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Abstract 

The goal of the Open Search Foundation is to establish a 

decentralized open search infrastructure for navigating, 

searching, and analyzing the internet. Due to the variety of 

requirements, the need for a robust and extensible architec-

ture arises. This paper gives first thoughts on an architec-

ture for such an infrastructure. As a starting point, a basic 

architecture for a Data-Lake-based document-centric 

search engine is proposed. Afterwards, components are 

added and extended to meet further requirements of the en-

visaged search infrastructure. 

INTRODUCTION 

The goal of the Open Search Foundation (OSF) [1] is 

to establish a decentralized open search infrastructure for 

navigating, searching, and analyzing the internet that com-

bines the computational resources of different European 

data centers and institutes to sustain its operation. Open 

source principles and public moderation are central points 

of the pan-European vision. Users will be able to use the 

search infrastructure by accessing, adding, analyzing, an-

notating, and enriching data with respect to their specific 

needs and means.  

Establishing such a search infrastructure imposes var-

ious challenges. Technological and computational aspects 

for setting up, maintaining, and operating the infrastructure 

include topics like distributed crawling, indexing and 

search, distributed storage of Big Data, and security. At the 

same time, OSF values societal aspects of search. Societal 

aspects include topics like the right to be forgotten, trans-

parency, access management, and fake news detection. 

Thus, data governance processes, logging, and mecha-

nisms that keep track of the data provenance are part of the 

scope. These heterogeneous aspects motivate the need for 

a robust and extensible architecture that comprises a suita-

ble data storage system, and well-defined interfaces be-

tween the components. Note that at this scale and complex-

ity it is not recommended to use the Big-Design-Up-Front 

approach [2]. Instead, we propose a basic extensible archi-

tecture that covers key aspects of the envisaged open 

search infrastructure. 

The remainder of this paper is structured as follows: in 

the section Foundations, popular frameworks and technol-

ogies for search and data storage systems are discussed 

with respect to the requirements of the search infrastruc-

ture. As a starting point, in the section A Data-Lake-Based 

Search Engine, an architecture for a Data-Lake-based 

search engine is outlined. The architecture is then refined 

to meet the further requirements of the search infrastruc-

ture, in the section Extending the Architecture. Finally, the 

section Conclusion gives a conclusive summary. Note that 

the points discussed in this paper are by no means complete 

or settled. Instead, our goal is to fuel further discussions on 

the important architectural aspects of an open search infra-

structure. 

FOUNDATIONS 

At its core, a search infrastructure provides means of 

performing search tasks. Among the multiple options for 

implementing search systems, two popular examples are 

Elasticsearch [3] and Apache Solr [4]. Although Elas-

ticsearch is more modern, the two options are similar in 

many regards: both are based on the well-known Apache 

Lucene [5], both provide indexing, querying and ranking 

functionality, and both support sharding. Shards are logical 

partitions that contain a subset of the document collection 

[6]. Distributing the shards across a set of storage nodes, 

allows the implementation of distributed indexing and 

search, thus improving the performance of the search sys-

tem. Accordingly, the requirements of the search infra-

structure that are related to these topics can be met using 

both Elasticsearch and Solr. But their document-focused 

data storage capabilities do not suffice for Big Data, i.e., 

very large datasets of high variability [7] comprising 

mostly semi-structured or unstructured data [8]. 

Data Warehouses (DWs) [9, 10] are a popular means 

of storing large amounts of data. [9] defines a DW as a 

physical information system that provides an integrated 

view on arbitrary data for data analysis. Because of the fo-

cus on data analysis, DWs are designed as analytical rather 

than transactional systems [9]. This has several implica-

tions. One of them is that data is only added or read, but 

never updated or deleted. For updating data, new versions 

of the data are added instead of overwriting old data. Fur-

thermore, DWs employ rigid data models that are tailored 

to a specific data mining purpose [9, 10] which makes it 

possible to employ predefined data models and schemata 

that fit the intended purpose. Predefined data models and 

schemata facilitate processing complex queries for which 

analytical systems are designed. While DWs perform well 

for the intended purpose, they are also limited to them. Ad-

ditionally, it is hardly possible to squeeze Big Data into 

predefined data models. These two limitations impede the 

applicability of DWs for the search infrastructure.  

In 2010, Data Lakes (DLs) were proposed as a novel 

architecture for handling Big Data [7, 11]. There are sev-

eral characteristics, even beyond data storage, that set DLs 

apart from preceding systems like DWs and make them 

suitable for the search infrastructure. In the following, the 
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aspects data storage, data governance, data interaction, and 

data maturation are explored. 

