
Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 776480

Page 1 of 39

Multiscale Observation Networks for Optical

monitoring of Coastal waters, Lakes and Estuaries

Deliverable 5.3

System user and developer handbook

Project Description

Funded by EU H2020 MONOCLE creates sustainable in situ observation solutions for

Earth Observation (EO) of optical water quality in inland and transitional waters.

MONOCLE develops essential research and technology to lower the cost of

acquisition, maintenance, and regular deployment of in situ sensors related to optical

water quality. The MONOCLE sensor system includes handheld devices, smartphone

applications, and piloted and autonomous drones, as well as automated observation

systems for e.g. buoys and shipborne operation. The sensors are networked to

establish interactive links between operational Earth Observation (EO) and essential

environmental monitoring in inland and transitional water bodies, which are

particularly vulnerable to environmental change.

http://www.monocle-h2020.eu/

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 776480

Page 2 of 39

Deliverable
Contributors:

Name Organisation Role / Title

Deliverable Lead Darren Snee PML WP5 lead developer

Contributing Author(s)

Steef Peters WI WP5 lead

Stefan Simis PML Contributing author

Liesbeth de Keukelaere VITO Contributing author

Bart Ooms VITO Contributing author

John Wood PEAK Contributing author

Jaume Piera CSIC Contributing author

Carlos Rodero CSIC Contributing author

James Sprinks Earthwatch Contributing author

 Norbert Schmidt DDQ Contributing author

Reviewer Stefan Simis PML Scientific coordinator

Final review and
approval

Stefan Simis PML Scientific coordinator

Document History:

Release Date Reason for Change Status Distribution

0.1 Initial outline Draft Internal

0.2 Drafts and Review Ch 1-5 Draft Internal

0.3 Updated Ch1-5 and draft Ch 6 Draft Internal

1.0 3 Mar 2021 For internal review Draft Internal

1.1 8 Mar 2021 First release Final Public

To cite this document:

Snee D., Peters, S., Simis, S., De Keukelaere, L., Ooms, B., Wood, J., Piera, J. (2020).

D5.3 System user and developer handbook. Deliverable report of project H2020

MONOCLE (grant 776480). doi: 10.5281/zenodo.4589102 (this version)

© The authors. Published under the Creative Commons Attribution Non Commercial

4.0 International license.

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 776480

Page 3 of 39

TABLE OF CONTENTS

 Executive Summary ... 4

 Scope ... 4

 Introduction .. 4

 The MONOCLE data ecosystem... 4

 Minimum metadata requirements.. 6

 Minimum system requirements ... 8

 Terminology... 8

 System overview .. 9

 Distributed sensors ... 10

 Distributed data stores .. 11

 MONOCLE central data backend.. 12

 MONOCLE front-ends ... 12

 User guide .. 13

 So-Rad .. 13

 FreshWater Watch .. 15

 KdUINO (KdUSTICK and KdUMOD) .. 17

 ISPEX Mobile app with backend ... 18

 HSP-1 .. 20

 Remotely Piloted Aircraft Systems .. 21

 WISPstation / WISP-M .. 23

 System developer guide .. 26

 SOS server .. 26

 SOS Proxy ... 27

 KdUINO: KdUSTICK and KdUMOD .. 27

 iSPEX .. 29

 Exploitation and Dissemination .. 30

 Future activities/recommendations .. 30

 References ... 30

 Appendix ... 30

 SOS example xml templates (for So-Rad) .. 30

10.1.1 InsertSensor procedure template ... 31

10.1.2 InsertResult procedure template ... 35

10.1.3 InsertResult procedure template ... 39

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 4 of 39

 Executive Summary
This report provides an overview of the data requirements and interfaces that were adopted in the

sensors and observation platforms of MONOCLE. The methodology builds on Open Geospatial

Consortium service standards wherever possible. This document describes both the functionality and

the configuration of the MONOCLE backend and distributed sub-systems.

In Chapter 3, we present the operating principles of the data ecosystem and the minimum

requirements for data services front- and backends and metadata that follow from these principles.

This chapter also introduces a generic terminology compliant with the standards of the Open

Geospatial Consortium (OGC). Chapter 5 presents, for each sensor (system), which data and user

interfaces have been configured to ensure the flow of data from sensors through quality control and

wider availability of the data in an automated fashion. Open source and interoperable components

are selected wherever feasible, and alternatives are discussed. Chapter 6 and Appendix 1 are intended

for system developers wishing to replicate part of the data and interface structure. It provides a

stepwise guide to the configuration of essential system elements.

 Scope
This handbook is for current and future developers of the MONOCLE system backend and sensors

compatible with the standards used in this system. We discuss a series of implementation targeting

specific improvements in MONOCLE for a streamlined flow of information from individual sensors

through data aggregation systems and towards visualisation tools. It is intended to shorten

development time for sensor developers who wish to reach compliance with these recommended

standards.

 Introduction

 The MONOCLE data ecosystem

The MONOCLE data ecosystem is being developed to demonstrate how in situ sensors and other data

sources can be connected in near real time (NRT) so that data are efficiently shared between data

producers and data consumers.

