
FIRST THOUGHTS ON A DATA LAKE ARCHITECTURE FOR AN

OPEN SEARCH INFRASTRUCTURE

L. Martin†, A. Henrich*, University of Bamberg, 96049 Bamberg, Germany

Abstract

The goal of the Open Search Foundation is to establish a

decentralized open search infrastructure for navigating,

searching, and analyzing the internet. Due to the variety of

requirements, the need for a robust and extensible architec-

ture arises. This paper gives first thoughts on an architec-

ture for such an infrastructure. As a starting point, a basic

architecture for a Data-Lake-based document-centric

search engine is proposed. Afterwards, components are

added and extended to meet further requirements of the en-

visaged search infrastructure.

INTRODUCTION

The goal of the Open Search Foundation (OSF) [1] is

to establish a decentralized open search infrastructure for

navigating, searching, and analyzing the internet that com-

bines the computational resources of different European

data centers and institutes to sustain its operation. Open

source principles and public moderation are central points

of the pan-European vision. Users will be able to use the

search infrastructure by accessing, adding, analyzing, an-

notating, and enriching data with respect to their specific

needs and means.

Establishing such a search infrastructure imposes var-

ious challenges. Technological and computational aspects

for setting up, maintaining, and operating the infrastructure

include topics like distributed crawling, indexing and

search, distributed storage of Big Data, and security. At the

same time, OSF values societal aspects of search. Societal

aspects include topics like the right to be forgotten, trans-

parency, access management, and fake news detection.

Thus, data governance processes, logging, and mecha-

nisms that keep track of the data provenance are part of the

scope. These heterogeneous aspects motivate the need for

a robust and extensible architecture that comprises a suita-

ble data storage system, and well-defined interfaces be-

tween the components. Note that at this scale and complex-

ity it is not recommended to use the Big-Design-Up-Front

approach [2]. Instead, we propose a basic extensible archi-

tecture that covers key aspects of the envisaged open

search infrastructure.

The remainder of this paper is structured as follows: in

the section Foundations, popular frameworks and technol-

ogies for search and data storage systems are discussed

with respect to the requirements of the search infrastruc-

ture. As a starting point, in the section A Data-Lake-Based

Search Engine, an architecture for a Data-Lake-based

search engine is outlined. The architecture is then refined

to meet the further requirements of the search infrastruc-

ture, in the section Extending the Architecture. Finally, the

section Conclusion gives a conclusive summary. Note that

the points discussed in this paper are by no means complete

or settled. Instead, our goal is to fuel further discussions on

the important architectural aspects of an open search infra-

structure.

FOUNDATIONS

At its core, a search infrastructure provides means of

performing search tasks. Among the multiple options for

implementing search systems, two popular examples are

Elasticsearch [3] and Apache Solr [4]. Although Elas-

ticsearch is more modern, the two options are similar in

many regards: both are based on the well-known Apache

Lucene [5], both provide indexing, querying and ranking

functionality, and both support sharding. Shards are logical

partitions that contain a subset of the document collection

[6]. Distributing the shards across a set of storage nodes,

allows the implementation of distributed indexing and

search, thus improving the performance of the search sys-

tem. Accordingly, the requirements of the search infra-

structure that are related to these topics can be met using

both Elasticsearch and Solr. But their document-focused

data storage capabilities do not suffice for Big Data, i.e.,

very large datasets of high variability [7] comprising

mostly semi-structured or unstructured data [8].

Data Warehouses (DWs) [9, 10] are a popular means

of storing large amounts of data. [9] defines a DW as a

physical information system that provides an integrated

view on arbitrary data for data analysis. Because of the fo-

cus on data analysis, DWs are designed as analytical rather

than transactional systems [9]. This has several implica-

tions. One of them is that data is only added or read, but

never updated or deleted. For updating data, new versions

of the data are added instead of overwriting old data. Fur-

thermore, DWs employ rigid data models that are tailored

to a specific data mining purpose [9, 10] which makes it

possible to employ predefined data models and schemata

that fit the intended purpose. Predefined data models and

schemata facilitate processing complex queries for which

analytical systems are designed. While DWs perform well

for the intended purpose, they are also limited to them. Ad-

ditionally, it is hardly possible to squeeze Big Data into

predefined data models. These two limitations impede the

applicability of DWs for the search infrastructure.