Data Storage 

The utilization of the data that is added to DLs is nei-

ther known nor defined a priori, i.e., they provide a use case 

agnostic data storage. Instead of applying data models and 

schemata, the raw data is stored in their native format in 

the data repositories of the DL [12], thus providing the ca-

pability to digest heterogeneous Big Data. A central catalog 

continuously takes inventory of incoming data for later dis-

covery [7]. DLs can receive data through regular data im-

ports as well as through streams of real-time data [12]. 

Often, Apache Hadoop [13, 14], a framework for the 

distributed storing and processing of large datasets, is used 

to implement the data repositories in DLs [10, 15]. Because 

of Hadoop’s popularity and capabilities, it is the main data 

storage technology addressed in this paper. Storing raw 

data in native format is only possible due to the significant 

decrease of storage costs over the past years. In Hadoop, 

the scalable Hadoop Distributed File System (HDFS) [16] 

is responsible for storing the data across multiple servers 

and making the data accessible. 

Through user interaction, the raw data in DLs is cate-

gorized, tagged, linked, analyzed, and in other ways edited, 

i.e., the data matures over time. Similar to DWs, instead of 

overwriting the past versions of the data, copies of the data 

are made, then manipulated, and finally stored in the repos-

itories of the DLs [12]. Throughout the data lifecycle, 

metadata is used to keep track of all changes to the data [7]. 

The availability of raw data and all their versions has sev-

eral benefits: 

1. By directly storing the raw data, the expensive ac-

tivities data modelling and schema definition are 

deferred until a specific data representation is re-

quested through a query [10]. The problem of 

squeezing semi-structured and unstructured data 

into predefined formats is thereby postponed. 

Whenever a query is executed, the requested data 

is bound to a dynamic schema and delivered to the 

users. This concept is called schema-on-read or 

late binding [10, 7].  

2. The provenance of the data is comprehensible at 

all times [10]. As the data matures, DLs keep track 

of the changes throughout the data life cycle. 

Every manipulation is therefore known to the sys-

tem and the users can easily comprehend where 

their data comes from. This is an essential capa-

bility of a transparent search infrastructure.  

3. DLs yield a new level of data accessibility [10]. 

They are designed to encourage data sharing be-

tween the users by storing all data and their ver-

sions within the same repositories. Hence, both 

the raw data and the matured versions can be di-

rectly accessed by the users [12] given that the re-

quired security levels are met and thus internal po-

litical and technical barriers are avoided [10]. 

 

Despite the advantages of data storage in DLs, they are 

no replacement for DWs. Instead, they can be used as a 

staging area for DWs where structured data that is pro-

duced in the DLs is processed [8]. 

Data Governance 

In general, data governance addresses the decisions 

that have to be made to ensure effective management and  

use of  IT and the agents making the decisions [17]. Making 

reasonable and informed decisions in complex software 

systems requires a clear-cut componentization, well-de-

signed communication between the components, and a suf-

ficient amount of decisive data. Since DLs do not enforce 

predefined schemata and data models, the proper use of ex-

pressive metadata is mandatory for an effective utilization 

of the data. Otherwise, DLs are at risk of degenerating into 

invisible, inaccessible, and unreliable data swamps [18]. 

As it is hardly possible to retransform data swamps back 

into DLs due to the sheer amount of data, the degeneration 

process must be prevented by enforcing the disciplined use 

of metadata that adheres to predefined standards. 

According to IBM’s reference architecture [12], 

metadata and other descriptive data is also stored in the cat-

alog. [18] mentions key-value stores, XML documents, re-

lational databases and ontologies as means of implement-

ing metadata management systems for DLs. Depending on 

the metadata that data owners ascribe to their data when 

adding it, different management routines that are stored in 

the catalog are applied and executed by the responsible 

components. For example, data provided by physical sen-

sors could be automatically preprocessed by a designated 

preprocessing component to eliminate noise. These pro-

cesses are an important aspect of the workflow within DLs 

as they allow the effective utilization of the data. 

Data Interaction & Data Maturation 

 [12] describe two ways of accessing the data within a 

DL’s repositories. The first one, raw data interaction, al-

lows accessing the data in their actual format. This interac-

tion style allows analysis and maintenance in case of a 

problem as well as masking sensitive personal information 

for all other components [12]. However, only admins and 

otherwise eligible persons should be allowed to use this in-

teraction style due to the high degree of freedom that this 

style provides. For most applications, this interaction style 

is not suited anyway because it is hard to perform effective 

analyses on the vast amounts of files of raw Big Data with-

out appropriate interfaces and tools efficiently. In Hadoop, 

raw data interaction can be easily realized by directly ac-

cessing the HDFS. 

