(B(λ )u)||2H`
.

i.e. ∫ 1

0
|h′(t)|2|(B(λ )u)(t)|2C`dt ≤ M3

∫ 1

0
tα(1− t)β t2ε ′1(1− t)2ε ′2 |W ′(t)|2C`dt +M||(B(λ )u)||2H`

.

Since t2ε ′1(1− t)2ε ′2 ≤M′, by the estimates (2.1) and (2.2), the last inequality is equivalent to∫ 1

0
|h′(t)|2|(B(λ )u)(t)|2C` dt ≤ M3M′

∫ 1

0
tα(1− t)β |W ′(t)|2C` dt

+ M||(B(λ )u)||2H`

≤ M3M′
∫ 1

0
h(t)|W ′(t)|2C` dt

+ M||(B(λ )u)||2H`

As in Section 2, for finding the estimates (2.1), (2.2) we have∫ 1

0
|h′(t)|2|(B(λ )u)(t)|2C`dt ≤ M′3

∫ 1

0
h(t)|W ′(t)|2C`dt

+ M||(B(λ )u)||2H`

≤ M′3

∫ 1

0
h(t)|W ′(t)|2C` dt

+ M||(B(λ )u)||2H`

≤ M′3|λ |−1/2 +M|λ |−1

≤ MΦ|λ |−1/2
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Then, ‖T 0
2 ‖ ≤MΦ|λ |−1/2 for sufficiently large absolute-value of λ ∈Φ. Consequently,

(P−λ I)Γ(λ ) = I +F(λ ), ‖F(λ )‖ ≤M|λ |−
1
2 (λ ∈Φ, |λ |>C′). (3.4)

since ‖F(λ )‖ ≤M|λ |− 1
2 , it easily follows that I +F(λ ) and so, by (3.4) (A−λ I)Γ(λ ) is invertible. We then have

((P−λ I)Γ(λ ))−1 = (I +F(λ ))−1.

By adding +I and −I to the right side of the relation above we will have

(I +F(λ ))−1 = (I + F(λ ))−1 − I + I

If Y(λ ) = (I + F(λ ))−1 − I, since ‖F(λ )‖ ≤M|λ |− 1
2 , this implies

‖Y(λ )‖ ≤M2Φ|λ |−1 (λ ∈Φ, |λ |>C). (3.5)

Consequently,
(P−λ I)−1 = Γ(λ )(I +Y(λ )), (3.6)

since
Γ(λ ) =UB(λ )U−1, B(λ ) = diag{(P1−λ I)−1, . . . ,(P̀ −λ I)−1}. (3.7)

Putting A j =Pj, j = 1, . . . , `,then ‖(Pj−λ I)−1‖≤MΦ|λ |−1, for j = 1, . . . , `. From it follows that ‖Γ(λ )‖≤M1Φ|λ |−1.
Then

‖(P−λ I)−1‖ ≤ ‖Γ(λ )‖‖(I +Y(λ ))‖
≤ M1Φ|λ |−1(1+M2Φ|λ |−1)

≤ MΦ|λ |−1.

i.e.,
‖(P−λ I)−1‖ ≤MΦ|λ |−1

where MΦ is a sufficiently large number depending on Φ. This completes the proof of Theorem 3.1.
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