In 2010, Data Lakes (DLs) were proposed as a novel

architecture for handling Big Data [7, 11]. There are sev-

eral characteristics, even beyond data storage, that set DLs

apart from preceding systems like DWs and make them

suitable for the search infrastructure. In the following, the

† leon.martin@uni-bamberg.de

* andreas.henrich@uni-bamberg.de

aspects data storage, data governance, data interaction, and

data maturation are explored.

Data Storage

The utilization of the data that is added to DLs is nei-

ther known nor defined a priori, i.e., they provide a use case

agnostic data storage. Instead of applying data models and

schemata, the raw data is stored in their native format in

the data repositories of the DL [12], thus providing the ca-

pability to digest heterogeneous Big Data. A central catalog

continuously takes inventory of incoming data for later dis-

covery [7]. DLs can receive data through regular data im-

ports as well as through streams of real-time data [12].

Often, Apache Hadoop [13, 14], a framework for the

distributed storing and processing of large datasets, is used

to implement the data repositories in DLs [10, 15]. Because

of Hadoop’s popularity and capabilities, it is the main data

storage technology addressed in this paper. Storing raw

data in native format is only possible due to the significant

decrease of storage costs over the past years. In Hadoop,

the scalable Hadoop Distributed File System (HDFS) [16]

is responsible for storing the data across multiple servers

and making the data accessible.

Through user interaction, the raw data in DLs is cate-

gorized, tagged, linked, analyzed, and in other ways edited,

i.e., the data matures over time. Similar to DWs, instead of

overwriting the past versions of the data, copies of the data

are made, then manipulated, and finally stored in the repos-

itories of the DLs [12]. Throughout the data lifecycle,

metadata is used to keep track of all changes to the data [7].

The availability of raw data and all their versions has sev-

eral benefits:

1. By directly storing the raw data, the expensive ac-

tivities data modelling and schema definition are

deferred until a specific data representation is re-

quested through a query [10]. The problem of

squeezing semi-structured and unstructured data

into predefined formats is thereby postponed.

Whenever a query is executed, the requested data

is bound to a dynamic schema and delivered to the

users. This concept is called schema-on-read or

late binding [10, 7].

2. The provenance of the data is comprehensible at

all times [10]. As the data matures, DLs keep track

of the changes throughout the data life cycle.

Every manipulation is therefore known to the sys-

tem and the users can easily comprehend where

their data comes from. This is an essential capa-

bility of a transparent search infrastructure.

3. DLs yield a new level of data accessibility [10].

They are designed to encourage data sharing be-

tween the users by storing all data and their ver-

sions within the same repositories. Hence, both

the raw data and the matured versions can be di-

rectly accessed by the users [12] given that the re-

quired security levels are met and thus internal po-

litical and technical barriers are avoided [10].

Despite the advantages of data storage in DLs, they are

no replacement for DWs. Instead, they can be used as a

staging area for DWs where structured data that is pro-

duced in the DLs is processed [8].

Data Governance

In general, data governance addresses the decisions

that have to be made to ensure effective management and

use of IT and the agents making the decisions [17]. Making

reasonable and informed decisions in complex software

systems requires a clear-cut componentization, well-de-

signed communication between the components, and a suf-

ficient amount of decisive data. Since DLs do not enforce

predefined schemata and data models, the proper use of ex-

pressive metadata is mandatory for an effective utilization

of the data. Otherwise, DLs are at risk of degenerating into

invisible, inaccessible, and unreliable data swamps [18].

As it is hardly possible to retransform data swamps back

into DLs due to the sheer amount of data, the degeneration

process must be prevented by enforcing the disciplined use

of metadata that adheres to predefined standards.

According to IBM’s reference architecture [12],

metadata and other descriptive data is also stored in the cat-

alog. [18] mentions key-value stores, XML documents, re-

lational databases and ontologies as means of implement-

ing metadata management systems for DLs. Depending on

the metadata that data owners ascribe to their data when

adding it, different management routines that are stored in

the catalog are applied and executed by the responsible

components. For example, data provided by physical sen-

sors could be automatically preprocessed by a designated

preprocessing component to eliminate noise. These pro-

cesses are an important aspect of the workflow within DLs

as they allow the effective utilization of the data.