The objectives of this development are to provide a network of sensors and data nodes which can

fulfil the following operating principles:

- Allow operators to control their sensors with ease both in situ and remotely

- Reduce operator involvement in distributing sensor data to accessible locations

- Provide capabilities to inspect, verify and correct observation data

- Deploy standardized machine-to-machine interfaces wherever possible

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 5 of 39

MONOCLE includes sensors and platforms that encompass a diversity of deployment procedures and

data types, ranging from mobile applications to imagery from drones and high-frequency automated

systems, in reachable and remote locations and operated by experts and non-experts. Because the

sensors and platform span a range of complexity in data gathering modes, data types and data transfer

mechanisms, it is our ambition that this guide will aid future developers in choosing appropriate

mechanisms.

The sensor network and interfaces that were chosen for each component of the network were

originally foreseen to organise along the data flows illustrated in Figure 1, with network nodes

connecting along data interoperability standards of the Open Geospatial Consortium (detailed further

below). Some of the benefits of building around these self-describing data standards are:

- In-built validation, versioning and traceability of data offerings.

- Responsibility to provide up-to-standard data offerings lies with the developer/operator.

- Tested templates can be widely re-used.

However, there are potential drawbacks to consider:

- Small recurrent data offerings can be seen to have disproportionate data transfer overhead.

- Complex data offerings require templates which are not straightforward to manage.

- Training may be required to construct sensor and result templates.

Our development has followed the principles of aiming to develop along OGC standard services, while

allowing for bespoke APIs or hybrid solutions when these are more feasible. The guiding principle was

to ensure wider uptake in the industry of data interoperability, and to avoid undocumented data

exchange mechanisms.

Figure 1. Example data flows from individual sensors to the MONOCLE backend and onward to data consumers.

The individual systems are presented in detail in Chapter 4, including their currently available

interfaces for accessibility and data exchange. In many cases, a hybrid solution was formed around a

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 6 of 39

bespoke sensor-to-server data transfer mechanism with minimal data transfer overhead, followed by

a standardized data service to expose functionality for mapping, cataloguing and individual data

access.

 Minimum metadata requirements

MONOCLE systems (in situ sensors, platforms, databases and software) were primarily developed to

optimize satellite calibration and validation for water quality monitoring. This requires that in situ data

are associated with accurate geopositioning (including time) information with sufficient accuracy to

relate observations at relevant spatial scales. The accuracy of geo-position information should be

recorded with the data, by specifying the source from which it was derived, such as satellite

positioning, internet time protocols or a manual selection based on maps.

Results of a survey held among water quality practitioners (Heard et al. 2018) revealed a wide range

of stakeholders who are responsible for in situ monitoring, with varying requirements for sharing,

ownership or the data collected. It is thus required that data ownership and licensing are added to

the observation metadata from the first point of distribution and doing so in an interoperable

manner is the responsibility of the data creator.

Because the in situ data should be usable in automated procedures in near real time, while

observation data may be distributed to multiple data stores, all observation data should include a

unique (set of) identifiers. It is recommended that individual observations, sensors and platforms or

deployments are given unique identifiers for optimal traceability and quality control. For example, if a

sensor malfunction or drift is detected later, all observations from a given deployment can then be

marked as suspect.

To support quality control procedures for new observations, upon new calibration results or when

new drift or anomaly analysis results are made available, data managers and users require traceability

to calibration measurements, labs and standards with each observation. Therefore, the processing

level, sensor calibration time, calibration software version and revision history of post-processing

should be identifiable in the data backend.

The minimum metadata requirements for connecting a sensor system to the MONOCLE backend and

suggestions on how to populate these fields are summarized in Table 1. We note that these

recommendations follow existing standards (e.g. ISO as indicated) where these have been identified,

whilst overall these requirements should be considered a recommendation to fulfil the requirements

of a wide variety of downstream data uses. Wider testing of this set of metadata would be required

before recommendations to arrive at new or extended standard could be made.

Table 1 Minimum metadata requirements to enter new observations into the MONOCLE system.

Category Element Description Possible values, data type, conventions,
units

Location &
time

Latitude Geographic location Float decimal degrees,
north positive

Longitude Geographic location Float decimal degrees,
east positive

Elevation Height above reference ellipsoid Float in meters

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 7 of 39

Category Element Description Possible values, data type, conventions,
units

(alternative: Altitude) (Alternative: height above ground)

Reference Coordinate
System

 Default WGS84

Time Time in Coordinated Universal Time
(UTC)

Character string formatted according to
ISO8601

Location_source Source of the Geodetic information e.g. GNSS

Time_source Source of the Time information e.g. GNSS, internet time pool

Processing Processing_level Sensor-specific Integer 0, 1, 2 … n or String including
sublevels such as 1A, 1B, 1C. Defined by
manufacturer and described in the
reference documentation. Level 0 is
uncalibrated sensor output and not
distributed; Level 1 is calibrated data prior
to any corrections or interpretation; Level 2
is interpreted data; Level 3 is aggregated or
regridded data.

Processing_procedure Reference to protocols and algorithms
describing the steps involved in data
processing

URL

Processing_version Version of the data processing software Free form, recommended:
major.minor.build

Processing_revision Incremental version of the processed
data

Free form, likely an integer

Calibration_procedure For calibrated data: documentation
describing the calibration procedure. Can
be the same as Processing procedure
reference

URL

Calibration_reference Identifier of calibration information Flexible, system-specific

Calibration_time Date/time stamp of applicable
(uncalibrated data, if available) or
applied (calibrated data) sensor
calibration.

