MAST Documentation
Release 1.3.0.17

University of Wisconsin-Madison Computational Materials Group

July 08, 2015

10

CONTENTS

What’s new in version 1.3.0 1
What’s new in version 1.2.X 3
Introduction 5
3.1 The MAST Kitchen e 5
3.2 Computing in the MAST Kitchen e 5
Ingredients 7
Recipes 9
Installation 11
6.1 Do pre-installation StEPS L e e e e e e e e e e e e e e e e 11
6.2 Install local python version and dependencies 12
6.3 Setupthe pymatgen VASP_PSP DIR o 13
6.4 Setthe MAST environment variables L 14
6.5 Additional setup e e e 18
Trying out MAST 21
T Unittesting o v v v o e e e e e e e e e e e e 22
Input File 23
8.1 General structure of the inputfile o oL 23
8.2 Sectionsof theinputfile e 24
83 Loopingintheinputfile e 24
Sections of the Input File 27
9.1 The MAST SECtION i ittt e e e e e e e e e e e e 27
0.2 The Structure SECtion v v v v e e e e e e e e e e e e e e e 27
9.3 The Scaling section i e e e e e e e e e e e e 30
9.4 Thelngredients section L e e e e 31
9.5 TheRecipesection e e 41
9.6 ThePersonal Recipe section i e 44
9.7 TheDefects section L e e e e 44
9.8 TheNEBSection i i i e et e e e 47
9.9 The Chemical Potentials section e 48
90.10 The Summary SECONt it i e e e e e e e e e e 49
Running MAST for real 51
10.1 General notes L e e e e 51
10.2 Inputtinganinputfile L 51

11

12

13

14

15

16

17

10.3 Running MAST e
10.4 Running MAST repeatedly o e e e e e
10.5 Modifying T€CIPES .« . v v v v i e

MAST post-processing utilities

11.1 Defect formation energy with finite-size scaling
11.2 Defect formation energy versus Fermienergy
11.3 Diffusion coefficient e e e e e

Standalone Tools

12.1 DefectFinder L e e
12.2 Effective Grain Boundary Diffusivity Calculator,
12.3 Particle Trajectory Diffusion Analyzer.
12.4 Diffusion CONNECHiVILY vt v v e
12,5 StructOpt . . . o o e e e e e e e e e e e e e

Programming for MAST

13.1 Sourcecode e e e e
13.2 Objecthierarchy e e e e e e
13.3 Codehooksintheinputfile L
13.4 Debugging o e e e e e e e e

Acknowledgments

141 The MAST Team e e e e e e
14.2 NSF . . o e
143 pymatgen e e e e e e e e e e e e

Citations
15.1 Citing MAST . . . o o o e e e
15.2 Full list of possible citations o e e e e e

Contact Us

License

57
57
57
58

61
61
61
62
63
64

65
65
65
66
66

67
67
68
68

69
69
69

71

73

CHAPTER
ONE

WHAT’S NEW IN VERSION 1.3.0

Additions:
* STEM image simulation functionality has been added to structopt. See StructOpt.

* A charge-density-based pathfinding method has been added as an alternative to linear interpolation for NEBs.
See The Ingredients section.

* An optional atom indexing feature has been implemented for structures which are expected to undergo signifi-
cant atomic relaxation when relaxed and/or defected. See The Structure section.

* A l4-frequency concentrated diffusion model has been added to the Diffusion Coefficient post-processing tool.
See MAST post-processing utilities.

* The new MAST “modify recipe” function allows existing recipes to be modified. See Running MAST for real.
Fixes:
Changes for users:

* Scaling is its own section in the input file, and is no longer under the structure section. See The Scaling section
for format changes.

* Instead of a mast_recipe.log file in each recipe directory, there is now one large mastlog file in
$MAST_CONTROL.

* Instead of recipe-level trapped errors causing MAST to fail, MAST will create a MAST_ERROR document in
the recipe directory and log a warning to $SMAST_CONTROL/mast .log

 Standalone grain-boundary diffusion and diffusion analyzer tools must be unzipped from the MAST tar.gz file
downloaded from github (see Programming for MAST). They will not be installed through pip.

Changes for programmers:

* In order to see some logged messages that are now logged to the DEBUG level, set environment variable
MAST_DEBUG to any value.

MAST Documentation, Release 1.3.0.17

2 Chapter 1. What’s new in version 1.3.0

CHAPTER
TWO

WHAT’S NEW IN VERSION 1.2.X

Additions:

* Finite size scaling support (the <S> tag) has been added. See The Structure section, The Recipe section, and
MAST post-processing utilities.

Fixes:

* The Effective Grain Boundary Diffusivity Calculator and Particle Trajectory Diffusion Analysis packages are
now properly included in the installation directory after running setup.py.

Changes for users:
* The $recipe section of the input file now requires the recipe to be entered directly.
— Do not use a text file name any more.
— Do not start with a recipe name line.
— The MAST_RECIPE_PATH environment variable is no longer necessary.
* When the input file is processed, it will create a $personal_recipe section directly in the input file.
— There is no longer a personal_recipe.txt file in the recipe directory.

— If copying an input file for use in a new recipe, delete the Spersonal_recipe section from the new
copy of the input file.

* MAST will now tell you where it was installed when you run mast.
¢ Platform support is now all under <MAST installation directory>/submit/platforms/.

— The plat forms folder is no longer copied to $MAST_CONTROL. See Installation for creating and mod-
ifying platforms.

Changes for programmers:

e Automatic citation support files are no longer copied to $MAST_CONTROL. They are located in <MAST
installation directory>/summary/citations.

* Program key files are no longer copied to $SMAST_CONTROL. They are located in <MAST installation
directory>/ingredients/programkeys.

e Optimizer.py is no longer copied to SMAST_CONTROL. It is located in <MAST installation
directory>/structopt

* mastmon_submit.sh is now copied from <MAST installation directory>/submit/platforms/<platform
name> into $MAST_CONTROL each time that MAST is run. Edits should therefore be made to <MAST
installation directory>/submit/platforms/<platform name>/mastmon_submit.sh
if they are necessary.

e The SMAST_CONTROL/set_platform file is no longer used and references to it have been removed.

MAST Documentation, Release 1.3.0.17

4 Chapter 2. What’s new in version 1.2.X

CHAPTER
THREE

INTRODUCTION

Welcome to the MAterials Simulation Toolkit (MAST)!
MAST is an automated workflow manager and post-processing tool.

MAST focuses on diffusion and defect workflows that use density functional theory. It interfaces primarily with the
Vienna Ab-initio Simulation Package (VASP).

However, MAST can be generalized to other workflows and codes.
MAST is available from the Python Package Index.

Additional tools and unit tests are available through the latest MAST tar.gz file.

3.1 The MAST Kitchen

MAST uses kitchen terminology to organize the materials simulation workflow.
* An Ingredient is a single calculation, like a single VASP calculation resulting in a relaxed structure and energy.

* A Recipe is a collection of several ingredients, including information about how the ingredients are combined
together.

— As in a cooking recipe, ingredients may need to be addressed in a logical order, with some ingredients
depending on other ingredients.

— The Recipe section defines this order, or workflow.
When MAST reads an input file, it creates a recipe in the SMAST__SCRATCH directory.
* Many recipes can reside in $SMAST_SCRATCH.
* MAST will check and update the recipes in alphanumeric order.

When MAST finds that a recipe is complete, it will move the recipe from $SMAST_SCRATCH to SMAST_ARCHIVE.

3.2 Computing in the MAST Kitchen

1. Install MAST (see Installation).
2. Plan your workflow.
* What are the single calculations you will need (Ingredients)?
* Which calculations depend on each other and should be grouped into a Recipe?

¢ What are all of the conditions for each calculation?

https://pypi.python.org/pypi/MAST
https://github.com/uw-cmg/MAST/releases

MAST Documentation, Release 1.3.0.17

Which calculations have a volume change?

Which calculations should be run at fixed volume?

— How fine a kpoint mesh does each calculation need?

- Etc...

3. Run an example file (see Trying out MAST) to get a feel for how MAST works.

4. Copy and modify an example file for your own workflow.

Please check your output carefully, especially when setting up a new workflow.

Chapter 3. Introduction

CHAPTER
FOUR

INGREDIENTS

Each ingredient is a separate calculation. Ingredients make up recipes.

Each ingredient is responsible for updating its child ingredients through an update_children method.

The ingredient directory will contain:

* Any input files written by MAST or delivered by the parent ingredients.

* Any output files generated by the calculation

* Ametadata.txt file, which stores important information for MAST

* A jobids file, which stores job ID numbers that the ingredient has had on the queue.

An ingredient object (created by MAST from the input file, and accessible to MAST while MAST is running) will

have:

* A name, which is the full path to the ingredient’s directory and is automatically generated from information in
the input file.

* A dictionary of keywords, which come from the ingredient’s ingredient type in The Ingredients section.

— Program-specific keywords

— MAST keywords, including:

%

%

The write method: which files the ingredient should write out before running (e.g., create the INCAR)

The ready method: how MAST can tell if the ingredient is ready to run (often, in addition to writing
its own files, an ingredient must also wait for data from its parent ingredient(s)).

The run method: what MAST should do to run the ingredient (e.g. submit a submission script to a
queue, or perform some other action)

The complete method: how MAST can tell if the ingredient is considered complete

The update children method: what information an ingredient passes on to its children, and how this
information is passed on

* A pymatgen Structure object representing the very first structure created from The Structure section.

MAST Documentation, Release 1.3.0.17

8 Chapter 4. Ingredients

CHAPTER
FIVE

RECIPES

Each recipe is a collection of ingredients.
The recipe directory will contain:

* An input . inp file, which is a copy of the original input file and is used by MAST when checking the recipe.
The original input file is not used. This copy also contains The Personal Recipe section, which is not in the
original input file.

* Archive files from the initial setup of the recipe directory
* Ingredient directories
* A top-level metadata. txt file, which stores important information for MAST
* A status.txt file listing the status of each ingredient
e If an error is detected, a MAST_ERROR file will be created using the error text.
For other logging information, see the SMAST_CONTROL/mast . 1og file.
A recipe object (created by MAST from the input file, and accessible to MAST while MAST is running) will have:
* A name, which is the full path to the recipe’s directory
* Several dictionaries which specify:
— Which ingredient directories exist
— Which ingredients have parents, and the names of those parent ingredients
— Which method(s) each ingredient should run for each mast_xxx_method (see The Ingredients section)

* Which method(s) each ingredient should run for its mast_update_children_method, depending on the
name of the child ingredient

MAST Documentation, Release 1.3.0.17

10 Chapter 5. Recipes

CHAPTER
SIX

INSTALLATION

6.1 Do pre-installation steps

6.1.1 Locate your user profile

Your user profile will set up environment variables like SPATH when you log in.

This installation will ask you to modify your user profile several times.

If you are comfortable modifying your user profile, please skip to Use your cluster correctly.
For others:

* Your user profile is probably located in your home directory as //home/<username>/<user profile
name>, for example, //home/<username>/.bashrc

e Common user profile names are .bashrc, .bash_profile, .profile,and .profile_user
— These names usually start with a dot.
— You may need to use the command 1s -—a to see these “hidden” files.
— Sometimes you may need to create your own user profile file.

* For example, you may have a . profile file listed, but when you look at it, it tells you to create and
modify a .profile_user file.

* After you save your changes to the user profile, you need to log out and then log back in, in order to see
the changes take effect.

— Alternately, you can source <user profile name>, but occasionally this command will produce
complications, for example, in path order.

If you cannot locate your user profile, please contact your system administrator.

6.1.2 Use your cluster correctly

For this installation, please follow the correct procedures in order to avoid excessive headnode use on your cluster.
* For example, you may want to preface every command withnice -n 19 in order to reduce headnode load.
* Or, your cluster may have a dedicated compile node, or it may support interactive queue submission.

Please check with your cluster administrator if you are unsure of the correct procedures.

11

MAST Documentation, Release 1.3.0.17

6.2 Install local python version and dependencies

MAST requires the following dependencies, some of which have additional dependencies:
* numpy
* scipy
* matplotlib
* pymatgen
* custodian
e pandas
* ase
Currently, the Anaconda python package is preferred because it:
* automatically installs to a user directory and does not need root privileges
* does not have the environment complications that the previously-recommended Enthought Canopy python has

* can easily install numpy, scipy, and matplotlib.

6.2.1 Install Anaconda python

Download the free installer from Anaconda. Use a Python 2.X version.
* Run the setup script. (e.g. bash ./Anaconda-<version>.sh)
 Follow the prompts and specify a local installation (use spacebar to scroll through the license file).

When prompted, agree for the installer to add a line to your user profile to make this python installation your default
python, for example:

’export PATH=//home/<username>/anaconda/bin:$SPATH

* Log out and log back in. Verify that your python version is now the anaconda python version.:

] which python

Use the conda command to install the following packages:

’conda install numpy scipy matplotlib

If you are developing for MAST, install the following packages:

’conda install numpy scipy matplotlib nose sphinx

6.2.2 Install the MAST package

Install the MAST package from the python package index:

‘pip install MAST

This command should install MAST, pymatgen, custodian, and pandas.

If pymatgen cannot be installed because gcc cannot be found in order to compile spglib, then please see your system
administrator.

12 Chapter 6. Installation

https://store.continuum.io/cshop/anaconda/

MAST Documentation, Release 1.3.0.17

If you need additional standalone tools (see Standalone Tools) or unit tests, then also get and unzip the MAST tar.gz
file (see Programming for MAST).

6.2.3 Install additional dependencies

* Do a quick installation of ASE following the instructions on the ASE website

6.3 Set up the pymatgen VASP_PSP_DIR

This step is necessary if you are running VASP with MAST. If you are not running VASP with MAST, skip to install-
mast.