Data Interaction & Data Maturation

 [12] describe two ways of accessing the data within a

DL’s repositories. The first one, raw data interaction, al-

lows accessing the data in their actual format. This interac-

tion style allows analysis and maintenance in case of a

problem as well as masking sensitive personal information

for all other components [12]. However, only admins and

otherwise eligible persons should be allowed to use this in-

teraction style due to the high degree of freedom that this

style provides. For most applications, this interaction style

is not suited anyway because it is hard to perform effective

analyses on the vast amounts of files of raw Big Data with-

out appropriate interfaces and tools efficiently. In Hadoop,

raw data interaction can be easily realized by directly ac-

cessing the HDFS.

For regular use cases, the second interaction style,

view-based interaction, is intended. This interaction style

supports ad-hoc queries, search, simple analytics and data

exploration [12]. Depending on the use case, for which the

data is requested the data is flattened, simplified, and la-

beled using schema-on-read. In the Hadoop ecosystem,

there are several technologies that can be used to imple-

ment an interface for view-based interaction. Hadoop itself

provides Hadoop MapReduce [14], which is an implemen-

tation of the MapReduce programming model [19]. A

MapReduce job works as follows [19]: first, the input files

are partitioned into so called splits across multiple ma-

chines. Then, workers apply mapping functions to the in-

dividual splits that transform the partitioned data and result

in intermediate files. Next, workers apply reduce functions

to the intermediate files that combine the transformed par-

titioned data and thus produce output files. Because of the

divide-and-conquer-like processing that can be distributed

across multiple machines, MapReduce jobs are a powerful

and fast means of processing and generating large datasets

[19]. The Hadoop MapReduce jobs can be conveniently

implemented in Java.

Another option for implementing view-based interac-

tion is Apache Hive [20]. Hive is a framework for data

warehousing that builds on top of Hadoop. The framework

takes queries written in HiveQL, a dialect of SQL, and

transforms them into MapReduce jobs that are processed

by Hadoop [14]. While Hive is a technology that is in-

tended for deep analyses of the data [14], there are other

applications that require fast, random, and real-time

read/write access to the data. For such applications, Apache

HBase [21], which follows the concepts of Google

Bigtable [22], is an option. Hence there are several possi-

bilities for implementing view-based interaction.

The new views on the data and the extracted datasets

that are created using view-based interaction contribute to

the maturation of the data [10]. Other activities that con-

tribute to the data maturation are the consolidation and cat-

egorization of the raw data, attribute-level metadata tag-

ging and linking, and business-specific tagging and syno-

nym identification which eventually result in the conver-

gence of meaning within context [10]. When this level is

reached, a deep understanding of the data has emerged

which leads to high applicability for various use cases.

A DATA-LAKE-BASED SEARCH ENGINE

DLs are highly flexible and use case agnostic data

management systems. Their generic architecture provides

capabilities that go beyond pure data storage. The IBM ref-

erence architecture for DLs [12] is designed to be applica-

ble in many different domains. Consequently, some in-

cluded components might not be necessary for the open

search infrastructure. To cope with this, we provide an ar-

chitecture for a DL-based search engine that only com-

prises the bare minimum of components as a starting point.

The components that are left out in the following can still

be added to the architecture later if the need for their capa-

bilities arises. Afterwards, we extend the architecture to

meet further requirements of the search infrastructure.

Storage Components

In terms of storage, document-centric search engines

commonly comprise the following components [23]: a doc-

ument data store, an index, and a repository for log data.

The following paragraphs show how those components can

be realized using DLs.

Document Data Store To be able to search docu-

ments, the document data store must be populated with

crawled documents first. The crawled documents can both

be ingested through a crawler or stored in a separate data-

base and then imported into the DL repository. In tradi-

tional search engines, the document data store is a (rela-

tional) database that stores the original documents for fast

access as well as associated structured data like metadata,

links, and anchor text [23]. Using a DL as the basis for a

search engine, the document data store is located inside the

repository of the DL. Note that a document data store is

just a matured view on raw documents and that the store-

everything-approach of DLs allows embedding entire da-

tabases within the DL repository. Consequently, the docu-

ment data store, e.g., a relational database, can be derived

from the raw documents, stored in the DL repository, and

finally accessed. This way, the same functionality com-

pared to a non-DL-based document data store is provided

since no changes to the document data store in terms of its

workings are made.

The HDFS is based on the write-once, read-many-

times pattern, i.e., it performs best when the source is often

copied and then analyzed over time [14]. This pattern suits

search engines because the stored documents are expected

to be red more often than updated after being crawled.