Character string formatted according to
ISO8601

Calibration_version Version of the calibration processing
software

Free form

Identifiers Sensor_id Unique identifiers used to prevent data
duplication with data consumers

Sensor serial number (manufacturer
decides format)

Platform_id Platform serial number or randomly
assigned identifier (UUID) used with all
connected sensors. May be left empty if not
applicable.

Deployment_id Randomly assigned identifier (UUID)
specific to deployment sequence (e.g.
cruise, campaign, vertical profile) of a
specific sensor. Not shared with other
sensors.

Sample_id Randomly assigned identifier (UUID)
generated with each distinct data record
from any set of sensors belonging to a
single observation.

Observer_id Randomly assigned identifier (UUID)
repeated with each data record from this
and/or other sensors when operated by a
specific observer.

Licensing Owner_contact An email address where the owner of the
data can be contacted now and in future

Sustained email address (e.g.
data@organisation.org rather than
individual@organisation.org)

mailto:data@organisation.org

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 8 of 39

Category Element Description Possible values, data type, conventions,
units

Operator_contact An email address where the current
operator can be contacted

Email address to operator or group of
operators

License A licence string or coding that is either
self-explanatory or detailed in the
License_reference field.

Free form

License_reference A reference describing the data license in
detail.

URL

Embargo_date A date following which the data may be
used according to the specified license.
Used, for example, to hide the data
record in NRT visualization until quality
control is completed.

Character string formatted according to
ISO8601

 Minimum system requirements

The operating principles and minimum data requirements can be translated into requirements for the

MONOCLE data ecosystem. In particular, the following components are required:

- A data store consisting of one or more distributed servers that can ingest and serve data

through standardized interfaces. The data store should meet the following requirements:

o Data should be stored securely to avoid unauthorized changes

o Updates (e.g. calibrations) and corrections to the data should be traceable

o Data should be archived to back up locations

o Data should be accessible, honouring data licenses and embargoes

- Visualization tools with GIS capabilities to inspect and interact with multi-source data

- The system should be scalable either within the current context, or set up so that it can be

migrated to cloud-based servers and storage in future

- A layer of distributed data consumer processes, demonstrating trigger and alert

mechanisms; e.g. report generation or alerting in situ sensor operators.

MONOCLE has invested large effort into improving the interoperability between elements of the

system (from sensors to data stores and server-based analysis) through the use of standardized data

interfaces, where feasible. These standards are curated by the Open Geospatial Consortium (OGC) and

listed in the next section. In chapter 4 the choice of standards for each system component is explained

in more detail. Chapter 5 then details how these interfaces are used in practise while Chapter 0 details

how they were implemented.

 Terminology

The following overview is included to avoid confusion between observation disciplines and the

standard terminology used in the OGC standards.

Feature Abstraction of a real-world phenomenon.

Measurement A set of operations having the object of determining the value of a quantity

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 9 of 39

Observed Property Facet or attribute of an object referenced by a name which is observed by a

procedure.

Observation Act of observing a property.

Observation Offering An Observation Offering groups collections of observations produced by one

procedure, e.g., a sensor system, and lists the basic metadata for the

associated observations including the observed properties of the

observations.

Procedure Method, algorithm, instrument, sensor, or system of these which may be used

in making an observation

Sensor Entity that provides information about an observed property as its output. A

sensor uses a combination of physical, chemical or biological means in order

to estimate the underlying observed property. At the end of the measuring

chain electronic devices produce signals to be processed.

Sensor System System whose components are sensors. A sensor system as a whole may itself

be referred to as a sensor with an own management and sensor output

interface. In addition, the components of a sensor system are individually

addressable. In MONOCLE these can also be referred to as ‘platforms’.

The OGC service standards referenced in this report are listed in Table 2.

Table 2 Overview of OGC standards

Standard Scope

SOS HTTP based standard for the querying and addition of sensor observations
and metadata using a variety of possible bindings and formats. See
https://www.ogc.org/standards/sos

WFS HTTP based standard for the access and manipulation of geographic feature
data . See https://www.ogc.org/standards/wms

WMS HTTP based standard for requesting geo-referenced map images from a
server
See https://www.ogc.org/standards/wms

WCS HTTP based standard receiving of geospatial information as ‘coverages’:
digital geospatial information representing space-varying phenomena. The
results of a WCS can be used for complex modelling and analysis, and allows
complex querying – users can extract just the portion of the coverage that
they need.
See https://www.ogc.org/standards/wcs

 System overview
The MONOCLE system demonstrates how in situ sensors can be connected in near real time so that

data are efficiently shared between data producers and data consumers.

https://www.ogc.org/standards/sos
https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wms
https://www.ogc.org/standards/wcs

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 10 of 39

 Distributed sensors

This section describes the types of sensors included in MONOCLE, which are connected to the data

back-end through the various interfaces described further below. These sensors include:

So-Rad The solar-tracking radiometry platform (So-Rad) by PML provides support for three

(ir)radiance spectrometers to observe the remote-sensing reflectance (water colour)

from moving platforms. It integrates automatic pointing of the radiometers to avoid

sun glint. The software and hardware are fully open-source. More information

WISPStation The Water Insight SPectrometer Station measures water-leaving reflectance and

derives key water quality parameters fully autonomously at high frequency, with

results available in near real-time through the WISPCloud dashboard. More

information

HSP-1 The HyperSpectral Pyranometer by Peak Design measures the spectrum of

downwelling solar radiation and how this is partitioned between Direct, Diffuse and