6.3.1 Set up the pseudopotential folders

Locate the VASP pseudopotentials. If you cannot locate the VASP pseudopotentials, contact your system administrator
or another person who uses VASP on the cluster.

which potcar_setup.py should return the pymatgen utility for setting up your pseudopotential directories in
the way that pymatgen requires. If this command does not return a file location, then probably SHOME/ . local/bin
or <python installation directory>/bin is missing from your $SPATH environment variable. See add-
local-bin.

Run potcar_setup.py:

potcar_setup.py

 The first directory address that you give to the utility is the directory that contains a few subdirectories, for
example: potpaw_GGA, potpaw_LDA.52, potpaw_PBE.52, potUSPP_LDA, potpaw_LDA, potpaw_PBE, po-
tUSPP_GGA.

— These subdirectories themselves contain many sub-subdirectories with element names like Ac, Ac_s,
Zr sv, etc.

* The second directory address that you give should be a new directory that you create.
Once the new pymatgen-structured folders have been created, rename the GGA PBE folder to POT_GGA_PAW_PBE.

Later on, ingredients with a value of pbe for the ingredient keyword mast_xc will draw pseudopotentials out of this
folder (see Input File).

Rename the GGA PW91 folder to POT_GGA_PAW_PW91. Ingredients with a value of pw91 for the ingredient
keyword mast_xc will draw pseudopotentials out of this folder.

Example of running the python setup tool:

Please enter full path where the POT_GGA_PAW_PBE, etc.
subdirs are present.

If you obtained the PSPs directly from VASP, this should
typically be the directory that you untar the files to :

//share/apps/vasp_pseudopotentials/paw

Please enter the fullpath of the where you want to create
your pymatgen resources directory:

//home/<username>/.local/vasp_pps

6.3. Set up the pymatgen VASP_PSP_DIR 13

https://wiki.fysik.dtu.dk/ase/download.html

MAST Documentation, Release 1.3.0.17

Rename the folders under / /home/<username>/.local/vasp_pps:

mv //home/<username>/.local/vasp_pps/<pbe_name> //home/<username>/.local/vasp_pps/POT_GGA_PAW_PBRE

mv //home/<username>/.local/vasp_pps/<pw9l_name> //home/<username>/.local/vasp_pps/POT_GGA_PAW_PW91l

For assistance with potcar_setup.py, please contact the Pymatgen support group

6.3.2 Add the VASP_PSP_DIR to your user profile

Add a line to your user profile exporting the environment variable $SVASP_PSP_DIR to the new pseudopotential
directory created above.

For example:

export VASP_PSP_DIR=//home/<username>/.local/vasp_pps

Log out and log back in.

Test the change:

cd $VASP_PSP_DIR

* Make sure you are getting to the right directory, which has the POT_GGA_PAW_PBE etc. folders inside it.

6.4 Set the MAST environment variables

The pip installation of MAST should have set up a MAST directory in your home directory, that is,
//home/<username>/MAST.

* This directory is primarily for storing calculations, and should not be confused with the python module directory,
which is where the actual MAST python code resides.

Inside SHOME /MAST there should be:
1. A SCRATCH folder:
* Each time an input file is given to MAST, MAST will create a recipe directory inside this folder.

* Each recipe directory will itself contain ingredient, or calculation, directories. Calculations will be sub-
mitted to the queue from inside these ingredient directories.

» Multiple recipes may reside in SCRATCH at the same time, and MAST will evaluate them alphabetically.
2. An ARCHIVE folder:

* When a recipe directory is complete, MAST will move it from SCRATCH to ARCHIVE.
3. A CONTROL folder:

* MAST requires some control files in order to run. It also does some higher-level logging, and stores that
output here.

* On some clusters, like Stampede, the home directory is not where you actually want to store calculations.
Instead, there may be a separate “work™ or “scratch” directory. In this case, move the entire $HOME/MAST
directory into the work or scratch directory, for example:

mv $HOME/MAST S$WORK/.

In this case, the environment variables below should therefore say SWORK instead of SHOME.

14 Chapter 6. Installation

https://groups.google.com/forum/#!forum/pymatgen

MAST Documentation, Release 1.3.0.17

* You can also move the MAST directory anywhere else, as long as you set the environment variables correcty.

Copy and paste the environment variables into your user profile, setting the paths correctly if you have moved the
$SHOME /MAST directory:

export MAST_SCRATCH=$HOME/MAST/SCRATCH
export MAST_ARCHIVE=$HOME/MAST/ARCHIVE
export MAST_CONTROL=$HOME/MAST/CONTROL
export MAST_PLATFORM=<platform_name>

For platform_name, choose from one of the following:

aci

bardeen

dlx

korczak
no_gueue_system
pbs_generic
sge_generic
slurm_generic
stampede
turnbull

For example:

export MAST_PLATFORM=stampede

* If your platform is available by name (not _generic), then:
— Add the four environment variable lines to your user profile as above.
— Log out and log back in.
— Go to Additional setup.
« If your platform is not matched exactly, or you would choose one of the generic choices:

— Set the three other environment variables (MAST_SCRATCH, MAST_ARCHIVE, and
MAST_CONTROL) in your user profile.

— Log out and log back in.
— Go to Make a custom platform, if necessary.
6.4.1 Make a custom platform, if necessary

Run the following command. It should produce some errors, but ignore those and just see where MAST is installed:

‘mast -1 none

For example, output may be:

Welcome to the MAterials Simulation Toolkit (MAST)
Version: 1.1.5
Installed in: .local/lib/python2.7/site-packages/MAST

and then some errors.

Go to the “installed in” directory, and then:

6.4. Set the MAST environment variables 15

MAST Documentation, Release 1.3.0.17

‘cd submit/platforms

Identify the closest-matching directory to your actual platform (for example, if you have an SGE platform, this direc-
tory would be sge_generic)

Copy this directory into a new directory inside the plat forms folder, for example:

cp -r sge_generic my_custom_sge

Then, inside your new folder, like my_custom_sge, modify each of the following files as necessary for your plat-
form:

submit_template.sh
mastmon_submit.sh
queue_commands . py

Explanations for each file are given in the following sections. Modify and test each file in your new custom platform
folder.

Then, in your user profile, use your new custom folder for the platform name of $SMAST_PLATFORM:

export MAST_PLATFORM=my_custom_sge

Log out and log back in.

submit_template.sh
submit_template.sh is the generic submission template from which ingredient submission templates will be
created.

e MAST will replace anything inside question marks, for example ?mast_ppn? with the value of the appropriate
keyword.

The following keywords may be used; see Input File for more information on each keyword.
* mast_processors
¢ mast_ppn
* mast_nodes
¢ mast_queue
* mast_exec
¢ mast_walltime
* mast_memory
¢ mast_name (the ingredient name)
Examine the template carefully, as an error here will prevent your ingredients from running successfully on the queue.
* The provided template should be a good match for its platform.

— Otherwise, you can take one of your normal submission templates and substitute in ?mast_xxx? fields
where appropriate.

* Or, vice versa, you can take the provided template, replace the ?mast_xxx? fields with some reasonable
values, and see if filled-in submission template will run a job if submitted normally using gsub, sbatch, etc.

16 Chapter 6. Installation

MAST Documentation, Release 1.3.0.17

mastmon_submit.sh

mastmon_submit.sh is the submission template that will submit the MAST Monitor to the queue every time
mast is called.

The MAST Monitor will check the completion status of every recipe and ingredient in the $MAST_SCRATCH folder.

* If you have a recipe you would like to skip temporarily, manually put a file named MAST_SKIP inside that
recipe’s folder in SMAST_SCRATCH. MAST_SKIP can be an empty file, or it can contain notes; MAST does
not check its contents.

* mastmon_submit . sh should be set to run on the shortest-wallclock, fastest-turnaround queue available, e.g.
a serial queue

The mastmon_submit . sh script is copied into the SMAST__CONTROL directory every time you run mast.

If you see that after you type mast, no “mastmon” process appears on the queue, then test the submission script
directly:

cd S$SMAST_CONTROL
gsub mastmon_submit.sh (or use sbatch for slurm, etc.)

e Modify the SMAST_CONTROL/mastmon_submit . sh file until it the “mastmon” process successfully runs
on the queue.

* Copy your changes into the <MAST installation directory>/submit/platforms/<platform>/mastmon_su
file so that your changes will be reflected the next time that you run MAST.

queue_commands.py
These queue commands will be used to submit ingredients to the queue and retrieve the job IDs and statuses of
ingredients on the queue.

* For a custom platform, modify the <MAST installation directory>/submit/platforms/<your
custom platform>/queue_commands.py file.

* Do not modify the <MAST installation directory/submit/queue_commands.py file.
Modify the following python functions as necessary:
* queue_submission_command:
— This function should return the correct queue submission command,
— For example, this function should return gsub on PBS/Torque, or sbatch on slurm.
* extract_submitted_jobid:
— This function should parse the job ID, given the text that returns to screen when you submit a job.

— For example, it should return 456789 as the jobid for the following job submission and resulting screen
text:

login2.mycluster$ sbatch submit.sh

—-—> Verifying valid submit host (login2)...0OK

—-—> Verifying valid jobname...OK

--> Enforcing max Jjobs per user...OK

——> Verifying job request is within current queue limits...OK

Submitted batch job 456789

6.4. Set the MAST environment variables 17

MAST Documentation, Release 1.3.0.17

— On a different cluster, it would return 456789 as the jobid for the following submission and resulting
screen text:

[userl@mycluster test_job]$ gsub submit.sh
456789 .mycluster.abcd.univ.edu

* queue_snap_command:

— This function should show a summary of your current submitted jobs, which we call the
queue_snapshot.

— For example, the queue snapshot command should return something like the following (platform-

dependent):

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
456789 normal testl userl PD 0:00 4 (Resources)

456788 normal test2 userl PD 0:00 1 (Resources)

456774 normal test3 userl R 6:14:53 1 cl23-124

456775 normal testd4 userl R 6:15:34 1 cl25-126

* queue_status_from_text:
— This function should return the status of a specific job, based on the job number.

— For example, job 456789 in the queue snapshot above, with status “PD” should correspond to a “Q” status
(queued status) for MAST.

— Job 456775 in the queue snapshot above, with status “R”, should correspond to an “R” status (running
status) for MAST.

* get_approx_job_error_file:
— This function should return the name of the job error file.

— The name of this file will depend on what is specified in submit_template. sh and is usually some-
thing like slurm. <jobnumber> or <jobname>.e<jobnumber>

6.5 Additional setup

You may need to do any or all of the following:

¢ Identify the correct mast_exec call for your system.

— For example, suppose you run VASP like this:

//opt/mpiexec/bin/mpiexec //share/apps/bin/vasp5.2_par_optl

— Then, in your input files, the mast_exec keyword would be specified like this:

mast_exec //opt/mpiexec/bin/mpiexec //share/apps/bin/vasp5.2_par_optl

¢ Add additional lines to your user profile which allow you to run VASP, including any modules that need to be
imported, additions to your library path, unlimiting the stack size, and so on.

* Modify your text editor settings so that tabs become four spaces (or so that you have such an option readily
available). This setting is very important to ensure that MAST can read the input file, especially the recipe
section of the input file.

— If youuse VIM (v1i), add the following lines to your ~/ . vimrc file:

18

Chapter 6. Installation

MAST Documentation, Release 1.3.0.17

" VIM settings for python in a group below:
set tabstop=4

set shiftwidth=4

set smarttab

set expandtab

set softtabstop=4

set autoindent

Once you have completed any additional setup and have identified what mast_exec should be, go to Trying out
MAST.

6.5. Additional setup 19

MAST Documentation, Release 1.3.0.17

20

Chapter 6. Installation

CHAPTER
SEVEN

TRYING OUT MAST

1. Go to $HOME/MAST/examples (or SWORK/MAST/examples or a similar folder, if you moved the
SHOME /MAST folder from its default location.)

2. Select one of the examples. The fastest one is simple_optimization.inp

3. Copy that file:

cp simple_optimization.inp test.inp

4. Modify the test.inp file with the correct mast_exec, mast_ppn, mast_queue, mast_walltime, and
other settings described in Input File

5. Try to parse the input file, entering the following command as one line:

nice -n 19 mast -i test.inp

e The nice —-n 19 keeps this command low priority, since it is being run on the headnode (but it is not
too intensive).

e The -1 signals to MAST that it is processing an input file.
6. Your SMAST_SCRATCH directory should now have a recipe directory in it.

* The recipe directory will have a name corresponding to the elements and the input file, and ending with a
timestamp of YYYYMMDD”T”hhmmss.

» The recipe directory will contain several subfolders, which are ingredient directories.
7. Go to that recipe directory.
* To see the input options:
— cat input.inp (should be identical to test.inp since no looping was used)

* Note that you can use other viewing commands, not just cat, but be careful not to edit any of
these files.

— cat archive_input_options.txt (should show Al instead of element X1)
* To see information about the ingredient relationships MAST detected from the recipe template:
— cat archive_recipe_plan.txt
— Look at the $Spersonal_recipe section in the input . inp file
 To see ingredient statuses at a glance:
— cat status.txt
8. Run mastonce: nice -n 19 mast

9. You should see a “mastmon” job appear on the queue specified in SMAST_CONTROL/mastmon_submit .sh

21

MAST Documentation, Release 1.3.0.17

10.

11.
12.

13.

14.

15.

7.1

MAST should have detected that the first ingredient was ready to run, so when that process disappears, run mast
again: nice -n 19 mast

Now you should see perfect_opt1 appear on the queue.

status.txt in the recipe directory in SMAST_SCRATCH should show that perfect_opt1 has a status of
“Proceed to Queue”, or “P”.

When the queued perfect_optl job starts running, you should be able to see output files inside
SMAST_SCRATCH/<recipe directory>/perfect_optl

If you forgot some step above, or you encounter some errors, remove the recipe folder from SMAST_SCRATCH
and start again from the beginning of this section.