For regular use cases, the second interaction style, 

view-based interaction, is intended. This interaction style 

supports ad-hoc queries, search, simple analytics and data 

exploration [12]. Depending on the use case, for which the 

data is requested the data is flattened, simplified, and la-

beled using schema-on-read. In the Hadoop ecosystem, 

there are several technologies that can be used to imple-

ment an interface for view-based interaction. Hadoop itself 



provides Hadoop MapReduce [14], which is an implemen-

tation of the MapReduce programming model [19]. A 

MapReduce job works as follows [19]: first, the input files 

are partitioned into so called splits across multiple ma-

chines. Then, workers apply mapping functions to the in-

dividual splits that transform the partitioned data and result 

in intermediate files. Next, workers apply reduce functions 

to the intermediate files that combine the transformed par-

titioned data and thus produce output files. Because of the 

divide-and-conquer-like processing that can be distributed 

across multiple machines, MapReduce jobs are a powerful 

and fast means of processing and generating large datasets 

[19]. The Hadoop MapReduce jobs can be conveniently 

implemented in Java.  

Another option for implementing view-based interac-

tion is Apache Hive [20]. Hive is a framework for data 

warehousing that builds on top of Hadoop. The framework 

takes queries written in HiveQL, a dialect of SQL, and 

transforms them into MapReduce jobs that are processed 

by Hadoop [14]. While Hive is a technology that is in-

tended for deep analyses of the data [14], there are other 

applications that require fast, random, and real-time 

read/write access to the data. For such applications, Apache 

HBase [21], which follows the concepts of Google 

Bigtable [22], is an option. Hence there are several possi-

bilities for implementing view-based interaction. 

The new views on the data and the extracted datasets 

that are created using view-based interaction contribute to 

the maturation of the data [10]. Other activities that con-

tribute to the data maturation are the consolidation and cat-

egorization of the raw data, attribute-level metadata tag-

ging and linking, and business-specific tagging and syno-

nym identification which eventually result in the conver-

gence of meaning within context [10]. When this level is 

reached, a deep understanding of the data has emerged 

which leads to high applicability for various use cases. 

A DATA-LAKE-BASED SEARCH ENGINE 

DLs are highly flexible and use case agnostic data 

management systems. Their generic architecture provides 

capabilities that go beyond pure data storage. The IBM ref-

erence architecture for DLs [12] is designed to be applica-

ble in many different domains. Consequently, some in-

cluded components might not be necessary for the open 

search infrastructure. To cope with this, we provide an ar-

chitecture for a DL-based search engine that only com-

prises the bare minimum of components as a starting point. 

The components that are left out in the following can still 

be added to the architecture later if the need for their capa-

bilities arises. Afterwards, we extend the architecture to 

meet further requirements of the search infrastructure.  

Storage Components 

In terms of storage, document-centric search engines 

commonly comprise the following components [23]: a doc-

ument data store, an index, and a repository for log data. 

The following paragraphs show how those components can 

be realized using DLs.  

Document Data Store To be able to search docu-

ments, the document data store must be populated with 

crawled documents first. The crawled documents can both 

be ingested through a crawler or stored in a separate data-

base and then imported into the DL repository. In tradi-

tional search engines, the document data store is a (rela-

tional) database that stores the original documents for fast 

access as well as associated structured data like metadata, 

links, and anchor text [23]. Using a DL as the basis for a 

search engine, the document data store is located inside the 

repository of the DL. Note that a document data store is 

just a matured view on raw documents and that the store-

everything-approach of DLs allows embedding entire da-

tabases within the DL repository. Consequently, the docu-

ment data store, e.g., a relational database, can be derived 

from the raw documents, stored in the DL repository, and 

finally accessed. This way, the same functionality com-

pared to a non-DL-based document data store is provided 

since no changes to the document data store in terms of its 

workings are made.  

The HDFS is based on the write-once, read-many-

times pattern, i.e., it performs best when the source is often 

copied and then analyzed over time [14]. This pattern suits 

search engines because the stored documents are expected 

to be red more often than updated after being crawled. 

Index In search engines, the index is used to gather 

statistics and, following that, to calculate weights that are 

used for ranking documents, e.g., using TF-IDF [23]. From 

the point of view of a DL-based search engine, the index is 

essentially a dataset that is derived from the stored docu-

ments. Like the document data store, the index is thus 

stored in the data repository of the DL-based search engine. 