Global Irradiance. This sensor provides a reference for the colour or spectral

distribution of sunlight near the water surface. More information

RPAS Collective name for Remotely Piloted Aircraft Systems or ‘drones’ equipped with

native RGB cameras or additional payload to collect imagery of the water surface in

high detail. More information

iSPEX 2 The iSPEX 2 developed by University of Leiden with app support by DDQ is a

smartphone attachment to gather spectropolarimetric data by taking a picture of

the water, the sky and a grey card for calibration. Data on the intensity and

polarisation of light at different wavelengths is further analysed to derive water

quality information. More information

KdUINO The original KdUINO, a moored instrument to measures the diffuse attenuation

coefficient (Kd), has evolved into a KdUSTICK and a KdUMOD for low and medium-

cost water transparency observations, respectively, in a portable package that can

be deployed for the duration of a battery charge. More information

An overview of the data-generating properties of the sensors is given in Table 3 and their interfaces

to collect configuration information, time and positioning information are given in Table 4.

Table 3 Overview of sensors and their typical data characteristics

Sensor Sample rate Data type Data volume Buffering

So-Rad 0.1 Hz when
equipped with
TriOS Ramses

3 x (ir)radiance
spectrum of 193 x
32bit

Approx. 3 kB
per sample
including
metadata

Local SQLite
database

WISPstation 0.0055 Hz 6 x (ir)radiance
and/or 1 x Rrs
Spectra of 501 * 32bit

Approx 15kB
per sample

Local SQLite
database (only
for unsent data)

https://monocle-h2020.eu/Sensors_and_services/Solar_tracking_radiometry_platform
https://monocle-h2020.eu/Sensors_and_services/Water_Insight_SPectrometer_Station
https://monocle-h2020.eu/Sensors_and_services/Water_Insight_SPectrometer_Station
https://monocle-h2020.eu/Sensors_and_services/Hyperspectral_Radiometer_for_Global_Diffuse_Irra
https://monocle-h2020.eu/Sensors_and_services/MapEO_Water
https://monocle-h2020.eu/Sensors_and_services/iSPEX_2
https://monocle-h2020.eu/Sensors_and_services/KdUINO

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 11 of 39

including
metadata

HSP-1 1Hz max 2 x irradiance
spectrum 700 x 32bit
float

20MB for basic
data or -250MB
for 1-min
intervals with
diagnostics

All data stored to
local file storage

RPAS 0.3-1Hz DJI RGB: 3x 8bit
MicaSense: 5x16bit

8-10GB/flight Local SD card

iSPEX User triggered Raw images
(spectrum or RGB)

20MB/sample Device Store/
Parse mobile
backend

KdUINO
(KdUSTICK)

1 Hz Kd RGB < 1 Kb per day Local SD card

KdUINO
(KdUMOD)

1 Hz Kd multispectral,
temperature

< 1 Mb per day Local SD Card

Table 4 Overview of sensors and their interfaces for remote management, time and location data.

Sensor Remote management Remote triggers Time source Position
source

So-Rad SSH over reverse tunnel Through periodic
config update

Observations:
GNSS
System/logs:
Internet Time Pool

GNSS

KdUINO
(KdUSTICK)

Wifi – Bluetooth over
Mobile App / Uplink over IoT

n/a GNSS / Wifi GNSS

KdUINO
(KdUMOD)

Wifi – Bluetooth over
Mobile App / Uplink over IoT

n/a GNSS / Wifi GNSS

iSpex Via mobile backend (ssh,
JSON/CURL)

Push/cron via
mobile backend

GNSS/Internal
clock

GNSS

HSP-1 Login via VNC or
RemoteUtilities

n/a GNSS and internet
time pool

GNSS

Wisp-M /
WISPstation

SSH over reverse tunnel Configurable in
crontab (also
remote)

Integrated high-
accuracy RTC

Google
maps

RPAS Timer mode, overlap mode, external trigger mode
(PWM, GPIO, serial, and Ethernet options), manual
capture mode.

GPS GNSS

 Distributed data stores

Several sensors and sensor systems (platforms) feed into intermediary data stores. MONOCLE also

connects to a number of data stores that are fed by manual uploads of data records from research

missions and citizen science initiatives. An overview of these distributed data stores in given in Table

5. The majority use geospatial databases to facilitate geographical and temporal filtering of the data.

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 12 of 39

Table 5 Overview of data services and databases

Data source Type Interfaces Provider and URL

WISPcloud PostgreSQL Proprietary API,
SOS connector

Water Insight
https://wispcloud.waterinsig
ht.nl

FreshWaterWatch Geoserver Database,
version 2.17.1

WFS connector Earthwatch
(geo.earthwatch.org.uk)

LIMNADES Geoserver WFS connector University of Stirling
(limnades.stir.ac.uk)

iSPEX backend MongoDB JSON /
based database

JSON/SSH/CURL/Onli
ne Dashboard

DDQ

MapEO-Water Geoserver WMS, WCS VITO
https://maps.vito.be/geoser
ver/web/

 MONOCLE central data backend

The sensor systems and services hosted around the data stores described in the previous sections feed

into a ‘backend’ system. Other than for demonstration purposes, the backend need not be a single

hosted entity, it can be distributed across several nodes all hosting compatible data services, and

hosted either privately or public, or both. For demonstration purposes, PML hosts instances of an SOS

and THREDDS server to receive and distribute data from sensor systems and middleware. In addition,

data analysis and visualisation nodes are set up to connect to any of the distributed data stores. The

backend services and the standards set up for this system are:

• SOS backend: receiving SOS input

• SOS Proxy: adding a security authentication layer between external sources and backend

• THREDDS data server: hosting gridded data offered, inter alia, as WMS and WCS

Details on these system components are given in Chapter 6.