The $MAST_CONTROL folder gives you error messages and other information. See Running MAST for tips.

Unit testing

Unit tests are available through the MAST tar.gz file. See Programming for MAST. (Unit tests are not installed by
default using pip.)

To check the validity of the MAST source code, navigate to <MAST installation directory>/MAST/test
and run the unit tests with:

‘ nosetests ——exe

Some tests may have been designated to be skipped. Errors should be reported to the MAST development team as an
issue on the github site (see Programming for MAST).

22

Chapter 7. Trying out MAST

CHAPTER
EIGHT

INPUT FILE

When you use the command mast —-i <inputfile>.inp, MAST does the following:
* Reads the input file
* Creates a recipe directory in SMAST_SCRATCH
* Creates the ingredient directories under that recipe directory
¢ Creates all the necessary metadata.txt files for that recipe and its ingredients.
MAST will then copy the input file into that recipe directory, as input . inp.

MAST will refer to this recipe-local input . inp file for all subsequent contact with the recipe.

8.1 General structure of the input file

The input file has many sections. Sections are denoted by $<section name> and $end:

Ssection

section_text
section_keyword keyword_value

Send

Within each section there may also be subsections, with keywords and values. Subsections are denoted by begin
<subsection name> and end.:

Ssection

section_text
section_keyword keyword_value

begin subsection

subsection_text

subsection_keyword subsection_keyword_value
end

Send

¢ Comments in the input file are allowed only as separate lines, starting with the # sign.

* A comment may not be appended to a line.

23

MAST Documentation, Release 1.3.0.17

8.2 Sections of the input file

See Sections of the Input File

8.3 Looping in the input file

If special looping tags are present in the input file, MAST can read in a single input file and create several permutated
recipes in SMAST_SCRATCH.

The looping tag indeploop may be used to create combinatorial permutations.

* indeploop may be used once at the beginning of a line (that is not a section or subsection header or “end”
line).

* indeploop may be used multiple times in an input file.

When indeploop is present at the beginning of the line, input file permutations will be created depending on the
values in parentheses.

‘indeploop keywordl (klvaluel,klvalue2)

The previous line would create two input files and corresponding recipes. On the line that used to have indeploop
on it, one input file would have:

] keywordl klvaluel

The other input file would have:

\ keywordl llvalue?2

If indeploop tags are present multiple times in the recipe, input files are created combinatorially:

indeploop keywordl (klvaluel,klvalue2)
indeploop keyword2 (k2valuel,k2value2)

The previous two lines in an input file would create four input files and corresponding recipes. One input file would
have:

keywordl klvaluel
keyword2 k2valuel

Another would have:

keywordl klvaluel
keyword2 k2value2

A third would have:

keywordl klvalue2
kewyord2 k2valuel

A fourth would have:

keywordl klvalue2
keyword2 k2value2

Sometimes, instead of combinatorial looping, some loops are meant to go together. In this case, the pegloopl and
pegloop?2 tags may be used.

24 Chapter 8. Input File

MAST Documentation, Release 1.3.0.17

* There are only two pegged looping tags allowed, pegloopl and pegloop?.
» Each tag may be used only once on a line.
» Each tag may be used on multiple lines.

Every line that starts with pegloopl (the same will apply for pegloop2) will loop over keyword values, much like
indeploop. However, the point of the pegged loops is to have two or more keywords loop together.

For example:

pegloopl keywordl (klvaluel,klvalue?2)
pegloopl keyword2 (k2valuel,k2value2)

Using the pegloopl tag, the lines above would not produce four input files and corresponding recipes, as they would
when using the indeploop tag. Instead, they would produce only two input files and corresponding recipes.

One input file would have:

keywordl klvaluel
keyword2 k2valuel

The other input file would have:

keywordl klvalue2
keyword2 k2value2

The number of items in parentheses should be equal for all instances of the pegloop1l (or, separately, the pegloop?2)
tag.

pegloopl, pegloop?2, and all instances of indeploop will work combinatorially with each other.

Complex example (for looping only - many other necessary lines in the input file are skipped):

Smast
pegloopl system_name (strainl,strain2,strain3)
Send

$structure

begin lattice
pegloopl (3,4,5) 0
pegloopl 0 (3,4,5)
pegloopl 0 0 (3,4,5
end

0
0
)

begin elementmap
pegloop2 X1 (Cr,Mn)
end

Send

Singredients

begin ingredients_global
indeploop mast_xc (pw9l, pbe)
LDAUJ 1

pegloop2 LDAUU (4.5,5)

end

Send

The above example would create 3*2#2 = 12 input files and corresponding recipes. The input file for the one of the
recipes would look like:

8.3. Looping in the input file 25

MAST Documentation, Release 1.3.0.17

Smast
system_name strain2
Send

Sstructure
begin lattice
400

040

00 4

end

begin elementmap
X1 Mn

end

Send

$ingredients

begin ingredients_global
indeploop mast_xc pbe

LDAUJ 1
LDAUU 5
end
Send

26

Chapter 8. Input File

CHAPTER
NINE

SECTIONS OF THE INPUT FILE

9.1 The MAST section

The $mast section contains this keyword:
system_name: Specify a single descriptive word here.

This keyword will become part of the recipe directory’s name, and allow you to spot the recipe more easily in the
SMAST_SCRATCH directory.

This keyword comes in handy with pegged looping, in order to help you identify loops.

* Loops are otherwise differentiated by elements, if you were looping over elements, or simply by a 1-second
timestamp difference.

Example:

Smast
system_name epitaxialstrain
Send

Example for pegged loop:

Smast
pegloopl system_name (strainl,strain2,strain3)
Send

9.2 The Structure section

The $structure section contains the coordinate type, coordinates, and lattice, or, optionally, the name of a structure
file (either CIF or VASP POSCAR-type).

9.2.1 Structure by file

Using the keyword posfile, a VASP POSCAR-type file or a CIF file can be inserted here in this section:

Sstructure
posfile POSCAR_fcc
Send

The file should be located in the same directory as the input file at the time you call MAST, and should not be moved
until the recipe is complete.

27

MAST Documentation, Release 1.3.0.17

A CIF file should end with .cif.

A POSCAR-type filename must start with POSCAR__ or CONTCAR__ in order for pymatgen to recognize it. The
elements will be obtained from the POSCAR unless you also have a POTCAR in the directory, in which case, check
your output carefully because the elements might be given by the POTCAR instead, no matter what elements are
written in the POSCAR file.

9.2.2 Structure by specification

To specify a structure, use the following subsections:

coord_type: This keyword specifies fractional or cartesian coordinates. Only fractional coordinates have been thor-
oughly tested with most MAST features.

lattice: The lattice subsection specifies lattice basis vectors on a cartesian coordinate system.

elementmap: The elementmap subsection allows you to create a generic lattice and interchange other elements onto
it. This is useful when looping over other elements (discussed in Input File).

The elementmap subsection works in conjunction with the coordinates subsection.
coordinates: The coordinates subsection specifies the coordinates in order.

Fractional coordinates are fractional along each lattice basis vector, e.g. .0.5 0 0. describes a position 0.5 (halfway)
along the first lattice basis vector.

Each fractional coordinate must be preceded by either an element symbol or an X# symbol corresponding to the
symbols assigned in the elementmap section.

Example:

begin $structure
coord_type fractional

begin lattice
6.0 0.0 0.0
0.0 6.0 0.0
0.0 0.0 6.0
end

begin elementmap
X1 Ga

X2 As

end

begin coordinates

X1 0.000000 0.000000 0.000000
X1 0.500000 0.500000 0.000000
X1 0.000000 0.500000 0.500000
X1 0.500000 0.000000 0.500000
X2 0.250000 0.250000 0.250000
X2 0.750000 0.750000 0.250000
X2 0.250000 0.750000 0.750000
X2 0.750000 0.250000 0.750000
end

Send

28 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

9.2.3 Structure indexing (beta)

Some atomic positions in structures may change significantly after structural relaxation.

Without structure indexing, current operation of MAST is as follows: just before a defect, NEB, or phonon is about to
be run, MAST decides which atoms to remove, single out for phonons, etc., based on a coordinate which is guessed at
ahead of time, for example, 0.5 0.5 0.5, and sometimes a tolerance.

However, the relaxed atom may be quite far from that coordinate, so the search may fail.

When set to True, the use_structure_index keyword in the $structure section turns on atomic position indexing
in the structure.:

Sstructure
use_structure_index True

Send

The coordinates in the $defect, $neb, etc. sections should exactly match the coordinates in the initial structure
given to MAST. Scaling sizes will be handled automatically.

MAST will create a separate structure index file, a “manifest” file, for the initial structure and each scaling size and
defect configuration. Each NEB endpoint will have a separate manifest file, and each phonon calculation will have a
separate manifest for detailing selective dynamics information.

These files are stored in the st ructure_index_files directory within the recipe directory.

The manifest file consists of atomic index numbers, which correspond to atom_index_<index number> files.
Each atomic index file is updated with the appropriate coordinates from a completed calculation.

When a calculation is complete, its relaxed atomic coordinates will be saved back to the appropriate atom_index file.

NEB notes for structure indexing

Special care should be taken when defining NEB calculations in the $neb section of the input file.
Again, vacancy and substitutional defects should have coordinates that exactly match those in the initial structure.
Coordinates in the $neb section should exactly match coordinates in the $defect s section.

Defect manifests have their defects sorted to the bottom, except for vacancies. NEB manifests are created from defect
manifests.

Atoms indicated in the $neb section are pulled out of their order in the manifest and put in order at the bottom.

As long as vacancies are accounted for in the $neb section, and grouped defects are entered in the same order in the
defect endpoints in the $defects section, this process ensures lineup.

Grouped defects that are intended to persist but not move should be placed in the same order, that is, if defectl and
defect2 are going to be in an NEB and both have unmoving Sr antisite defects, then the Sr antisite defects should be
in the same order in the begin defectl and begin defect2 sections.

Pymatgen’s interpolate function resorts atoms, so a temporary manifest is made for pymatgen, and the interpolation is
resorted back to match the NEB endpoint manifests.

Also, all image atoms are ordered following the endpointl manifest. The final endpoint atoms are ordered following
the endpoint2 manifest.

Therefore, after completion, coordinates for image atoms are recorded in the atom index files indicated by the endpoint
1 manifest.

9.2. The Structure section 29

MAST Documentation, Release 1.3.0.17

9.3 The Scaling section

The $scaling section supports finite-size scaling through different supercell sizes.

9.3.1 Finite-size scaling

Finite size scaling is supported with a special “scaling” subsection.
Defect positions will be automatically scaled.

* For example, 0.25 0.0 0.0 in the original supercell would become 0.125 0.0 0.0 ina 2x1x1 cell.
Special notes:

e The Ingredients section should include an “inducescaling” ingredient with a mast_run_method of
run_scale

* The Recipe section should include inducescaling_<S> and defect_<S> ingredients.
— The “<S>” tags will correspond to the scaling sizes and labels.
For each scaling size, create a subsection with begin <labelname>.
Within the subsection, include keywords:
e mast_size with a scaling matrix of integers [M, N, P]or [M1 M2 M3, N1 N2 N3, P1 P2 P3]
» mast_kpoints with a Kpoint mesh in the form QxRxS, followed by a
* Kpoint mesh type, M for Monkhorst-Pack and G for Gamma-point centered
* (Optional) Kpoint mesh shift, in floats,e.g. 0.1 0.2 0.3
WILL OTHER KEYWORDS NOW WORK AS WELL, FOR OVERRIDING?

Example:

$scaling

begin 2xhigh
mast_size [2, 2, 2]
mast_kpoints 4x4x4 M
end

begin 4xhigh
mast_size [4, 4, 4]
mast_kpoints 2x2x2 M
end

Send

NEED TO VERIFY MADELUNG POTENTIAL CHANGES
In order to figure out which scaling sizes to use for finite-size scaling, MAST includes a Madelung potential utility.

This utility generates a distribution of cell sizes for best scaling, according to the method in:

‘Hine, N. D. M., Frensch, K., Foulkes, W. M. C. & Finnis, M. W. Supercell size scaling o# density funce

Run this utility as follows in order to generate a cut-and-paste for the scaling section.

‘mast_finite_size_scaling_sizes perfDir defDir minDefDist maxNumAtoms numStructAsked ‘

 perfDir: perfect primordial (small) cell directory, which should already have run and include VASP CONTCAR,
OSZICAR, etc. files.

30 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

¢ defDir: defected primordial cell directory, which should already have run and include VASP CONTCAR, OS-
ZICAR, etc. files.

* minDefDist (default 3): minimum defect-defect distance between periodic images, in Angstroms.
¢ maxNumAtoms (default 600): maximum number of atoms for supercell size evaluations
¢ numStructAsked (default 5): number of structures to return in the distribution

* Note that you will have to manually adjust the kpoint mesh in your cut-and-paste.

9.4 The Ingredients section

The $ingredients section contains a section for global ingredient keywords and then a section for each ingredient
type.

Each ingredient type in the recipe should have a subsection denoted by begin <ingredient type>.

Example $ingredients section:

$Singredients

begin ingredients_global
keywordl klvaluel
end

begin ingredient_typel
keywordl klvalue2
keyword2 k2valuel

end

begin ingredient_type2
keyword2 k2value2

end

Send

Program-specific keywords such as VASP INCAR keywords are included in these sections. All other keywords are
prefaced with mast_.

If there are no changes from the ingredients_global section, just add an empty subsection for that ingredient type:

begin ingredient_type
end

For a specific ingredient type, if a keyword is not specified in that ingredient type’s subsection but is specified in the
ingredients_global subsection, then, the value for that keyword will be taken from ingredients_global.