Index In search engines, the index is used to gather

statistics and, following that, to calculate weights that are

used for ranking documents, e.g., using TF-IDF [23]. From

the point of view of a DL-based search engine, the index is

essentially a dataset that is derived from the stored docu-

ments. Like the document data store, the index is thus

stored in the data repository of the DL-based search engine.

To construct the index, the documents must be re-

trieved from the document data store in the data repository

first. However, the HDFS is just a means of storing data,

not of performing operations on it. As explained in [24],

Solr [4] supports a direct integration with Hadoop: after re-

placing the local file system with the HDFS in the config-

uration files, Solr writes and reads the index and transac-

tion log files to and from Hadoop. This eliminates the need

for a manual implementation of an interface between the

search platform and the storage system. Search platforms

that do not support an integration with Hadoop require such

an implementation either using the view-based interaction

or the raw data interaction.

In the competitive domain of ad-hoc retrieval, fast

query processing is mandatory. This can only be achieved

through fast interaction with the index. For this purpose,

the index is usually distributed and replicated across mul-

tiple locations [23]. This requirement is unproblematic us-

ing Hadoop since replication is one of Hadoop’s core con-

cepts.

Transaction Log Data As [25] explains, transac-

tional log data that are gathered as users interact with the

search engine, are an invaluable resource. By analyzing

this data, insights regarding the information-searching pro-

cess of users and the general user behavior are gained [23,

25]. This knowledge can then be applied to the information

system design, the interface development, and the

development of information architectures for content col-

lections [25]. Furthermore, log data facilitates tuning the

ranking functionality, thus improving the central function-

ality of a search engine [23].

In a DL-based search engine, the transactional logs are

stored in the data repository as well. Unlike the previously

discussed components, most log data are not derivations of

already available data, but new data continuously gener-

ated through user interaction. In this regard, Solr’s direct

integration with Hadoop is again convenient as it provides

a pre-implemented means of writing log data to the DL.

Accordingly, other solutions might require manually im-

plementing an interface for this purpose [24].

Figure 1: The architecture of a DL-based search engine.

Architecture

Following the visualization style of the IBM Redguide

[12], Fig. 1 shows the architecture of our DL-based search

engine. As explained, the document data store, the index,

and the transaction log data are all located within the data

repository of the underlying DL. The metadata of these re-

sources describe their origin and the changes made to them.

Additionally, the catalog takes inventory of data in the data

repository such that this information is available, e.g., for

statistics and for the accessing interfaces. Since the catalog

is a data storing component as well, it is also located within

the data repository. Crawled documents can either be fed

in directly via a crawler, e.g., Apache Nutch [26], Scrapy

[27], and Heritrix [28], or imported as archives, e.g., the

releases of commoncrawl [29], through the same interface.

From a strategic point of view, both options should be con-

sidered here to gain the maximum number of crawled doc-

uments. Utilizing existing crawl data also allows working

on and testing the system before an appropriate crawler has

been determined and set up.

The internal component Refinement & Annotation is

responsible for creating and updating the document data

store with respect to incoming crawled documents. Poten-

tial duplicates are handled by this component, too. After

the document data store is created, the search platform ac-

cesses it to construct the index while additionally providing

a search interface for the users. As users interact with the

search platform, transaction log data is collected and de-

posited. Depending on the search platform the interaction

with the data lake must be implemented manually or is al-

ready provided, e.g., using Solr and Hadoop. In any case,

an additional interface for raw data interaction is still re-

quired for accessing the raw data for maintenance and trou-

bleshooting in case of a problem.

Figure 2: The inheritance tree of the Datasets class

adopted from the conceptual metadata model in [18].

Storing data in their original format comes with the

benefit that the interaction between the DL and the supple-

mentary components of the Data-Lake-based search engine

does not dictate specific formats for the data payload. How-

ever, the data payload must be described, e.g., using

metadata, though. Otherwise, the DL has no information

about the proper handling of incoming data and is prone to

degenerating into a data swamp. For example, incoming

crawled documents must be described such that the refine-

ment and annotation processes to construct or update the

document data store are triggered. As pointed out, the con-

ditions and the associated management routines are man-

aged within the catalog. Initiating the routines when trig-

gering conditions are met is the responsibility of the inter-

nal component Information Governance that continuously

monitors the events in the DL and ensures correct opera-

tion. We recommend enforcing the use of descriptions for

all data at each interface such that no ambiguous data can

enter the DL. In our case, this means that the four compo-

nents interacting with the DL must support describing the

data payload and apply a fallback description if none is pro-

vided by the data owners. The descriptions themselves

must be standardized to a certain degree, e.g., by employ-

ing a set of predefined tags or keywords, such that trigger-

ing conditions can be easily defined. Furthermore, data

owners, dataset IDs, creation timestamps, and dataset sizes

are to be set as explicit metadata by the system by default

for later identification and provenance analyses. When data

that does not fulfill the standards regarding metadata are

about to be added, the Information Governance component

intervenes and cancels the operation.