To construct the index, the documents must be re-

trieved from the document data store in the data repository 

first. However, the HDFS is just a means of storing data, 

not of performing operations on it. As explained in [24], 

Solr [4] supports a direct integration with Hadoop: after re-

placing the local file system with the HDFS in the config-

uration files, Solr writes and reads the index and transac-

tion log files to and from Hadoop. This eliminates the need 

for a manual implementation of an interface between the 

search platform and the storage system. Search platforms 

that do not support an integration with Hadoop require such 

an implementation either using the view-based interaction 

or the raw data interaction. 

In the competitive domain of ad-hoc retrieval, fast 

query processing is mandatory. This can only be achieved 

through fast interaction with the index. For this purpose, 

the index is usually distributed and replicated across mul-

tiple locations [23]. This requirement is unproblematic us-

ing Hadoop since replication is one of Hadoop’s core con-

cepts.  

Transaction Log Data As [25] explains, transac-

tional log data that are gathered as users interact with the 

search engine, are an invaluable resource. By analyzing 

this data, insights regarding the information-searching pro-

cess of users and the general user behavior are gained [23, 

25]. This knowledge can then be applied to the information 

system design, the interface development, and the 



development of information architectures for content col-

lections [25]. Furthermore, log data facilitates tuning the 

ranking functionality, thus improving the central function-

ality of a search engine [23]. 

In a DL-based search engine, the transactional logs are 

stored in the data repository as well. Unlike the previously 

discussed components, most log data are not derivations of 

already available data, but new data continuously gener-

ated through user interaction. In this regard, Solr’s direct 

integration with Hadoop is again convenient as it provides 

a pre-implemented means of writing log data to the DL. 

Accordingly, other solutions might require manually im-

plementing an interface for this purpose [24]. 

Figure 1: The architecture of a DL-based search engine. 

Architecture 

Following the visualization style of the IBM Redguide 

[12], Fig. 1 shows the architecture of our DL-based search 

engine. As explained, the document data store, the index, 

and the transaction log data are all located within the data 

repository of the underlying DL. The metadata of these re-

sources describe their origin and the changes made to them. 

Additionally, the catalog takes inventory of data in the data 

repository such that this information is available, e.g., for 

statistics and for the accessing interfaces. Since the catalog 

is a data storing component as well, it is also located within 

the data repository. Crawled documents can either be fed 

in directly via a crawler, e.g., Apache Nutch [26], Scrapy 

[27], and Heritrix [28], or imported as archives, e.g., the 

releases of commoncrawl [29], through the same interface. 

From a strategic point of view, both options should be con-

sidered here to gain the maximum number of crawled doc-

uments. Utilizing existing crawl data also allows working 

on and testing the system before an appropriate crawler has 

been determined and set up. 

The internal component Refinement & Annotation is 

responsible for creating and updating the document data 

store with respect to incoming crawled documents. Poten-

tial duplicates are handled by this component, too. After 

the document data store is created, the search platform ac-

cesses it to construct the index while additionally providing 

a search interface for the users. As users interact with the 

search platform, transaction log data is collected and de-

posited. Depending on the search platform the interaction 

with the data lake must be implemented manually or is al-

ready provided, e.g., using Solr and Hadoop. In any case, 

an additional interface for raw data interaction is still re-

quired for accessing the raw data for maintenance and trou-

bleshooting in case of a problem. 

Figure 2: The inheritance tree of the Datasets class 

adopted from the conceptual metadata model in [18]. 

Storing data in their original format comes with the 

benefit that the interaction between the DL and the supple-

mentary components of the Data-Lake-based search engine 

does not dictate specific formats for the data payload. How-

ever, the data payload must be described, e.g., using 

metadata, though. Otherwise, the DL has no information 

about the proper handling of incoming data and is prone to 

degenerating into a data swamp. For example, incoming 

crawled documents must be described such that the refine-

ment and annotation processes to construct or update the 

document data store are triggered. As pointed out, the con-

ditions and the associated management routines are man-

aged within the catalog. Initiating the routines when trig-

gering conditions are met is the responsibility of the inter-

nal component Information Governance that continuously 

monitors the events in the DL and ensures correct opera-

tion. We recommend enforcing the use of descriptions for 

all data at each interface such that no ambiguous data can 

enter the DL. In our case, this means that the four compo-

nents interacting with the DL must support describing the 

data payload and apply a fallback description if none is pro-

vided by the data owners. The descriptions themselves 



must be standardized to a certain degree, e.g., by employ-

ing a set of predefined tags or keywords, such that trigger-

ing conditions can be easily defined. Furthermore, data 

owners, dataset IDs, creation timestamps, and dataset sizes 

are to be set as explicit metadata by the system by default 

for later identification and provenance analyses. When data 

that does not fulfill the standards regarding metadata are 

about to be added, the Information Governance component 

intervenes and cancels the operation. 