¢ In the example above, ingredient_type?2 would inherit keywordl klvaluel from ingredients_global.

9.4.1 Program-specific keywords

VASP keywords such as IBRION, ISIF, LCHARG, LWAVE, and so on, can be specified under each ingredient type in
the $ingredients section of the input file.

Such program-specific keywords are only allowed if they are listed in the program-specific file located in the
<MAST installation directory>/MAST/ingredients/programkeys/ folder, for example, <MAST
installation directory>/MAST/ingredients/programkeys/vasp_allowed_keywords.py.

9.4. The Ingredients section 31

MAST Documentation, Release 1.3.0.17

These program-specific keywords will be turned into uppercase keywords. The values will not change case, and should
be given in the case required by the program. For example, lwave False will be translated into LWAVE False
in the VASP INCAR file.

One exception for VASP keywords is the IMAGES keyword, which signals a nudged elastic band run, and should
instead be set in the $neb section of the input file.

For VASP ingredients, please include

lcharg False
lwave False

in your ingredient global keywords in order to avoid writing the large VASP files CHGCAR and WAVECAR, unless
you really need these files.

9.4.2 Special MAST keywords

Any keyword that starts with mast__ is considered a special keyword utilized by MAST and will not be written into
the VASP INCAR file or any custom input file.

Submission script keywords
The following queue submission keywords are platform-dependent and are used along to create the submission script
(see Installation).

mast_exec: The command used in the submission script to execute the program. Note that this is a specific command
rather than the class of program, given in mast_program, and it should include any MPI commands.

’mast_exec //opt/mpiexec/bin/mpiexec ~/bin/vasp_5.2

mast_nodes: The number of nodes requested.

mast_ppn: The number of processors per node requested.
mast_queue: The queue requested.

mast_walltime: The walltime requested, in whole number of hours

mast_memory: The memory per processor requested.

MAST control flow keywords

mast_program: Specify which program to run (vasp, vasp_neb, or None for a generic program, are currently
supported)

mast_program vasp

 This keyword must be in lowercase

mast_frozen_seconds: A number of seconds before a job is considered frozen, if its output file has not been updated
within this amount of time. If not set, 21000 seconds is used.

mast_auto_correct: Specify whether mast should automatically correct errors.

* The default is True, so if this keyword is set to True, or if this keyword is not specified at all, then MAST will
attempt to find errors, automatically correct the errors, and resubmit the ingredient.

32 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

* If set to False, MAST will attempt to find errors, then write them into a MAST_ERROR file in the recipe folder,
logging both the error-containing ingredient and the nature of the error, but not taking any corrective actions.
The recipe will be skipped in all subsequent MAST runs until the MAST_ERROR file is manually deleted by the
user.

VASP-specific keywords

mast_kpoints: Specify k-point instructions in the form of kpoints along lattice vectors a, b, and c, and then a desig-
nation M for Monkhorst-Pack or G for Gamma-centered.

mast_kpoints = 3x3x3 G

* FEither this keyword or mast_kpoint_density is required for VASP calculations.
mast_kpoint_density: A number for the desired kpoint mesh density.

* Only works withmast_write_methodof write_singlerun_automesh

* Either this keyword or mast_kpoints is required for VASP calculations.

mast_pp_setup: Specify which pseudopotential goes to which element:

mast_pp_setup La=La Mn=Mn_pv 0=0_s

mast_xc: Specify an exchange correlation functional; for VASP, follow the conventions of pymatgen (e.g. pw91, pbe)
 This keyword is required for VASP calculations.

mast_multiplyencut: Specify a number with which to multiply the maximum ENCUT value of the pseudopotentials.
Volume relaxations in VASP often take 1.5; otherwise 1.25 is sufficient.

e Defaultis 1.5

e If encut is given as a program keyword, then that value will be used and mast_multiplyencut should
have no effect

mast_setmagmom: Specify a string to use for setting the initial magnetic moment. A short string will result in
multipliers. For example, mast_setmagmom 1 5 1 will produce 2«1 2+5 8«1 for a 12-atom unit cell with
2A, 2B, and 8C atoms. A string of the number of atoms in the POSCAR file will be printed as entered, for example,
mast_setmagmom 1 -1 1 -1 1 -1 1 -1.

mast_charge: Specify the charge on the system (total system)
* -1 charge means the ADDITION of one electron. For example, O2- has two more electrons than O neutral.

* A positive charge is the REMOVAL of electrons. For example, Na+ with a +1 charge has one FEWER electron
than Na neutral.

mast_coordinates: For a non-NEB calculation, allows you to specify a single POSCAR-type of CIF structure file
which corresponds to the relaxed fractional coordinates at which you would like to start this ingredient. ONLY the
coordinates are used. The lattice parameters and elements are given by the $structure section of the input file. The
coordinates must be fractional coordinates.

mast_coordinates POSCAR_initialize

* For an NEB calculation, use a comma-delimited list of poscar files corresponding to the correct number of
images. Put no spaces between the file names. Example for an NEB with 3 intermediate images:

mast_coordinates POSCAR_iml,POSCAR_im2,POSCAR_im3

9.4. The Ingredients section 33

MAST Documentation, Release 1.3.0.17

* The structure files must be found in the directory from which the input file is being submitted when initially in-
putting the input file (e.g. the directory you are in when yourunmast —i test.inp);oncethe input.inp
file is created in the recipe directory, it will store a full path back to these poscar-type files.

* This keyword cannot be used with programs other than VASP, cartesian coordinates, and special ingredients like
inducedefect-type ingredients, whose write or run methods are different.

Structure manipulation keywords

mast_strain: Specify three numbers for multiplying the lattice parameters a, b, and c. Only works with
mast_run_methodof run_strain

mast_strain 1.01 1.03 0.98

This example will stretch the lattice along lattice vector a by 1%, stretch the lattice along lattice vector b by 3%, and
compress the lattice along lattice vector ¢ by 2%

mast_xxx_method keywords

The following keywords have individual sections:
mast_write_method: Specifies what the ingredient should write out before running (e.g., create the INCAR)

mast_ready_method: Specifies how MAST can tell if the ingredient is ready to run (often, in addition to writing its
own files, an ingredient must also wait for data from its parent ingredient(s)).

mast_run_method: Specifies what MAST should do to run the ingredient (e.g. submit a submission script to a queue,
or perform some other action)

mast_complete_method: Specifies how MAST can tell if the ingredient is considered complete

mast_update_children_method: Specifies what information an ingredient passes on to its children, and how it does
SO.

Specific available values for each keyword are given in the accompanying sections, and require no arguments, e.g.:

mast_write_method write_singlerun

They depend on having an appropriate program set in mast_program.

However, you may choose to specify arguments where available, e.g.:

mast_complete_method file_has_string myoutput "End of Execution"

You may also choose to specify multiple methods. These methods will be performed in the order listed. For
mast_ready_method or mast_complete_method, all methods listed must return True in order for the in-
gredient to be considered ready or complete, respectively. Use a semicolon to separate out the methods:

mast_complete_method file_has_string myoutput "End of Execution"; file_exists Parsed_St#uctures

In the example above, the file “myoutput” must exist and contain the phrase “End of Execution”, and the file
“Parsed_Structures” must exist, in order for the ingredient to be considered complete.

Update-children methods will always get the child name appended as the end of the argument string. For example,

mast_update_children_method copy_file EndStructure BeginStructure

will copy the file EndStructure of the parent ingredient folder to a new file BeginStructure in the child ingredient
folder. There is no separate argument denoting the child ingredient.

All arguments are passed as strings. Arguments in quotation marks are kept together.

34 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

Some common open-ended methods are:
* file_exists <filename>
« file_has_string <filename> <string>
¢ copy_file <filename> <copy_to_filename>
¢ softlink_file <filename> <softlink_to_filename>

¢ copy_fullpath_file <full path file name> <copy_to_filename>: This method is for copying some system file
like //home/user/some_template, not an ingredient-specific file

e write_ingred_input_file <filename> <allowed file> <uppercase keywords> <delimiter>:
The allowed file specifies an allowed keywords file name in <MAST installation
directory>/MAST/ingredients/programkeys.

— Use “all” to put any non-mast keywords into the input file.
— Use 1 to uppercase all keywords, or 0 to leave them as entered.
— Leave off the delimiter argument in order to use a single space.

— Examples:

write_ingred_input_file input.txt all 0 =
write_ingred_input_file input.txt phon_allowed_keys.py 1

* no_setup: Does nothing. Useful when you want to specifically specify doing nothing.

* no_update: Does nothing (but, does accept the child name it is given). Useful when you want to specify doing
nothing for a child update step.

e run_command: <command string, including all arguments>: This method allows you to run a python script.
— The python script may take in only string-based arguments
— Please stick to common text characters.

— Example:

mast_run_method run_command "//home/user/myscripts/my_custom_parsing.py 25 0.01"

— In the example above, the numbers 25 and 0.01 will actually be passed into sys.argv as a string.

— This method is intended to allow you to run short custom scripts of your own creation, particularly for
mast_write_method when setting up your ingredient.

— For long or complex execution steps where you want the output tracked separately, do not use this method. Instead, «
Use write_submit_script in your mast_write_method, along with any other write
methods # Use mast_run_method run_singlerun # Put your script in the mast_exec
keyword

mast_write_method keyword values

write_singlerun
» Write files for a single generic run.
* Programs supported: vasp
write_singlerun_automesh
» Write files for a single generic run.

* Programs supported: vasp

9.4. The Ingredients section 35

MAST Documentation, Release 1.3.0.17

* Requires the mast_kpoint_density ingredient keyword
write_neb

e Write an NEB ingredient. This method writes interpolated images to the appropriate folders, creating
00/01/.../0N directories and uses linear interpolation between images.

* Programs supported: vasp
write_pathfinder_neb
* Write an NEB ingredient using a charge-density-based pathfinding method.
* Programs supported: vasp
* This method takes the argument of an ingredient name for the ingredient from which to take the charge density.
— The ingredient name must be fully specified, e.g. no <S>, <N>, etc. tags.
— The ingredient must have a CHGCAR file written. A gamma-point calculation is sufficient for this purpose.

— The ingredient should have both endpoints removed. For example, for vacancy migration, the ingredient
should have neither a vacancy at the initial position, nor a vacancy at the final position. However, it should
have all other non-migrating defects that are common to both the initial and final state.

 This method only works with use_structure_index Trueinthe $structure section of the input file.
write_neb_subfolders

» Write static runs for an NEB, starting from a previous NEB, into image subfolders 01 to O(N-1).

* Programs supported: vasp
write_phonon_single

* Write files for a phonon run.

* Programs supported: vasp
write_phonon_multiple

* Write a phonon run, where the frequency calculation for each atom and each direction is a separate run, using
selective dynamics. CHGCAR and WAVECAR must have been given to the ingredient previously; these files
will be softlinked into each subfolder.

* Programs supported: vasp

mast_ready_method keyword values

ready_singlerun

* Checks that a single run is ready to run

* Programs supported: vasp (either NEB or regular VASP run), phon
ready_defect

* Checks that the ingredient has a structure file

* Programs supported: vasp
ready_neb_subfolders

e Checks that each 01/.../O(N-1) subfolder is ready to run as its own separate calculation, following the
ready_singlerun criteria for each folder

¢ This method is used for NEB static calculations rather than NEB calculations themselves.

36 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

ready_subfolders * Checks that each subfolder is ready to run, following the ready_singlerun criteria. * Generic *
This method is used for calculations whose write method includes subfolders, and where each subfolder is a calcula-
tion, as in write_phonon_multiple.

mast_run_method keyword values

run_defect
* Create a defect in the structure; not submitted to queue
* Generic
* Requires the $defects section in the input file (see The Defects section).
run_singlerun
* Submit a run to the queue.
¢ Generic
run_neb_subfolders
* Run each 01/.../0(N-1) subfolder as run_singlerun
* Generic
run_subfolders
* Run each subfolder as run_singlerun
* Generic
run_strain
* Strain the structure; not submitted to queue
* Generic
* Requires the mast_strain ingredient keyword
run_scale
* Scale the structure (e.g. a 2-atom unit cell scaled by 2 becomes a 16-atom supercell)
* Requires the $scaling subsection in the input file (see The Structure section).

* Must not be run on the starting ingredient.

mast_complete_method keyword values

complete_singlerun
* Check if run is complete
* Programs supported: vasp

* Note that for VASP, the phrase reached required accuracy is checked for, as well as a User time
in seconds. The exceptions are:

— NSW of 0, NSW of -1, or NSW not specified in the ingredients section keywords is taken as a static
calculation, and .EDIFF is reached. is checked instead of .reached required accuracy.

— IBRION of -1 is taken as a static calculation, and .EDIFF is reached. is checked instead of .reached
required accuracy.

— IBRION of 0 is taken as an MD calculation, and only user time is checked

9.4. The Ingredients section 37

MAST Documentation, Release 1.3.0.17

— IBRION of 5, 6, 7, or 8 is taken as a phonon calculation, and only user time is checked

complete_neb_subfolders

* Check if all NEB subfolders 01/.../0(N-1) are complete, according to complete_singlerun criteria.

 This method is not for checking the completion of NEBs! An NEB ingredient should have mast_program
vasp_neb and mast_complete_method complete_singlerun.

e An NEB static calculation, or a static calculation for each image, would use this keyword as
mast_complete_method complete_neb_subfoldersbuthavemast_program vasp instead of

vasp_neb.

complete_subfolders

* Check if all subfolders are complete, according to complete_singlerun criteria.