 MONOCLE front-ends

There are many possibilities to offer front-end (user facing) system components once data have been

ingested into interoperable data services. For example, open-source desktop software such as QGis

can connect to any publicly available WMS offering to rapidly deploy mapping tools. In the MONOCLE

ecosystem we identify several defined front-ends either connecting directly to middleware or the

backend:

• LIMNADES – frontend offering user registration and data statistics as well as mapping tools

against a Geoserver (middleware) instance.

• PML WebGIS – an open-source WebGIS compatible with WCS and WMS (WFS being

implemented) exposing all MONOCLE streams connected to the backend.

• PML SOS – including the Helgoland front-end for operators to verify data input into the SOS

backend.

https://maps.vito.be/geoserver/web/
https://maps.vito.be/geoserver/web/

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 13 of 39

• Water Insight WISPcloud API + Lizard GIS: Cloud based data warehouse and analytics

platform communicating with the Water Insight API (middleware).

• Earthwatch FreshWater Watch Waterhub - Data explorer with mapping and data set

analytics built against the FWW middleware.

 User guide
This section describes the exposed functionalities (the flow of data from sensor to frontend) and the

interface components, for each of the major MONOCLE data flows.

 So-Rad

So-Rad: Solar Tracking Radiometry platform

Location: Sensor platform (multiple sensors)
Usage: Remote operation on ships, buoys

PML

Purpose

The So-Rad controls the operation of up to three spectroradiometers, GPS, heading and tilt/pitch/roll
sensors. Its main use is to optimize and record the viewing angles of spectroradiometric measurements
with respect to the solar azimuth, on moving platforms. It is built to provide a low-cost automation
solution for in situ reflectance spectroradiometry including optimized power consumption and
bandwidth. It is an open source hardware/software platform which can be extended with updated
sensors and components.

Data flow

The So-Rad is configured to send uncalibrated sensor data to the backend. A local sqlite database
provides for data buffering and can be downloaded manually or synchronized with file-sharing services
as an alternative to using per-sample data transmission. SOS is the preferred standard but alternatives
are also considered (see below).

Functional system components

The main So-Rad data interfaces are as shown in the diagram below.

So-Rad

SOS

SOS-server

Consumer
scripts (QC,

plotting)
WebGIS

Local WiFi

HTTP logs
HTTP status

page

Secure SSH

remote logon HTTP logs
HTTP status

page

HTTP GET

retrieve config
updates

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 14 of 39

There are three primary interfaces to communicate with the So-Rad. In this description, ‘local’ refers

to the sensor system and ‘remote’ is any other component or user, such as the MONOCLE back-end.

1. SOS is intended to connect to a remote SOS-server in the MONOCLE back-end, or any other

configured SOS server. On first deployment an authentication is requested and stored in a

local configuration file. The So-Rad will periodically interrogate the remote data store to

identify the latest successful data upload. New data are then submitted to the remote data

store. All configuration options are set in a local config file.

2. WiFi is used to allow on-site operators to connect to the So-Rad over SSH for maintenance

and configuartion. Additionally, a web service exposes recent log files and a status page,

showing the last 10 database entries. The WiFi network is password protected and upon

connecting the operator can access the So-Rad and HTTP pages through its IP address.

3. SSH is required to allow remote configuration, monitoring and updates and requires an LTE

modem to be included in the So-Rad. Then, depending on the mobile network, either a static

IP address is used or a reverse-SSH tunnel should be set up. In the latter case, a service such

as Dataplicity can be used to connect to the So-Rad in the same manner as described for

local WiFi access. Dataplicity includes a port forwarding service (‘wormhole) to expose the

status pages through a randomly generated URL.

4. HTTP GET is used to optionally retrieve updates to the So-Rad configuration from a secure

(read-only) URL. This allows the operator to configure the URL on the So-Rad which will then

periodically attempt to download updates. The range of settings that can be altered through

the remote ‘dead-drop’ configuration update is limited to sampling rates and schedules, for

added security.

With regard to SOS, we note that defining xml templates for sensors which offer multiple data types

in a single observation is not straightforward. Alternatives to using SOS for data transfer include the

use of bundling data into discrete files and using a file synchronization protocol. Alternatively, a more

flexible data store such as Parse server can be used, either defined with MongoDB to accept any JSON

formatted input, or with a PostGres database backend for pre-defined schemas. All information that

would be offered through SOS templates can be wrapped into JSON to be offered through a Parse (or

equivalent) server, however the data will then need to be validated after transmission. Both options

are currently being tested.

Example usage

The operator of a So-Rad platform will periodically deploy a calibrated sensor set on a platform of

choice, such as buoy or ship. At the installation site, they will connect to the WiFi that is broadcast by

the So-Rad to configure the system for the specific location: they will update the deployment identifier

and operator contact details which are included in the metadata, and determine suitable sampling

intervals and permissible sensor viewing angles.

Following deployment, the So-Rad will connect via an LTE modem whenever a network is available.

