


Linear and Neural Network Estimates of Magnetic Filling Factors on Sun-Like Stars

Timothy Milbourne^{1,2}, David F. Phillips², Nick Langellier^{1,2}, Steven Saar², Ronald L. Walsworth^{2,3,4,5}, and the HARPS-N Solar Telescope Collaboration

¹Physics Dept. Harvard University, Cambridge MA USA. ²Harvard-Smithsonian Center for Astrophysics, Cambridge MA USA., ³Physics Dept. UMD, College Park MD USA. ⁵⁴⁴Electrical & Computer Engineering Dept., UMD, College Park MD USA. ⁵Quantum Technology Center, UMD, College Park, MD USA.

Results

Both techniques produce filling factors highly correlated with HMI-derived values. But does this help with RVs? Expected activity-driven RVs to depend on active region size (Milbourne et al. 2019):

- RV RMS: 1.82 m/s
- Decorrelating with S-index:
 1.37 m/s
- Decorrelating with estimated filling factors: 1.37 m/s
- Decorrelating with HMI filling factors: 1.23 m/s

These techniques are good first step, but further work is needed!