¢ Generic
complete_structure
e Check if run has an output structure file written

* Programs supported: vasp (looks for CONTCAR)

mast_update_children_method keyword values

give_structure

» Forward the relaxed structure

* Programs supported: vasp (CONTCAR to POSCAR)
give_structure_and_energy_to_neb

» Forward the relaxed structure and energy files

* Programs supported: vasp (CONTCAR to POSCAR, and copy over OSZICAR)

give_neb_structures_to_neb

» Give NEB output images structures as the starting point image input structures in another NEB

* Programs supported: vasp (01/.../0(N-1) CONTCAR files will be the child NEB ingredient.s starting 01/.../O(N-

1) POSCAR files.
give_saddle_structure
» Forward the highest-energy structure of all subfolder structures

* Programs supported: vasp

Example Ingredients section

Here is an example ingredients section:

$ingredients

begin ingredients_global

mast_program vasp

mast_nodes 1

mast_multiplyencut 1.5

mast_ppn 1

mast_queue default

mast_exec mpiexec //home/mayeshiba/bin/vasp.5.3.3_vtst_static

38 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

mast_kpoints 2x2x2 M
mast_xc PW9l

isif 2

ibrion 2

nsw 191

ismear 1

sigma 0.2

lwave False

lcharg False

prec Accurate
mast_program vasp

mast_write_method write_singlerun
mast_ready_method ready_singlerun
mast_run_method run_singlerun
mast_complete_method complete_singlerun
mast_update_children_method give_structure
end

begin volrelax_to_singlerun
isif 3
end

begin singlerun_to_phonon

ibrion -1

nsw 0

mast_update_children_method give_structure_and_restart_files
mast_multiplyencut 1.25

lwave True

lcharge True

end

begin inducedefect

mast_write_method no_setup
mast_ready_method ready_defect
mast_run_method run_defect
mast_complete_method complete_structure
end

begin singlerun_vacl
mast_coordinates POSCAR_vacl
end

begin singlerun_vac2
mast_coordinates POSCAR_vac?2
end

begin singlerun_to_neb

ibrion -1

nsw 0

mast_update_children_method give_structure_and_energy_to_neb
lwave True

lcharge True

end

begin neb_to_neb_vacl-vac?2

mast_coordinates POSCAR_nebiml, POSCAR_nebim2, POSCAR_nebim3
mast_write_method write_neb

mast_update_children_method give_neb_structures_to_neb

9.4. The Ingredients section 39

MAST Documentation, Release 1.3.0.17

mast_nodes 3
mast_kpoints 1x1x1l G
ibrion 1

potim 0.5

images 3

lclimb True

spring -5

end

begin neb_to_neb_vacl-vac3

mast_coordinates POSCAR_nebiml_set2,POSCAR_nebim2_set2,POSCAR_nebim3_set2
mast_write_method write_neb

mast_update_children_method give_neb_structures_to_neb

mast_nodes 3

mast_kpoints 1x1xl G

ibrion 1

potim 0.5

images 3
lclimb True
spring -5
end

begin neb_to_nebstat

mast_write_method write_neb
mast_update_children_method give_neb_structures_to_neb
mast_nodes 3

ibrion 1

potim 0.5

images 3

lclimb True

spring -5

end

begin nebstat_to_nebphonon
ibrion -1

nsw 0

mast_write_method write_neb_subfolders
mast_ready_method ready_neb_subfolders
mast_run_method run_neb_subfolders
mast_complete_method complete_neb_subfolders
mast_update_children_method give_saddle_structure
end

begin phonon_to_phononparse

mast_write_method write_phonon_multiple
mast_ready_method ready_subfolders
mast_run_method run_subfolders
mast_complete_method complete_subfolders

mast_update_children_method give_phonon_multiple_forces_and_displacements
ibrion 5

nfree 2

potim 0.01

istart 1

icharg 1

end

Send

40 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

9.5 The Recipe section

The $recipe section of the input file contains information about how the ingredients are related to each other.
* This information complements the mast_update_children_method keyword given for each ingredient.

An ingredient in the recipe is referred to by:

’<ingredient name> (ingredient type in $ingredients section)

For example:

’perfect_optl (lowmesh_relaxation)

If no ingredient type is given, then only settings from the ingredients_global ingredient type of the input file will be
used.

The ingredient name has some restrictions:
* For a simple workflow, the ingredient name may be fully and arbitrarily specified for the user.

* In most complex workflows, however, tags may be used as shortcuts to ingredient names. These tags will be
filled in from information in the input file.

— <S>: The scaling subsection of The Structure section

<N>: The Defects section

<Q>: The charge keyword in The Defects section

<P>: The phonon keyword in The Defects section and 3_1_6_neb
- , <E>, <B-E>: The NEB section

The filled-in tags will be evident in The Personal Recipe section of the input . inp file in the recipe
directory, once MAST has read the input file and set up the recipe directory.

* When tags are used, certain conventions must be followed:
— Inducing scaling must use an inducescaling_<S> ingredient.
— Inducing defects must use an inducedefect_<N> or inducedefect_<S>_<N> ingredient.

— Defects must start with de fect, and if tags are used, they must follow the order <S>, <N, B, or E>, <Q>,
depending on which tags are used.

defect_<S>_<N>_<Q>_arbitrarysuffix

— Phonons must start with phonon, and if tags are used, they must follow the order <S>, <N or B-E>, <Q>,
<P>

— NEBs must start with neb, and if tags are used, they must follow the order <S>, <B-E>, <Q>
Important: when creating or editing recipes, do not use the Tab key. Instead, use 4 spaces to indent.
* See Installation for setting up text editors.

* Also make sure that the recipe you are working with has not somehow been converted to tabs.

9.5.1 Syntax

Each indentation level marks a parent-child relationship.:

9.5. The Recipe section 41

MAST Documentation, Release 1.3.0.17

perfect_optl (volrelax_lowmesh)
perfect_opt2
perfect_opt3

The ingredient type of an ingredient is specified in parentheses after the ingredient.

The ingredient type should correspond to ingredient subsections within The Ingredients section. If no ingredient type
is specified, the ingredient gets all default values from the ingredients_global subsection.

In the recipe:

perfect_optl (volrelax_lowmesh)

In the input file:

Singredients

begin volrelax_lowmesh
mast_run_method run_singlerun

end

Send

If the parent needs to update several children in different ways, create new trees where the originating parent is the
same parent name, but with a different ingredient type:

perfect_stat (stat_to_defect)
defect_opt

perfect_stat (stat_to_phonon)
phonon_optl

* Those different ingredient types should have different mast_update_children_method keyword values in the
input file.

* They should have all the same other keywords.

If two children need to be the parent of one ingredient, also create a new tree:

perfect_stat
defect_1_opt
defect_2_opt
defect_1_opt, defect_2_opt
neb_1-2_opt

Parent-child relationships are name-based, and the name must also include correct formats for size-scaling labels <S>,
defect labels <N, B, or E>, neb labels <B-E>, charge labels <Q>, and phonon labels <P>.

* These names are important for following the tree structure and for setting the metadata file.
« Parent-child relationships are specified by these particular folder names.
* Some post-processing utilities may also rely on folder names.
The <S> tag The <S> tag will correspond to labels in the scaling subsection of The Structure section.
The <N>, , <E>, and <B-E> tags For defects, the <N> tag will correspond to labels in The Defects section.

The same labels will be matched up and should be used as and <E> labels (beginning and ending states) to
correspond with NEBs, which are labeled <B-E>.

The NEB labels will correspond to labels in The NEB section

42 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

NEB label names must match up exactly with defect label names. For example, defect_vacl and defect_vac2 must
match up with neb_vacl-vac2.

Use <N> in a recipe unless specifying that a defect is a parent of an NEB, in which case use or <E>:

{begin}

defect_<N>_optl (relax)
defect_<N>_stat (static)

{end}

{begin}

defect__stat (static_to_neb), defect_<E>_stat (static_to_neb)
neb_<B-E>_optl (neb)

{end}

The <Q> tag The <Q> tag will correspond to charges given in The Defects section.
» Charges are given as
— g=p0 for no charge
— g=nX for negative charge X (addition of electrons)
— g=pX for positive charge X (removal of electrons)
{begin} and {end}

In the recipe, {begin} and {end} will loop over, match up, and fill in scaling labels <S>, defect labels <N, B, and E>,
NEB labels <B-E>, charges <Q>, and phonons <P>

* Only charges in the charge range of both the and <E> defect parents of an NEB will produce an charged
NEB.

* Use a new {begin} and {end} when you have a new tree branch or unindentation in the recipe that switches
between <N> and or <E>

* Note that defect endpoints need to be the parents of all NEB optimizations and NEB static calculations. There-
fore, the endpoint-neb parent-child block may look like the following:

{begin}
defect__stat (static_to_neb), defect_<E>_stat (static_to_neb)

neb_<B-E>_optl (neb)

neb_<B-E>_opt2 (neb)
neb_<B-E>_stat (neb_static)

neb_<B-E>_opt2 (neb)

neb_<B-E> stat (neb_static)
{end}

Full example:

Srecipe
perfect_optl (lowmesh)
perfect_opt2
perfect_stat (static)
{begin}
inducescaling_<S>
inducedefect_<S>_ <N> (inducedefect)
defect_<S>_<N>_<Q>_optl (lowmesh_defect)
defect_<S>_<N>_<Q>_opt2 (defect_relax)
defect_<S>_<N>_<Q>_stat (static)
{end}
{begin}
defect_<S>_<N>_<Q>_stat (static)

9.5. The Recipe section 43

MAST Documentation, Release 1.3.0.17

phonon_<S>_<N>_<Q>_<P> (phonon)

{end}

{begin}

defect_<S>__<Q>_stat (static_to_neb), defect_<S> <E>_<Q>_ stat (static_to_neb)
neb_<S>_<B-E>_<Q>_optl (neb_to_neb)

neb_<S>_<B-E>_<Q>_opt2 (neb_to_nebstat)
neb_<S>_<B-E>_<Q>_stat (nebstat_to_phonon)

neb_<S>_<B-E>_<Q>_opt2 (neb_to_nebstat)
neb_<S>_<B-E>_<Q>_stat (nebstat_to_phonon)

{end}

{begin}

neb_<S>_<B-E>_<Q>_stat (nebstat_to_phonon)
phonon_<S>_<B-E>_<Q>_<P> (phonon)

{end}

Send

9.6 The Personal Recipe section

The $personal_recipe section of the input file is generated by MAST and appears in the recipe-local
input . inp file in the recipe directory.

Here, any <S>, <N>, , <E>, <B-E>, <Q>, and <P> tags are extracted from the input file and substituted into the
recipe.

The personal recipe is a good way to check exactly which ingredients MAST is going to run.
If errors are spotted in this section once the recipe directory has been created, it is best to:

1. Remove the entire new recipe directory from SMAST_SCRATCH

2. Examine the original input file’s $recipe section for errors and edit and save it

3. Re-runmast -i <inputfile>.inp to create a new recipe directory in SMAST_SCRATCH

9.7 The Defects section

The $defects section specifies defects by:
¢ defect type:
— vacancy
— interstitial
— substitution or antisite
* defect coordinates
¢ defect element symbol

— Note that if an elementmap subsection is given in The Structure section, then the mapped designa-
tions X1, X2, and so on can be given instead of an element symbol.

ATTENTION:

* Elements in the initial structure, given in The Structure section, will appear in order as entered, by posfile
keyword or through the coordinates and/or elementmap subsections.

44 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

* However, once a defect is formed, structures are RESORTED by element ELECTRONEGATIVITY. Therefore,
if you are using substitutional defects or non-self-interstitials, you may find that later element-specific keywords
(mast_setmagmom, LDAUU, LDAUJ) may be OUT OF ORDER FOR YOUR DEFECTED STRUCTURE.

¢ Please check your files carefully! You may want a separate input file for each chemical system (possibly created
through looping (see Input File) in order to synchronize the elements and element-specific keywords.

The coord_type keyword specifies fractional or cartesian coordinates for the defects.

The threshold keyword specifies the absolute threshold for finding the defect coordinate, since relaxation of the
perfect structure may result in changed coordinates.

Example $defects section:

Sdefects

coord_type fractional
threshold le-4

vacancy 0 0 0 Mg

vacancy 0.5 0.5 0.5 Mg
interstitial 0.25 0.25 0 Mg
interstitial 0.25 0.75 0 Mg

Send

The above section specifies 4 point defects (2 vacancies and 2 interstitials) to be applied separately and indepen-
dently to the structure. When combined with the correct recipe in The Recipe section, four separate ingredients, each
containing one of the defects above, will be created.

Multiple point defects can be also grouped together as a combined defect within a <defect label> subsection
such as:

Sdefects

coord_type fractional
threshold le-4

begin doublevac
vacancy 0.0 0.0 0.0 Mg
vacancy 0.5 0.5 0.5 Mg
end

interstitial 0.25 0.25 0 Mg
interstitial 0.25 0.75 0 Mg

Send

In this case, there will be three separate defect ingredients: one ingredient with two vacancies together (where the
defect group is labeled doublevac), one interstitial, and another interstitial.

9.7.1 Charges for defects

Charges can be specified as charge=0, 10, where a comma denotes the lower and upper ranges for the charges.

Let’s say we want a Mg vacancy with charges from 0 to 3 (0, 1, 2, and 3):

vacancy 0 0 0 Mg charge=0,3

Let’s say we want a dual Mg vacancy with a charge from 0 to 3 and labeled as Vac@Mg-Vac@Mg:

9.7. The Defects section 45

mailto:Vac@Mg
mailto:-Vac@Mg

MAST Documentation, Release 1.3.0.17

begin Vac@Mg-Vac@Mg
vacancy 0.0 0.0 0.0 Mg
vacancy 0.5 0.5 0.5 Mg
charge=0,3

end

For a single defect, charges and labels can be given at the same time:

Let’s say we have a Mg vacancy with charges between 0 and 3, and we wish to label it as Vac@Mg:

‘vacancy 0.0 0.0 0.0 Mg charge=0,3 label=Vac@Mg

The charge and label keywords are interchangeable, i.e. we could also have typed:

‘vacancy 0 0 0 Mg label=Vac@Mg charge=0,3

If you use charges in the defects section like this, then you must use a tagged defect_<N>_<Q> type recipe in The
Recipe section.