Due to the underlying use case agnostic DL, the archi-

tecture is easily extensible even if new components require 

special data structures for storage. To be effective at a pan-

European scale the technology implementing the DL must 

feature seamless distribution and replication of data for fast 

data delivery. 

EXTENDING THE ARCHITECTURE 

To enable the architecture meeting further require-

ments of the envisaged open search infrastructure some of 

the previously discussed components and processes must 

be extended while some new must be added. The previous 

section already mentioned a few types of necessary 

metadata. However, they do not suffice as metadata for the 

full search infrastructure. [18] proposes a metadata concep-

tual model for DLs containing twelve classes each featur-

ing different metadata. Fig. 2 shows the inheritance tree of 

the model’s Datasets class as an example. As one can see, 

the model includes several types of metadata that must be 

respected by all components. One prominent example is 

the metadata addressing the sensitivity level of the DL’s 

datasets. Previously, all documents in the DL-based search 

engine were accessible through the search platform as soon 

as they have been indexed unless they are removed or 

masked manually via the Raw Data Interaction compo-

nent. This naïve approach clearly violates data privacy as-

pirations because it does not enable data privacy by design. 

A better approach is to extend the responsibilities of the 

Information Governance component such that data ac-

cesses are constantly monitored, and users’ access rights 

are evaluated against the specified sensitivity level of the 

accessed data.  

Figure 3: A possible approach for the workflow of routine 

application.  

Generally, the responsibilities of the Refinement & An-

notation component include the application of automated 

predefined routines to the data in the repository for 

maximizing their utility. Currently, the component takes 

care of creating and updating the document data store for 

making use of the data in the search engine use case. Aside 

from this, the information within the document data store 

may also by useful for statistical purposes. However, there 

are other use cases for which the data could be prepared 

automatically. For instance, natural language processing 

operations could be applied to the data or related docu-

ments could be explicitly linked using metadata, thus im-

proving the utility of the data. Automatically applying such 

routines comes with the benefit that the resulting data der-

ivations are already available for interested users. For ex-

ample, scientists in natural language processing could ac-

cess already computed dependency parse trees without 

having to issue the required routines themselves. Obvi-

ously, not all future usages of the data can be anticipated. 

Hence, we recommend continuously inspecting the log 

data to identify data that are requested frequently and add-

ing routines to the Refinement & Annotation accordingly. 

To enable the automatic application of new routines, ap-

propriate triggering conditions must be specified in the cat-

alog. Fig. 3 shows one possible approach as a sequence di-

agram for the routine application workflow. 

 So far, interaction with the system is only supported 

via raw data interaction and the search platform which lim-

its the potential use cases. To open the system for other pur-

poses, an additional component for view-based interaction 

that interacts with the DL is required to provide additional 

user interfaces. In the beginning, the interfaces provided by 

this component are rather generic because the future usages 

are not known a priori. Appropriate initial interfaces allow 

users to perform operations that contribute to the data mat-

uration like attribute-level metadata tagging, as said before. 

Such functionalities require the ability to browse and edit 

data which can be implemented using technologies like 

HBase and Hive. Over time new interfaces for frequent use 

cases can be added. Again, using the example of natural 

language processing, an interface could provide means of 

following coreferences, i.e., phrases that refer to the same 

named entity, across documents for explorative search. The 

possibilities in this regard are numerous. Note that multiple 

aspects of the proposed architecture depend on log data. 

Hence, aside from the architectural aspects of the open 

search infrastructure, user engagement is a mission critical 

aspect. To attract and convince users, designing fast, flat, 

and powerful interfaces is mandatory.  

CONCLUSION 

In this paper, we summarized the goal of the Open 

Search Foundation to establish an open search infrastruc-

ture and discussed the core aspects of Data Lakes including 

data storage, data governance, data interaction, and data 

maturation to assess their applicability for such an ambi-

tious infrastructure. Subsequently, we proposed the archi-

tecture for a basic Data-Lake-based search engine as a 

starting point comprising the minimum number of neces-

sary components. To cover further requirements of the in-

frastructure we added new and extended existing compo-

nents afterwards, while also providing recommendations 



regarding metadata and user interface design. The next 

steps are to further discuss the architectural aspects of the 

open search infrastructure with the goal of determining and 

subsequently building up a first basic but extensible archi-

tecture for the open search infrastructure soon. To this end, 

we will further develop and expand the architectural con-

siderations based on selected application scenarios. Exam-

ples besides search engines are web analytics or alert ser-

vices. 
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