Data are always first buffered in a local database, and uploaded to the SOS backend whenever

possible. In addition, database files can be retrieved over SSH.

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 15 of 39

Should the operator wish to make changes to the sampling configuration, they can point the system

at a URL of their choosing where they host the configuration file, for example at a file synchronization

service which provides a public (read-only) sharing link. This configuration will then overwrite the one

that is set on the local system.

Data that have been uploaded to the backend will then be processed to Remote-sensing reflectance,

triggered when new data are available. The uncalibrated observation records can be viewed through

the Helgoland data visualisation front-end, which is primarily useful for the operator. Data users can

browse and calibrate the calibrated data records through the WebGIS frontend (at the time of writing

this interface is under development).

 FreshWater Watch

FreshWater Watch Citizen Science Platform

Location: Citizen Science Community and Platform
Usage: Remote in-the-field measurements of river and catchment
areas

Earthwatch

Purpose

FreshWater Watch is a citizen science platform allowing members of the public to collect and
submit river water quality data to an online data repository. Participants use either a smartphone
app or downloadable datasheet to record and upload data. Measurements including colour,
nitrate levels, phosphate levels and turbidity are taken using Secchi tubes, chemical testing kits
and colour comparison charts. Registered users of the online platform can also download
aggregated data in CSV format; selectable by geographic area, whilst curated WMS and WFS
datasets are made available through a GeoServer instance.

Connectivity

Information and registration: https://freshwaterwatch.thewaterhub.org/
Citizen scientist data upload through FreshWater Watch app:
https://play.google.com/store/apps/details?id=com.wk.android.fww&hl=en or
https://apps.apple.com/gb/app/freshwater-watch/id882890751
Data upload also possible through datasheet:
https://freshwaterwatch.thewaterhub.org/sites/default/files/datasheet-blitz-en.pdf
Aggregated datasets (raw) available in CSV format:
https://freshwaterwatch.thewaterhub.org/our-data/explore-our-data
Aggregated datasets (validated) available in WMS and WFS formats from GeoServer:
https://geo.earthwatch.org.uk/geoserver/web/

Functional system components

FreshWater
Watch

FWW
database

Manual
verification

FWW platform
(GUI)

FWW
Datasheet

CSV format
downloads

FWW App
Earthwatch
GeoServer

WMS & WFS

MONOCLE GIS
front-end

https://freshwaterwatch.thewaterhub.org/
https://play.google.com/store/apps/details?id=com.wk.android.fww&hl=en
https://apps.apple.com/gb/app/freshwater-watch/id882890751
https://freshwaterwatch.thewaterhub.org/sites/default/files/datasheet-blitz-en.pdf
https://freshwaterwatch.thewaterhub.org/our-data/explore-our-data
https://geo.earthwatch.org.uk/geoserver/web/

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 16 of 39

The Freshwater Watch system exposes the following functional components:

1. FreshWater Watch App: Citizen Scientist community use app to record and upload river water

quality data to the FreshWater Watch back-end database.

2. FreshWater Watch Datasheet: Citizen Scientist community record data manually and upload

onto the FreshWater Watch Platform. This data is then manually verified and added to the

FreshWater Watch Database.

3. FreshWater Watch Platform: Exposes water quality datasets to registered users in a CSV format

selectable by geographical extent.

4. EarthWatch GeoServer: Datasets from the Freshwater Watch Dataset are validated and curated

for exposure on the EarthWatch GeoServer. This then provides open-access to WMS and WFS

formats of the data, selectable as a geospatial layer.

Example usage

Requesting water quality data through the Freshwater Watch Platform (in CSV format)

• Visit the FreshWater Watch Platform data page:

https://freshwaterwatch.thewaterhub.org/our-data/explore-our-data

• Select the geographical area that you are interested in, by drawing a rectangle:

• Click on ‘Export data’ to download a CSV file to your local machine.

Requesting water quality data through the Earthwatch GeoServer WMS and WFS interfaces

• Visit the Earthwatch GeoServer page: http://geo.earthwatch.org.uk/geoserver/web/

• Select ‘Layer Preview’ from left hand menu.

• Select required format from drop-down menu:

https://freshwaterwatch.thewaterhub.org/our-data/explore-our-data
http://geo.earthwatch.org.uk/geoserver/web/

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 17 of 39

• Data file will then be downloaded to your local machine in the requested format.

Data layers and their features can also be directly accessed by a GIS through GeoServer WFS and

WMS services: https://docs.geoserver.org/latest/en/user/services/wfs/reference.html

https://docs.geoserver.org/stable/en/user/services/wms/reference.html

 KdUINO (KdUSTICK and KdUMOD)

KdUINO sensor / sensor system

Location in system:
KdUSTICK is a Sensor
KdUMOD is a Sensor System
Usage: Buoy system (low-cost) equipped with light sensors

CSIC

Purpose

KdUSTICK obtain RGB light measurements at different depths (near the surface) to provide the
broad-spectrum diffuse attenuation coefficient (Kd).

KdUMOD it is built as a versatile modular system. Each module placed at different depth has sensors
for (a) multispectral light measurements and (b) temperature.

Connectivity

Both KdUINO lines can connect by WiFi/Bluetooth to the corresponding mobile App to be
configured by the user. They are able to transmit data in real-time using Internet of Things (IoT)
networks (LoRaWan and Sigfox). The data are first transmitted to CSIC servers, and from there to a
SOS backend. The KdUINO products also store data on a local SD drive.