9.7.2 Phonons for defects
Phonon calculations are described by a phonon center site coordinate and a phonon center radius in Angstroms. Atoms
within the sphere specified by these two values will be included in phonon calculations.

For VASP, this inclusion takes the form of selective dynamics T T T for the atoms within the sphere, and F F F
otherwise, in a phonon calculation (IBRION =5, 6, 7, 8)

If the phonon center radius is 0, only the atom found at the phonon center site point will be considered.
To use phonons in the defects section, use the subsection keyword phonon followed by:

* A label for the phonon

* The fractional coordinates for the phonon center site

¢ A float value for the phonon center radius

* An optional float value for the tolerance-matching threshold for matching the phonon center site (if this last
value is not specified, 0.1 is used).

Multiple separate phonon calculations may be obtained for each defect, for example:

begin intl

interstitial 0.25 0.25 0.25 X2
phonon host3 0.3 0.3 0.4 2.5 0.01
phonon solute 0.1 0.1 0.2 0.5

end

In the example above, host3 is the label for the phonon calculation where (0.3, 0.3, 0.4) is the coordinate for the phonon
center site, and 2.5 Angstroms is the radius for the sphere inside which to consider atoms for the phonon calculation.
Points within 0.01 of fractional coordinates will be considered for matching the phonon center site.

In the example above, solute is the label for the phonon calculation bounded within a 0.5 Angstrom radius centered
at (0.1, 0.1, 0.2) in fractional coordinates. As no threshold value was given, points within 0.1 (default) of fractional
coordinates will be considered for matching the phonon center site.

The recipe template file for phonons may include either the explicit phonon labels and other labels, or <S>, <N>, <Q>,
<P>. See The Recipe section.

Because phonons are cycled with the defects, a new parent loop must be provided for the phonons, for example:

46 Chapter 9. Sections of the Input File

mailto:Vac@Mg

MAST Documentation, Release 1.3.0.17

{begin}
defect_<N>_<Q> stat (static)
phonon_<N>_<Q>_<P> (phonon)
phonon_<N>_<Q>_<P>_parse (phononparse)
{end}

9.8 The NEB section

The $neb section includes a subsection for each nudged-elastic-band hops.

* Each neb hop should be a subsection labeled with a name composed of a starting and ending defect group,
connected with a dash, like vacl-vac?2.

— These labels should correspond exactly to the labels given in The Defects section.
» The subsection should also include the movement of each primary moving atom, including:

— The atom’s element symbol: if an elementmap subsection is given in The Structure section, then the
mapped designations X1, X2, and so on can be given instead of an element symbol.

— The starting and ending .defect group. as specified in the $defects section, and then also indicate the
movement of elements, and their closest starting and ending positions. These explicit positions disam-
biguate between possible interpolations.

— The images keyword, which specifies the number of intermediate images.

Again, the $neb section is tied to specific defect labels. The NEB ingredients must be able to find defects or defect
groups with those labels.

9.8.1 Charges for NEBs

To enable charged-supercell NEBs, use <Q> tags for the defect and NEB ingredients in The Recipe section and also
specify charges for the defects in The Defects section.

The NEB ingredients will only be run for charges in the charge ranges of both parent endpoints.

For example, if defect parent vacl has a charge range of charge=-2,0 and defect parent vac2 has a charge range of
charge=-1,3, then the NEB with the label vacl-vac2 will only run with supercell charges -1 and 0.

9.8.2 Phonons for NEBs

Phonons may be specified within each NEB grouping, as in The Defects section.
The presumed saddle point in an NEB is usually taken.

* To give the saddle point structure to the phonon calculation, in The Ingredients section, use
mast_update_children give_saddle_structure for the NEB ingredient type of the NEB parent
to the phonon calculation.

* If the frequencies of a moving atom are desired for the phonon calculations, and if that atom is anticipated to
pass from fractional coordinate 0 0 O to fractional coordinate 0.5 0 0, then the phonon_center_site should be
0.25 0 0 (assuming a straight path), and the phonon_center_radius is probably about 1 Angstrom.

Example defect and NEB section together:

9.8. The NEB section 47

MAST Documentation, Release 1.3.0.17

Sdefects

coord_type fractional
threshold le-4

vacancy 0.0 0.0 0.0 Mg label=vacl
vacancy 0.0 0.5 0.5 Mg label=vac2
interstitial 0.25 0.0 0.0 Al label=intl
interstitial 0.0 0.25 0.0 Al label=int2

Send
Sneb

begin vacl-vac2
images 1

Mg, 0 0 0, 0 .5 0.5
end

begin intl-int2

Al, 0.25 0 0, 0 0.25 0

images 3

phonon movingatom 0.125 0.125 0.0 1.0
end

Send

9.9 The Chemical Potentials section

The $Schemical_potentials section lists chemical potentials, used for defect formation energy calculations
using the defect formation energy tool.

Currently, chemical potentials must be set ahead of time. Each chemical potential subsection may be labeled descrip-
tively.

Schemical_potentials

begin Ga rich

Ga -3.6080
As -6.0383
Bi -4.5650
end

begin As rich
Ga —-4.2543

As -5.3920

Bi -4.5650
end

Send

48 Chapter 9. Sections of the Input File

MAST Documentation, Release 1.3.0.17

9.10 The Summary section

The $summary section of the input file will cause a SUMMARY . t xt file to be printed into the recipe directory, once
the recipe is complete.

Each line in the summary section follows the format:

<ingredient name search string> <summary information>

* <search string> is a search string for matching ingredient names.

* <summary information> refers to a python file in <MAST installation directory>/summary which
is supposed to extract information from a given ingredient directory.

 For example, the following section would extract energies from each ingredient matching vac in its name.

$summary vac energy $end

9.10. The Summary section 49

MAST Documentation, Release 1.3.0.17

50

Chapter 9. Sections of the Input File

CHAPTER
TEN

RUNNING MAST FOR REAL

10.1 General notes

Depending on your cluster, you might find it necessary to nice your processes:

nice -n 19 mast -i input.inp
nice -n 19 mast

Nice-ing allows the headnode to put its regular functions before the MAST processes. MAST should start running
within several seconds.

10.2 Inputting an input file

To parse an input file, use

’mast -1 input.inp

or

’mast -i //full/path/to/input/file/myinput.inp

If your input file specifies any POSCAR or CIF files:
» Those files must be in the same path as the original input file.
* Those files may not be moved until the recipe is complete.

The input file will be parsed and a recipe directory should be created inside the SMAST_SCRATCH directory, with the
appropriate ingredient subdirectories.

Look at the input.inp, archive_input_options.txt, and archive_recipe_plan.txt files in the
recipe directory to see if the setup agrees with what you think it should be.

10.3 Running MAST

Running MAST is separate from inputting input files. Use this command:

‘mast

This command will do two things:

1. Submit all ingredient runs listed in the $SMAST_CONTROL/submitlist list to the queue.

51

MAST Documentation, Release 1.3.0.17

* The submission command (sbatch, gsub, etc.) 1is based on the platform chosen when you set
SMAST_PLATFORM. See Installation.

e The exact commands can be found in your MAST installation path under
submit/platforms/<platform name>/queue_commands.py.

Individual ingredients’ submission scripts are created automatically through a combination of The Ingredients section
in the input file, and your the template submission script for your platform

e The template submission script is found in your MAST installation path under
submit/platforms/<platform name>/submit_template.sh).

2. Spawn a MAST monitor, or mastmon, process on the queue.

e The mastmon_submit.sh and runmast.py files, originally located in your MAST installation path
submit/platforms/<platform name> and submit folders, respectively, and then copied into
SMAST_CONTROL when you first run mast, are are responsible for submitting this process.

* The script should be set up to use the shortest, fastest turnover queue available (e.g. a serial queue with a
maximum walltime of 4 hours, or morganshort on bardeen).

* You may make changes directly in SMAST_CONTROL/mastmon_submit.sh

The mastmon process will generate additional entries on $MAST_CONTROL/submitlist, but these entries will
not be submitted to the queue until MAST is called again.

10.3.1 The MAST monitor

The MAST monitor, or mastmon, process goes through the SMAST_ SCRATCH directory.
* It looks at the recipe directories under SMAST__SCRATCH.

¢ For each recipe directory, the MAST monitor builds a Recipes plan object from information in the recipe direc-
tory, using a combination of the input . inp and status. txt files in the recipe directory.

* MAST then uses the recipe plan object to assess the next steps appropriate for the recipe, creating objects for
the separate Ingredients and evaluating them.

10.3.2 Troubleshooting in a recipe directory

For human troubleshooting of a recipe, the archive_recipe_plan.txt file gives information about which in-
gredients are parents/children of which other ingredients, and which method each parent should use to update each of
its child ingredients.

The status.txt files gives the status of each ingredient.

Ingredient statuses are:
* I =initialized: The ingredient has just been created from inputting the input file, but nothing has been run.
* W = waiting: The ingredient is waiting for parents to complete before it can be staged.
» S =staged: All parents have updated this child, but the run is not yet ready to run

e P = proceed: The ingredient has written its input files, all parents have updated it, and its run method has
been called. The run method usually adds the ingredient to the list at $SMAST_CONTROL/submitlist,
to be submitted to the queue the next time mast is called. There is no MAST status change between an
ingredient proceeding to the submitlist and being submitted to the queue off of the submitlist. However,
SMAST_CONTROL/submitted can be used to see which ingredients were just submitted to the queue.

e C = complete: The ingredient is complete

52 Chapter 10. Running MAST for real

MAST Documentation, Release 1.3.0.17

* E = error: The ingredient has errored out, and mast_auto_correct was set to False in the input file (the
default is True)

» skip = skip: You can set ingredients to skip in the status.txt file by manually editing the file.

The MAST monitor checks the status of all ingredients whose status is not yet complete. The MAST monitor updates
each ingredient status in the recipe plan.

Each non-complete ingredient is checked to see if it is complete (this is a redundant fast-forward check, since some-
times it is useful to copy over previously completed runs into a MAST ingredient directory.)

If complete, the ingredient updates its children and is changed to Complete
For each Initialized ingredient:
* If the ingredient has any parents, it is given status Waiting
» Otherwise, it is given status Staged
For each Proceed-to-run ingredient:
* If the ingredient is now complete, it updates its children and is changed to Complete
For each Waiting ingredient:
« If all parents are now marked complete, the ingredient is changed to Staged
For each Staged ingredient:
* If the ingredient is not already ready to run, its write method is called for it to write its input files.

* The ingredient.s run method is called, which usually adds its folder to $SMAST_CONTROL/submitlist,
except in the case of special run methods like run_defect (to induce a defect)

* The ingredient.s status is changed to Proceed.

When all ingredients in a recipe are complete, the entire recipe folder is moved from $MAST_SCRATCH to
SMAST_ARCHIVE

Errors in a recipe directory

Errors in a recipe which cause the recipe to fail out completely are logged to a MAST_ERROR file.

These errors will need to be addressed manually. Until then, MAST will skip over the recipe directory and log a
warning to the mast.log file.

Once the error has been addressed, delete the MAST_ERROR file, and the recipe should be picked up on the next mast
command.

To get more information about why the error may have been generated, set the MAST_DEBUG environment variable,
e.g. export MAST_DEBUG=1, delete the MAST_ERROR file, and rerun MAST.

The error should be re-logged, and the SMAST_CONTROL/mast . log file will now also contain DEBUG-Ilevel
information.

10.3.3 The CONTROL folder

The $SMAST_CONTROL folder houses several files:
* errormast: Contains any queue errors from running the MAST monitor on the queue

* mastoutput: Contains all queue output from running the MAST monitor on the queue, including a printout of
the ingredient statuses for all recipes in the SMAST_SCRATCH directory

10.3. Running MAST 53

MAST Documentation, Release 1.3.0.17

* submitlist: The list of all ingredient folders to be submitted to the queue
* submitted: A list of all ingredients submitted to the queue the last time the MAST monitor ran

* mast.log and archive.<timestamp>.log: contains MAST runtime information. The default setting is INFO
level. To also see DEBUG level information, set environment variable MAST_DEBUG, for example, export
MAST_DEBUG=1.

Every file except submit1list can be periodically deleted to save space.

The errormast file is written when there is an error, and will need to be deleted for MAST to continue running.

10.3.4 The SCRATCH folder

The SMAST__SCRATCH folder houses all recipe folders. It also houses amast .write_files.lock file while the
MAST monitor is running, in order to prevent several versions of MAST from running at once and simultaneously
checking and writing ingredients.

* Occasionally, MAST may report that it is locked. If there is no mastmon process running or queued on the
queue, you may delete the mast .write_files.lock file manually.

Skipping recipes or ingredients in the SCRATCH folder
If a certain recipe has some sort of flaw, or if you want to stop tracking it halfway through, you may have MAST skip
over this recipe:

* Create an empty (or not, the contents do not matter) file named MAST_SKIP in the recipe directory.

* Go through SMAST_CONTROL/submitlist and delete all ingredients associated with that recipe to keep them
from being submitted during the next MAST run.

If you would like to skip certain ingredients of a single recipe, edit the recipe’s status.txt file and replace ingredients
to be skipped with the status skip (use the whole word).

* To un-skip these ingredients, set them back to W for waiting for parents in status.txt.
— Be careful if deleting any files for skipped ingredients.
— Do not delete the metadata.txt file.

— If deleting a file that was obtained from a parent, like a POSCAR file, also set the parent ingredient
back to P when you un-skip the child ingredient.

» No recipe can be considered complete by MAST if it includes skipped ingredients. However, if you consider the
recipe complete, you can move the entire recipe directory out of SMAST_SCRATCH and into $SMAST_ARCHIVE
or another directory.