Due to the underlying use case agnostic DL, the archi-

tecture is easily extensible even if new components require

special data structures for storage. To be effective at a pan-

European scale the technology implementing the DL must

feature seamless distribution and replication of data for fast

data delivery.

EXTENDING THE ARCHITECTURE

To enable the architecture meeting further require-

ments of the envisaged open search infrastructure some of

the previously discussed components and processes must

be extended while some new must be added. The previous

section already mentioned a few types of necessary

metadata. However, they do not suffice as metadata for the

full search infrastructure. [18] proposes a metadata concep-

tual model for DLs containing twelve classes each featur-

ing different metadata. Fig. 2 shows the inheritance tree of

the model’s Datasets class as an example. As one can see,

the model includes several types of metadata that must be

respected by all components. One prominent example is

the metadata addressing the sensitivity level of the DL’s

datasets. Previously, all documents in the DL-based search

engine were accessible through the search platform as soon

as they have been indexed unless they are removed or

masked manually via the Raw Data Interaction compo-

nent. This naïve approach clearly violates data privacy as-

pirations because it does not enable data privacy by design.

A better approach is to extend the responsibilities of the

Information Governance component such that data ac-

cesses are constantly monitored, and users’ access rights

are evaluated against the specified sensitivity level of the

accessed data.

Figure 3: A possible approach for the workflow of routine

application.

Generally, the responsibilities of the Refinement & An-

notation component include the application of automated

predefined routines to the data in the repository for

maximizing their utility. Currently, the component takes

care of creating and updating the document data store for

making use of the data in the search engine use case. Aside

from this, the information within the document data store

may also by useful for statistical purposes. However, there

are other use cases for which the data could be prepared

automatically. For instance, natural language processing

operations could be applied to the data or related docu-

ments could be explicitly linked using metadata, thus im-

proving the utility of the data. Automatically applying such

routines comes with the benefit that the resulting data der-

ivations are already available for interested users. For ex-

ample, scientists in natural language processing could ac-

cess already computed dependency parse trees without

having to issue the required routines themselves. Obvi-

ously, not all future usages of the data can be anticipated.

Hence, we recommend continuously inspecting the log

data to identify data that are requested frequently and add-

ing routines to the Refinement & Annotation accordingly.

To enable the automatic application of new routines, ap-

propriate triggering conditions must be specified in the cat-

alog. Fig. 3 shows one possible approach as a sequence di-

agram for the routine application workflow.

 So far, interaction with the system is only supported

via raw data interaction and the search platform which lim-

its the potential use cases. To open the system for other pur-

poses, an additional component for view-based interaction

that interacts with the DL is required to provide additional

user interfaces. In the beginning, the interfaces provided by

this component are rather generic because the future usages

are not known a priori. Appropriate initial interfaces allow

users to perform operations that contribute to the data mat-

uration like attribute-level metadata tagging, as said before.

Such functionalities require the ability to browse and edit

data which can be implemented using technologies like

HBase and Hive. Over time new interfaces for frequent use

cases can be added. Again, using the example of natural

language processing, an interface could provide means of

following coreferences, i.e., phrases that refer to the same

named entity, across documents for explorative search. The

possibilities in this regard are numerous. Note that multiple

aspects of the proposed architecture depend on log data.

Hence, aside from the architectural aspects of the open

search infrastructure, user engagement is a mission critical

aspect. To attract and convince users, designing fast, flat,

and powerful interfaces is mandatory.

CONCLUSION

In this paper, we summarized the goal of the Open

Search Foundation to establish an open search infrastruc-

ture and discussed the core aspects of Data Lakes including

data storage, data governance, data interaction, and data

maturation to assess their applicability for such an ambi-

tious infrastructure. Subsequently, we proposed the archi-

tecture for a basic Data-Lake-based search engine as a

starting point comprising the minimum number of neces-

sary components. To cover further requirements of the in-

frastructure we added new and extended existing compo-

nents afterwards, while also providing recommendations

regarding metadata and user interface design. The next

steps are to further discuss the architectural aspects of the

open search infrastructure with the goal of determining and

subsequently building up a first basic but extensible archi-

tecture for the open search infrastructure soon. To this end,

we will further develop and expand the architectural con-

siderations based on selected application scenarios. Exam-

ples besides search engines are web analytics or alert ser-

vices.