Functional system components

KdUino server
(CSIC)

KdUino App

Visualize local
readings

Operator
enters

metadata

WiFi or
Bluetooth

KdStick or
KdMod

LoRa or SigFox

KdStick or
KdMod

KdUino
database

SOS export

MONOCLE SOS
server

MONOCLE
WebGIS

https://docs.geoserver.org/latest/en/user/services/wfs/reference.html
https://docs.geoserver.org/stable/en/user/services/wms/reference.html

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 18 of 39

Once KdUSTICK is switched on it will repeat the following cycle of functionality until switched off:

- find GPS satellites to update position and time

- Collect RGB light measurements

- Calculate diffuse attenuation coefficient from available readings

- Send data to CSIC server using Internet of Things (IoT) protocol if available

- Possibility to send data from CSIC server to KdUSTICK devices whenever they ask for an

update (downlink message)

- Save all data:

o Light measurement from each sensor

o Diffuse attenuation coefficient (Kd)

o Temperature (in case of KdUMOD)

and metadata to local SD storage, following the Ocean Sites specifications. This is an example

of how it is structured: https://zenodo.org/record/3906019#.X9dBkNhKi70

- Enter deep-sleep mode for a specified time to preserve battery power

An operator can interact with the KdUSTICK using the mobile App through wifi/Bluetooth as long as

the user is close and while the device is not in deep-sleep mode. The operator will then enter the

metadata related to the deployment, configure the sampling frequency or load and visualize the data.

Example usage

Typically, the user/operator will deploy a KdUSTICK by switching it on, configuring it using the mobile

app, casting it into the water body (1.5 - 2 m depth required) until several measurement cycles have

completed, then recover the KdUSTICK and stop the measurements. The App guides the user through

the specification of metadata and starts/stops the measurement cycle (to avoid measuring in air).

KdUSTICK will attempt to broadcast data to CSIC servers and from there to the SOS backend in real-

time. If a connection is not possible, the user can retrieve data using the mobile app and send it to the

servers later. A passive mode of exposing the data to the MONOCLE back-end is also being explored.

In this case, a WMS/WFS capable server would be configured against the CSIC data store to handle

requests from external front-ends such as the MONOCLE WebGIS.

 ISPEX Mobile app with backend

ISPEX Mobile app with Parse server

Location in system: Frontend/Backend DDQ

Purpose

The mobile app interacts with the operator/user and the sensor (phone camera). The
middleware/backend is responsible for data storage, push notifications, offline synchronisation
and user identification and credential management.

Connectivity

https://zenodo.org/record/3906019#.X9dBkNhKi70

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 19 of 39

The iSPEX mobile app connects via JSON/API request to the parse back end service listening on
https://parse.ddq.nl/parse. We also use Firebase (Google) for push notification integration.
Required by Android devices.

Functional system components

1. Mobile app for collecting and sending sensor/user data.
2. Parse server (www.parseserver.org) is a nodeJS middleware package for MongoDB.
3. MongoDB, the default nosql storage solution for Parse server.
4. Parse dashboard (not a requirement, but a very versatile tool for looking at live datasets

coming in from the smartphones) and scheduling of push notifications.
5. Operators can download the datasets by accessing the parse server using curl/json

requests.

Example usage

Mobile phones connected to the Parse server backend send their (meta-)data. An example of how

these occur in the backend database is provided below. Sensor data and metadata (images, location,

orientation) are collected, along with system information such as mobile device type. The operator

can access this dashboard to inspect data coming in and to send push notifications and see log

output (mobile based and server based).

https://parse.ddq.nl/parse
http://www.parseserver.org/

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 20 of 39

 HSP-1

Name and type of component

Location in system: Sensor positioned on a buoy, ship or a fixed
platform either on land or water.

Usage: Continuous recording of global & diffuse hyperspectral
downwelling solar irradiance.

Peak Design

Purpose

HSP-1 measures the Global and Diffuse partition of downwelling solar radiation over the range
350nm – 1050nm. This can be used on its own or as a reference for other irradiance or reflectance
measurements in a larger sensor system. Auxiliary readings of power supply voltages, internal
temperature and humidity, GPS time and position, and dynamic orientation (Yaw, Pitch, Roll) can
also be included.

Data flow and connectivity

The HSP-1 needs a network connection for setup and data upload. A choice of direct ethernet
connection or modem is available. WiFi can be used as an alternative, in suitable settings. HSP-1
runs on a Windows 10 miniature computer. If a static IP address is available a VNC client can be
used for remote monitoring. With floating IPs, the Remote Utilities Viewer can be used. VNC can
also be used by connecting to the sensor locally.

-

When the HSP is connected to the internet, two options for data synchronization are available. The
first is through a Dropbox account using measurement files as data packets, which can then be
processed by a client signed into the same Dropbox account. This procedure is more flexible than
FTP because the file synchronization service takes care of incomplete uploads and resuming
transfers. The second option uses SOS to make the HSP fully compliant with the MONOCLE
specifications, wrapping each individual sample into a separate observation offering. The client for
this data transfer is still being implemented.