10.3.5 The ARCHIVE folder

When all ingredients in a recipe are complete, the entire recipe directory is moved from $MAST_SCRATCH to
SMAST_ARCHIVE.

10.4 Running MAST repeatedly

The command ma st needs to be run repeatedly in order to move the status of the recipe forward. In order to run mast
automatically, use a crontab.

54 Chapter 10. Running MAST for real

MAST Documentation, Release 1.3.0.17

Important notes:
* Some clusters may not allow the use of cron. Please check the cluster policy before setting up cron.

* Be ready for a lot of notification emails. Crontab on a well-behaved system should send you an email each time
it runs, giving you what would have been the output on the screen.

e Include . $HOME/ .bashrc or a similar line to get your MAST environment variables and your usual path
setup.

Crontab commands are as follows:
e crontab -—e to edit your crontab
e crontab -1 to view your crontab
* crontab -r toremove your crontab

This crontab line will run mast every hour at minute 15, and is usually suitable for everyday use:

‘15 * % * * . SHOME/.bashrc; nice —n 19 mast

This crontab line will run mast every 15 minutes and is ONLY suitable for short testing:

’*/15 * * x x . SHOME/.bashrc; nice -n 19 mast

10.5 Modifying recipes

Occasionally it is convenient to add additional ingredients onto an existent, completed or nearly-completed recipe.

For example, it may be helpful to add an additional charge state, or calculate phonons, make additional defects on a
relaxed structure, or calculate additional NEBs.

The MAST “modify recipe” functionality allows new ingredient branches to be added onto an existing recipe in an
existing recipe directory.

Instructions are as follows:

« In the recipe directory in SMAST_SCRATCH, modify the input file as you would want it. (If the recipe directory
is not in $SMAST_SCRATCH, move it there.)

— For example, if the Srecipe section uses the <N> <S> <Q> etc. tags, then the Sdefects section could
add an additional begin defectname ... end subsection, or a charge designation within a defect
subsection could be expanded.

* Remove the Spersonal_recipe section of the input file. (That is, remove the $personal_recipe line,
all lines in between, and the $end line).

* From within the recipe directory, run the command mast -m modifyrecipe

These steps may be accomplished over multiple recipes using a shell script, but with caution.

10.5.1 Example

My charged supercell isn’t charged! What happened?
My input file had charge=2,2 in the $defects section, but it did not have the charge tag <Q> in the $recipe section
The metadata.txt file wasn’t getting written correctly, and the checker wasn’t looking for a charge label, either.

Remove the $personal_recipe section. Redo the $recipe section to have the <Q> tags.

10.5. Modifying recipes 55

MAST Documentation, Release 1.3.0.17

Run mast -m modifyrecipe
The uncharged supercell calculations were fine; move their data to folders with a <Q> tag for g=p0 (no charge).

Run mast (especially. mast -m monitoronly) until the status.txt file catches up Now mast will rerun a new arm of
charged supercell calculations.

10.5.2 Caveats

« If ingredient names in the $recipe section are changed, some data may need to be moved around (see the example
above).

* An already-complete ingredient is not necessarily rerun, depending on how its completion is evaluated. It may
not get any new parent information from a newly added ingredient.

» The recipe’s status.txt file is reset so that all ingredients are at status Initialized.

— Each ingredient, whether previously completed or not, gets its state re-evaluated when MAST is called
(using the normal mast command).

— This procedure may require several mast calls until the recipe is caught up again.

— This procedure is necessary in order to update all parent-child relationships and to establish the correct
data transfer among the existing and new ingredients.

56 Chapter 10. Running MAST for real

CHAPTER
ELEVEN

MAST POST-PROCESSING UTILITIES

These utilities are meant to be used as part of a MAST workflow. See example files in SHOME /MAST/examples
or wherever you may have moved the initally-created $HOME /MAST/examples folder for examples on how to use
them.

These utilities should have been copied into your bin or .local/bin directory (see Installation).

11.1 Defect formation energy with finite-size scaling

Initially determining the sizes for finite-size scaling is covered in The Structure section with the utility
mast_finite_size_scaling_sizes.

The mast_madelung_utility utility runs as the last ingredient in a finite-size scaling defect workflow (see
SHOME/MAST/examples/finite_size_scaling.inp).

Run the utility as mast_madelung_utility. All inputs are derived from the recipe-local input . inp file in the
recipe directory.

* The utility should generate a series of tables and .png plots that display the finite-size-scaling-corrected and
original defect formation energies for different chemical potentials.

* The Chemical Potentials section of the input file should be set in order for the utility to work.

11.2 Defect formation energy versus Fermi energy

The mast_defect_formation_energy tool plots defect formation energy versus Fermi energy.
The defect formation energy tool is intended to be run as another ingredient folder in the recipe directory.

If you do not have such an ingredient in the recipe directory, you may manually create the ingredient folder and give
itadfe_input.txt file.

The dfe_input.txt file for a manually-created or embedded workflow ingredient (see
//home/<username>/MAST/example/defect_formation_energy.inp) should contain the fol-
lowing information:

dfe_labell=perfect_label defected_label
dfe_label2=perfect_label defected_label
dfe_label3=perfect_label defected_label

(etc. for more defects)
bandgap_lda_or_gga=<float>
bandgap_hse_or_expt=<float>

plot_threshold <float>: Plotting threshold value

57

MAST Documentation, Release 1.3.0.17

* <perfect_label> and <defected_label> are the ingredient names of the perfected and corresponding defected
cells.

* bandgap_lda_or_gga should be a float value indicating a DFT-calculated bandgap, usually expected to be un-
derestimated.

 bandgap_hse_or_expt should be a float value indicating an experimental or more accurate bandgap, e.g. from a
hybrid calculation.

* plot_threshold should be a float value indicating the threshold for transitions.

* In addition, The Chemical Potentials section should exist in the input . inp input file inside the recipe direc-
tory.

Run the utility as:

mast_defect_formation_energy dfe_input.txt

A directory named dfe_results should be created within the ingredient directory. Inside that directory:

* The two-column printout for each chemical potential-labeled text file contains Fermi energy on the left, and
defect formation energy on the right.

* The dfe. txt printout contains defect formation energy information for each charge state.

11.3 Diffusion coefficient

The mast_diffusion_coefficient diffusion coefficient calculation tool supports the following models:
» FCC five-frequency model equation from R. E. Howard and J. R. Manning, Physical Review, Vol. 154, 1967.
* FCC concentrated fourteen-frequency model equation from Bocquet J.-L. and Le Claire A. D.
* HCP eight-frequency model equation from P. B. Ghate, Physical Review, Vol. 133, 1963.

The tool is designed to be wused as a separate ingredient within the recipe directory. See
SHOME /MAST/examples/neb_with_phonons. inp for an example input fileof a full workflow.

If the ingredient was not created within the workflow, an ingredient directory may be manually created for the tool.

The tool will use an input text file like di ffcoeff_input.txt, which should contain the following lines. The
order of the lines does not matter.

» Names of the directories of energies and attempt rates, which are specified with respect to different frequencies
for the model:

— E and v means energy and attempt rate, respectively. (There is no support for other characters such as w).

For 5-freq, EO through E4 should be used to specify the relations with certain directories

For 8-freq, Ea, Eb, Ec, EX, Eap (p means prime), Ebp, Ecp, and EXp should be used. Note they are all
case sensitive and should be exactly the same as written here.

Generally speaking, each keyword (Exx or vxx) is followed by two ingredient names.

+ The first name indicates the ingredient name corresponding to the configuration of the starting point
of NEB.

The second name indicates the ingredient name corresponding to the configuration of the saddle point
of the NEB.

+ This order should not be changed.

58 Chapter 11. MAST post-processing utilities

MAST Documentation, Release 1.3.0.17

% For each name, the utility will expect two files to be present within the ingredient diretory of the
diffusion coefficient tool:

- <ingredient_name>_OUTCAR
- <ingredient_name>_OSZICAR

- If you are manually creating a diffusion coefficient tool ingredient, you will have to manually
copy files from each of the completed ingredients specified.

— The user can also type only one single float behind the keyword, and the code will then not refer to the
directory for the related energy or attempting rate, but simply use the data given.

* type means which frequency model to choose. Either 5 or fcc tells the code that the five-frequency model
should be applied, while either 8 or hcp tell the code that the eight-frequency model should be applied.

¢ HVf means the formation energy of the vacancy
— Either 1 float or two ingredient names are expected after this keyword.

— Ifingredient names are used, in the order <perfect_ingredient> <defected_ingredient>, then the utility will
expect two energy files to be present in the utility’s ingredient directory:

<perfect_ingredient>_OSZICAR
% <defected_ingredient>_OSZICAR
% Charged defects are not currently supported.
* HB means the binding energy, and is only applicable for the 8-frequency model.
— Either 1 float or four ingredient names are expected after this keyword.
— If ingredient names are used:
% Use the order <perfect ingredient> <vacancy and substitution> <substitution only> <vacancy only>
* Supply an <ingredient_name>_OSZICAR file in the utility’s ingredient directory.
* lattice indicates the ingredient name for the ingredient in which to find a lattice file.
— This ingredient typically corresponds to an undefected supercell.

— The utility expects to find a <lattice_ingredient_name>_POSCAR file inside the diffusion coefficient utility
ingredient directory.

« plotdisplay indicates whether to use matplotlib.pyplot in order to create a plot, or whether to skip plotting.
— Use “plotdisplay none” to skip plotting
— Omit this keyword to use a default display
— Use “plotdiplay tkagg” etc. or another display string to specify a matplotlib display.

Runasmast_diffusion_coefficient —-i <input>

11.3. Diffusion coefficient 59

MAST Documentation, Release 1.3.0.17

60

Chapter 11. MAST post-processing utilities

CHAPTER
TWELVE

STANDALONE TOOLS

12.1 Defect Finder

The defect finder takes a POSCAR file and finds vacancies and interstitials. The defect finder currently exists in a
separate repository. You may test it online at materialshub.org > Resources > Tools > Defect Finder

12.2 Effective Grain Boundary Diffusivity Calculator

12.2.1 Effective Grain Boundary Diffusivity Calculator

Author: Jie Deng

Calculates the effective diffusivity in a grain boundary network with two types of randomly distributed grain bound-
aries.

Version 1.3 - published on 21 Feb 2014
Look for a new version in late 2014

* You must download and unzip the MAST tar.gz file from https://github.com/uw-cmg/MAST/releases in order
to access the source code, which is in MAST/standalone/gbdiff, and will likely need to be recompiled for your
machine.

This tool calculates the effective diffusivity in a grain boundary network represented by a three-dimensional Voronoi
diagram. Two types of grain boundaries with different diffusivities are randomly distributed in the domain. The
effective diffusivity is calculated using the mean squared displacement method, where periodic boundary conditions
are applied in all directions. Users are free to choose the fraction of each grain boundary type as well as the activation
energy and pre-factor for each grain boundary diffusivity.

12.2.2 Cite this work

Researchers should cite this work as follows:

Jie Deng (2014), "Effective Grain Boundary Diffusivity Calculator," https://materialshu

@misc { 30,
title = {Effective Grain Boundary Diffusivity Calculator},
month = {Jan},
url = {https://materialshub.org/resources/30},
year = {2014},
author = {Deng , Jie}

61

.org/resource

https://materialshub.org/resources/diffcalc
https://materialshub.org/resources/gbdiff
https://github.com/uw-cmg/MAST/releases

MAST Documentation, Release 1.3.0.17

12.3 Particle Trajectory Diffusion Analyzer

12.3.1 Particle Trajectory Diffusion Analysis

Author: Leland Barnard Acknowledgments to: Amy Bengtson, Saumitra Saha

Computes mean squared displacements and tracer diffusion coefficients from particle position data as a function of
time.

Version 1.13 - published on 28 Mar 2014

* You must download and unzip the MAST tar.gz file from https://github.com/uw-cmg/MAST/releases in order
to access the source code, which is in MAST/standalone/diffanalyzer, and will likely need to be recompiled for
your machine.

This tool takes as input particle position data from methods such as molecular dynamics or kinetic Monte Carlo and
computes the mean squared displacement for all particles as a function of time. For a system with multiple types of
particles, the mean squared displacement is computed for each particle type. The tracer diffusion coefficient is then
calculated from the slope of the mean squared displacement vs time curve.

The tool is based on The Working Man’s Guide to Obtaining Self Diffusion Coefficients from Molecular Dynamics
Simulations by Professor David Keffer from UT Knoxville.

Input file format:

This tool reads in atomic position data in the VASP XDATCAR format. This file format begins with the following set
of lines:

Name

Cl C2 C3 ...
N1 N2 N3 ...
Direct

¢ The first line is a name or description of the file. It is not read by the tool.

* The second line are the names of the components in the system. These will be element names in the case of an
atomic simulation.

* The third line are the number of particles of each component in the system.
* The final line is a VASP generated line that specifies direct atomic coordinates.

* Following these 4 lines, the file must have 1 blank line, and then the particle position data begins on line 6.
Particle positions must be in fractional or direct coordinates, and a single line must separate the blocks of
particle positions at each time step throughout the file.

Calculation of error on the diffusion coefficient:
The error bars on the mean squared displacements represent a single standard deviation in the measurements of the
squared displacements over all time origins.

The error in the diffusion coefficient represents the standard error in the slope of the weighted least squares fit to the
mean squared displacement, using the variance in the squared displacements as the error weight.