REFERENCES

[1] Open Search Foundation, https://opensearchfoundation.org/.

[2] The Architecture of a Large-Scale Web Search Engine,

https://0x65.dev/blog/2019-12-14/the-architecture-of-a-large-

scale-web-search-engine-circa-2019.html.

[3] Elasticsearch, https://www.elastic.co/products/elasticsearch.

[4] Apache Solr, https://lucene.apache.org/solr/.

[5] Apache Lucene, https://lucene.apache.org/.

[6] Shards and Indexing Data in SolrCloud, https://lu-

cene.apache.org/solr/guide/6_6/shards-and-indexing-data-in-

solrcloud.html.

[7] N. Miloslavskaya and A. Tolstoy, “Big Data, Fast Data and

Data Lake Concepts”, in Procedia Computer Science, pp. 300-

305, 88, 2016.
doi:10.1016/j.procs.2016.07.439

[8] C. Madera and A. Laurent, “The next information architec-

ture evolution”, in Proceedings of the 8th International Confer-

ence on Management of Digital EcoSystems - MEDES, New

York, New York, USA, pp. 174-180, 2016.
doi:10.1145/3012071

[9] Bauer, Andreas; Günzel, Holger, Data-Warehouse-Systeme.

Heidelberg: dpunkt-Verl., 2013.

[10] B. Stein and A. Morrison, “The enterprise data lake: Better

integration and deeper analytics”, in PwC Technology Forecast:

Rethinking integration, pp. 1-9, 2014.

[11] Pentaho, Hadoop, and Data Lakes,

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-

and-data-lakes/.

[12] M. Chessell, F. Scheepers, N. Nguyen, R. van Kessel, and

R. van der Starre, “Governing and managing big data for analyt-

ics and decision makers”, in IBM Redguides, 2014.

[13] Apache Hadoop, https://hadoop.apache.org/.

[14] T. White, Hadoop - The Definitive Guide: Storage and

Analysis at Internet Scale (3. ed., revised and updated):

O’Reilly, 2012.

[15] A. Farrugia, R. Claxton, and S. Thompson, “Towards social

network analytics for understanding and managing enterprise

data lakes”, in 2016 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining (ASONAM),

pp. 1213-1220, 2016.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The

Hadoop Distributed File System”, in 2010 IEEE 26th Sympo-

sium on Mass Storage Systems and Technologies (MSST), pp. 1-

10, 2010.

[17] V. Khatri and C. V. Brown, “Designing data governance”,

in Communications of the ACM, 1, pp. 148-152, 53, 2010.
doi:10.1145/1629175.1629210

[18] F. Ravat and Y. Zhao, “Metadata Management for Data

Lakes”, in New Trends in Databases and Information Systems,

Cham, pp. 37-44, 2019.
doi:10.1007/978-3-030-30278-8

[19] J. Dean and S. Ghemawat, “MapReduce”, in Communica-

tions of the ACM, 1, pp. 107-113, 51, 2008.
doi:10.1145/1327452.1327492

[20] Apache Hive, https://hive.apache.org/.

[21] Apache HBase, https://hbase.apache.org/.

[22] F. Chang et al., “Bigtable”, in ACM Transactions on Com-

puter Systems, 2, pp. 1-26, 26, 2008.
doi:10.1145/1365815.1365816

[23] W. B. Croft, D. Metzler, and T. Strohman, Search engines.

Boston, Columbus, Indianapolis, New York: Addison Wesley,

2010.

[24] Running Solr on HDFS | Apache Solr Reference Guide 6.6,

https://lucene.apache.org/solr/guide/6_6/running-solr-on-

hdfs.html.

[25] B. J. Jansen, “Search log analysis: What it is, what's been

done, how to do it”, in Library & Information Science Research,

3, pp. 407-432, 28, 2006.
doi:10.1016/j.lisr.2006.06.005

[26] Apache Nutch, http://nutch.apache.org/.

[27] Scrapy, https://scrapy.org/.

[28] Heritrix, https://github.com/internetarchive/heritrix3.

[29] Common Crawl, http://commoncrawl.org/.