62 Chapter 12. Standalone Tools

https://materialshub.org/resources/diffanalyzer
https://github.com/uw-cmg/MAST/releases

MAST Documentation, Release 1.3.0.17

References
“The Working Man’s Guide to Obtaining Self Diffusion Coefficients from Molecular Dynam-

ics Simulations” by Professor David Keffer from UT Knoxville, which may be found here:
http://www.cs.unc.edu/Research/nbody/pubs/external/Keffer/selfD.pdf

Cite this work

Researchers should cite this work as follows:

Leland Barnard (2014), "Particle Trajectory Diffusion Analysis," https://materialshub.ox

@misc { 31,
title = {Particle Trajectory Diffusion Analysis},
month = {Feb},
url = {https://materialshub.org/resources/31},
year = {2014},
author = {Barnard , Leland}

rg/resources/«

12.4 Diffusion Connectivity

12.4.1 Diffusion Connectivity

A new section is introduced in the input file:

Ssite

intl

0.5 0.5 0.5
0.5 00

0 0.50

0 0 0.5

int2

0.25 0.25 0.25
0.75 0.25 0.25
0.25 0.75 0.25
0.25 0.25 0.75
0.75 0.75 0.75
0.25 0.75 0.75
0.75 0.25 0.75
0.75 0.75 0.25
Send

In this example, there are two types of local minimum (interstitial site) intl and int2. The geometrically equivalent
site coordinates are listed for each type.

The create_paths.py code first parses the perfect lattice with the defect sites, then finds the nth neighbor of possible
pairs of both same and different site types, and detect if the path candidate crosses over the host lattice site or another
defect site and delete it. If the lattice user provides is too small and not all the neighbors (up to nth) are found, the
code will double, triple, etc. the size until all required neighbor pairs are found.

The NEBcheck.py code will generate the MAST-input style defect structure for the possible pairs found in the cre-
ate_paths.py and write a new input file that calls MAST to generate NEB and phonon folders to check if these paths
are appropriate. Currently the code ends at calling MAST and does not yet manage to handle the NEB and phonon
results analysis.

12.4. Diffusion Connectivity 63

http://www.cs.unc.edu/Research/nbody/pubs/external/Keffer/selfD.pdf

MAST Documentation, Release 1.3.0.17

The usage is: python NEBcheck.py -i <input> -n <up-to-nth-neighbor>

12.5 StructOpt

12.5.1 StructOpt

Author: Amy Kaczmarowski
Research and development: Min Yu, Hyunseok Ko
 StructOpt is a general optimizer for python, targeted at identifying stable atomic structures.

e StructOpt is available as a standalone tool located at <MAST installation directory or
unzipped MAST-<version>.tar.gz directory>/MAST/structopt.

— Integration with MAST and use with VASP is under development.

¢ For more information, please see the user guide at <MAST installation directory or unzipped
MAST-<version>.tar.gz directory>/MAST/structopt/StructOpt_User_Guide_vl.docx

— If the wuser guide is not present, please download and unzip the full tar.gz file from
http://dx.doi.org/10.528 1/zenodo.11917 and look under MAST/structopt

STEM supplement to code

Author: Min Yu

Structopt has been extended to be able to read in a structure and simulate a STEM image using a convolution method.

64 Chapter 12. Standalone Tools

http://dx.doi.org/10.5281/zenodo.11917

CHAPTER
THIRTEEN

PROGRAMMING FOR MAST

13.1 Source code

The MAST github repository is located at https://github.com/uw-cmg/MAST.
To report any issues, please create an issue in this repository.
To program with MAST:

1. Clone from the dev branch (see github’s instructions for cloning) OR get the latest stable release from
https://github.com/uw-cmg/MAST/releases and unzip it.

2. Prepend the clone directory to your $PYTHONPATH environment variable, and the clone directory’s MAST /bin
directory to your SPATH environment variable.

* The command mast should reveal the clone directory instead of any other MAST installation directories.

To run unit tests and verify that the MAST code is sound, go to the test directory in <clone
directory>/MAST/test and run the command:

nosetests -v —-nocapture

The nocapture option allows print statements. The verbose option gives verbose results.

The development team may have designated some tests to be skipped. However, any errors should be reported to the
development team as a github issue.

13.2 Object hierarchy

Several objects are created in MAST. The classes for these objects are in similarly named files, for example, class
MyClass in file myclass.py.

¢ When the user types mast or when crontab executes mast, a MAST monitor object is created (class MAST-
mon in MAST). This monitor is responsible for looking through the $SMAST_SCRATCH directory for recipe
folders.

* For each recipe folder,

— An Input Options object is created from the i nput . inp file (class InputOptions in MAST/utility, parsed
from the input file through class InputParser in MAST/parsers)

— A Recipe Plan object is created from that Input Options object
* The status of the ingredients in the recipe is given by status.txt

— Depending on the ingredient status, an Ingredient object is created using information from the Recipe
Plan object (class ChoplIngredient, inheriting from class BaseIngredient, in MAST/ingredients)

65

https://github.com/uw-cmg/MAST

MAST Documentation, Release 1.3.0.17

— That Ingredient object may involve several Checker objects for different programs based on the
mast_program keyword of its ingredient type in The Ingredients section (class XXXChecker,
MAST/ingredients/checker)

13.3 Code hooks in the input file

The most common modifications to MAST are expected to be:
* Adding support for new programs, e.g. besides VASP
* Adding new parent-child information transfer methods, for example:
— Giving additional information to a child ingredient, like number of pairs

— Accommodating different run structures, for example, forward on the least symmetric structure among
several folders in the parent ingredient

Both of these modifications are currently coded in MAST/ingredients/chopingredient.py and in
MAST/ingredients/checker

In the input file, the mast_xxxx_method keywords are direct hooks to methods in the ChopIngredient class.
* Methods are separated by semicolons, and can include arguments (see The Ingredients section.)

* The method in the ChopIngredient class may involve a checker, if they are generic but require program-specific
treatment, for example, forward_final_structure.

e Or, the method in the Choplngredient class may not need a checker, if it is totally generic, for example,
copy_file OLDNAME NEWNAME

e When used as an update method, please remember that the last argument to a method is going to be the child
ingredient’s directory, as determined by The Personal Recipe section in the recipe folder.

Support for using a new checker type as self.checker in a ChopIngredient class would need to be added at the top of
MAST/ingredients/baseingredient.py. Alternately, a new checker instance may be initialized on-the-fly
within a method, e.g. mychecker = VASPChecker(name=mydirectory)

13.4 Debugging

For classes which have a self.logger attribute, or functions in which a logger is defined, messages may be logged to
the DEBUG level. (self.logger.debug(“message”))

Set the MAST_DEBUG environment variable to any value so that the mast.log file will print debug messages.

66 Chapter 13. Programming for MAST

CHAPTER
FOURTEEN

ACKNOWLEDGMENTS

14.1 The MAST Team

PI: Professor Dane Morgan

All inquiries should be directed to ddmorgan @wisc.edu

14.1.1 Current Team
The following team members are arranged by start date and then alphabetically by last name. (+) indicates research
performed using MAST.

* Tam Mayeshiba + (summer 2010 - present)

* Dr. Henry Wu + (summer 2013 - present)

¢ Amy Kaczmarowski (fall 2013 - present)

e Zhewen Song + (fall 2013 - present)

* Ben Afflerbach (fall 2014 - present)

14.1.2 Alumni

* Tom Angsten + (spring 2011 - summer 2013)

* Dr. Glen Jenness + (spring 2013 - summer 2013)

* Kumaresh Visakan Murugan (spring 2013, fall 2013, spring 2014)
* Hyunwoo Kim (spring 2013)

 Parker Sear (spring 2013 - summer 2013, spring 2014)

¢ Nada Alameddine (summer 2013)

¢ Jihad Naja (summer 2013)

* Dr. Wei Xie (fall 2013 - spring 2015)

¢ Jesus Chavez (summer 2014)

e Saswati De (summer 2014)

¢ Chandana Hosamane Kabbali (summer 2014)

67

mailto:ddmorgan@wisc.edu

MAST Documentation, Release 1.3.0.17

14.2 NSF

The MAterials Simulation Toolkit (MAST) was developed with funding from the National Science Foundation Grant
1148011. T. Mayeshiba gratefully acknowledges support from the National Science Foundation Graduate Research
Fellowship Grant No. DGE-0718123.

14.3 pymatgen

2y et i

Many underlying MAST functions are built using pymatgen (http://pymatgen.org), and the MAST team would espe-
cially like to thank pymatgen developers Shyue Ping Ong and Anubhav Jain for their assistance.

68 Chapter 14. Acknowledgments

http://pymatgen.org

CHAPTER
FIFTEEN

CITATIONS

15.1 Citing MAST

To properly cite MAST and its dependencies, go to your completed recipe directory in $SMAST_ARCHIVE and locate
the following file

| CITATIONS.bib

For example:

‘ cat $MAST_ARCHIVE/Optimization_Al_20140101T120000/CITATIONS.bib

This Bibtex-formatted file may be used directly with LaTeX or imported into a reference manager such as EndNote or
Mendeley.

15.2 Full list of possible citations

MAST chooses from the following citations when writing the CITATIONS . bib file:

15.2.1 MAST

e MAST development team. MAterials Simulation Toolkit (MAST). (2015). at
<http://pypi.python.org/pypi/MAST>

* Angsten, T., Mayeshiba, T., Wu, H. & Morgan, D. Elemental vacancy diffusion database from high-throughput
first-principles calculations for fcc and hep structures. New J. Phys. 16, 015018 (2014).

e Kaczmarowski, A., Yang, S., Szlufarska, I. & Morgan, D. Genetic algorithm optimization of defect clusters
in crystalline materials. Computational Materials Science 98, 234-244, doi:10.1016/j.commatsci.2014.10.062
(2015).

* Yu, Min, STEM additions to structopt package, https://git@ github.com/uw-cmg/MAST/structopt (2015).

¢ Kitchaev, Daniil, Charge-based pathfinder for nudged elastic band calculations, https://git@ github.com/uw-
cmg/MAST/utility/daniil_pathfinder.py, 2015

15.2.2 pymatgen

* Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials
analysis. Comput. Mater. Sci. 68, 314-319 (2013).

69

http://pypi.python.org/pypi/MAST
https://git@github.com/uw-cmg/MAST/structopt
https://git@github.com/uw-cmg/MAST/utility/daniil_pathfinder.py
https://git@github.com/uw-cmg/MAST/utility/daniil_pathfinder.py

MAST Documentation, Release 1.3.0.17

15.2.3 spglib

* Togo, A. Spglib. (2009). at <http://spglib.sourceforge.net/>

15.2.4 VASP

VASP main program
* Kresse, G. & Furthmiiller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave
basis set. Phys. Rev. B 54, 11169-11186 (1996).

* Kresse, G. & Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors
using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996).

* Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor
transition in germanium. Phys. Rev. B 49, 14251-14269 (1994).

* Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558-561 (1993).

VASP pseudopotentials in general

* Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J.
Phys. Condens. Matter 6, 8245-8257 (1994).

VASP PAW pseudopotentials

¢ Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev.
B 59, 1758-1775 (1999).

Nudged Elastic Band Calculations with VASP
* Henkelman, G. & Jénsson, H. Improved tangent estimate in the nudged elastic band method for finding mini-
mum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).

* Henkelman, G., Uberuaga, B. P. & Jénsson, H. A climbing image nudged elastic band method for finding saddle
points and minimum energy paths. J. Chem. Phys. 113, 9901 (2000).

* Joénsson, H., Mills, G. & Jacobsen, K. W. in Class. Quantum Dyn. Condens. Phase Simulations (Berne, B. J.,
Ciccotti, G. & Coker, D. F.) 385 (World Scientific, 1998).

e Sheppard, D. & Henkelman, G. Paths to which the nudged elastic band converges. J. Comput. Chem. 32,
1769-71; author reply 1772-3 (2011).

 Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem.
Phys. 128, 134106 (2008).

¢ Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged
elastic band method. J. Chem. Phys. 136, 074103 (2012).

15.2.5 Contact us for corrections

If you feel that we have missed or mis-typed a citation, please contact us (Contact Us).

70 Chapter 15. Citations

http://spglib.sourceforge.net/

CHAPTER
SIXTEEN

CONTACT US

All inquiries about MAST should be made to Dane Morgan at ddmorgan @wisc.edu

71

mailto:ddmorgan@wisc.edu

MAST Documentation, Release 1.3.0.17

72

Chapter 16. Contact Us

CHAPTER
SEVENTEEN

LICENSE

The MAterials Simulation Toolkit is released with the MIT license, reproduced below:

Copyright (c) 2014 University of Wisconsin-Madison Computational Materials Group MAterials Simulation Toolkit
(MAST) Team

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

73

	What's new in version 1.3.0
	What's new in version 1.2.X
	Introduction
	The MAST Kitchen
	Computing in the MAST Kitchen

	Ingredients
	Recipes
	Installation
	Do pre-installation steps
	Install local python version and dependencies
	Set up the pymatgen VASP_PSP_DIR
	Set the MAST environment variables
	Additional setup

	Trying out MAST
	Unit testing

	Input File
	General structure of the input file
	Sections of the input file
	Looping in the input file

	Sections of the Input File
	The MAST section
	The Structure section
	The Scaling section
	The Ingredients section
	The Recipe section
	The Personal Recipe section
	The Defects section
	The NEB section
	The Chemical Potentials section
	The Summary section

	Running MAST for real
	General notes
	Inputting an input file
	Running MAST
	Running MAST repeatedly
	Modifying recipes

	MAST post-processing utilities
	Defect formation energy with finite-size scaling
	Defect formation energy versus Fermi energy
	Diffusion coefficient

	Standalone Tools
	Defect Finder
	Effective Grain Boundary Diffusivity Calculator
	Particle Trajectory Diffusion Analyzer
	Diffusion Connectivity
	StructOpt

	Programming for MAST
	Source code
	Object hierarchy
	Code hooks in the input file
	Debugging

	Acknowledgments
	The MAST Team
	NSF
	pymatgen

	Citations
	Citing MAST
	Full list of possible citations

	Contact Us
	License