HSP-1

Local WiFI or
ethernet

VNC client

Remote
management

Static IP

VNC client

Floating IP

Remote
Utilities Viewer

https://www.remoteutilities.com/support/docs/viewer/

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 21 of 39

 Remotely Piloted Aircraft Systems

RPAS – Remotely Piloted Aircraft System

Location in system: Sensor platform (multiple sensors) VITO

Purpose

The purpose of data collection with RPAS is to construct maps of waterbodies from which water
quality parameters can be derived. The RPAS systems may also serve as direct reference to satellite
data, with the added advantage of detailing fine spatial features which can explain aberrations in
processed satellite data, where fine features are not directly visible due to a large pixel size. The
raw image data are too large (and not useful) to be disseminated beyond the data processing
centres, where they are archived on suitable storage media (e.g. tape drives). Processed parameter-
specific maps will be disseminated through the MONOCLE data back-end using machine interfaces
(WMS/WCS).

Connectivity

In most cases, RPAS will not be directly connected to the backend. Instead, the operator will
download the raw data to a laptop. Using a desktop application (called “fieldsoftware”), the
operator can select the data, add required metadata and upload thethe data to the processing
service, using provided credentials. The uploaded data will be processed through the MAPEO-
Water workflow into water leaving reflectance and water quality parameters. The end products
become available in a Geoserver and can be accessed and visualised by users in a frontend user
interface or web application through WMS or WCS.

HSP-1

Internet
(HTTP(S))

Dropbox SOS

(Client not yet
implemented)

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 22 of 39

Exposed functionality

Services: Web Map Service and Web Coverage Service

GeoServer is used to provide the WMS and WCS. It has been set up to scaled easily with growing data

volumes and requests. On top of the GeoServer cluster a reverse proxy handles all incoming requests

and will forward each single request to one of all available GeoServer instances. All the GeoServer

instances share a storage volume for all geographical data. There is one master GeoServer, used for

configuration, and several slave GeoServer instances to handle the incoming WMS/WCS requests.

Example usage

The OpenGIS® Web Map Service Interface Standard (WMS) provides a simple HTTP interface for

requesting geo-registered map images from one or more distributed geospatial databases. A WMS

request defines the geographic layer(s) and area of interest to be processed. The request response is

one or more geo-registered map images (returned as JPEG, PNG, etc.) that can be displayed in a

browser application. The interface also supports the ability to specify whether the returned images

should be transparent, so that layers from multiple servers can be combined or not. It is possible to

access the WMS directly by using a simple web browser or desktop tools such as QGIS.

The MONOCLE geoserver (authentication required):

http://dev.mapeo.be/geoserver/MONOCLE/wms?service=WMS&version=1.3.0&request=Getcapabilities

Example request:

(To make this work in the browser, first authenticate to the service using Getcapabilities request)

http://dev.mapeo.be/geoserver/MONOCLE/wms?service=WMS&version=1.3.0&request=Getcapabilities
http://maps.vgt.vito.be/geoserver/MONOCLE/wcs?service=WCS&version=1.3.0&request=Getcapabilities
http://dev.mapeo.be/geoserver/MONOCLE/wms?service=WMS&version=1.3.0&request=Getcapabilities

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 23 of 39

https://dev.mapeo.be/geoserver/MONOCLE/wms?service=WMS&version=1.3.0&request=GetMap&layers=M

ONOCLE:20190703_BalatonRGB-Test-20210218-

224007_F01_RGB_TUR_sub&styles=&bbox=720257.0,5199643.0,720398.0,5199788.0&width=746&height=76

8&srs=EPSG:32633&format=application/openlayers

User manuals:

• WCS User manual

• WMS User manual

 WISPstation / WISP-M

WISPstation / WISP-M: Water Insight Spectrometer station (semi-portable version)

Location in system: sensor platform
Usage: autonomously operating sensor at fixed position or buoy

Water Insight

Purpose

The WISPstation/WISP-M provides a high quality measurement of Rrs at L2 (and constituting
measurements of (2 sets of) Lup, Ld and Ed, at L1). The objective of the measurements within the
context of the MONOCLE project is to provide reference Rrs measurements to compare to other
sensors and drone or satellite images.

Connectivity

The WISPstation transmits data automatically to WISPcloud where the data can be retrieved from
the API. WISPcloud is a PostgreSQL database hosted in Google Cloud. The instrument buffers
locally using a SQLite database. A further interface is available to push WISPcloud data to a SOS
backend. Log files for monitoring battery status, internal temperature and humidity, power
consumption etc. are transmitted separately to monitor the instrument status.

Exposed functionality

There are a number of interfaces to communicate with the WISPstation:

• Local WiFi or LAN is used in the lab to configure the instrument and can be used upon
request in the field to connect, download data and e.g. change the measurement
schedule. Normally this functionality is turned off before installation to save power but

WISPstation

WiFi or LAN

System
configuration

Local data
download

Bluetooth

Solar charger
monitoring app

SSH over 3G/4G

Gitlab (system
updates)

Reverse SSH
tunnel for

remote control

Water Insight
server

PostgreSQL
WISPcloud &

API

SOS

MONOCLE
backend

System
monitoring

Front-ends

Lizard GIS Dashboard

https://dev.mapeo.be/geoserver/MONOCLE/wms?service=WMS&version=1.3.0&request=GetMap&layers=MONOCLE:20190703_BalatonRGB-Test-20210218-224007_F01_RGB_TUR_sub&styles=&bbox=720257.0,5199643.0,720398.0,5199788.0&width=746&height=768&srs=EPSG:32633&format=application/openlayers
https://dev.mapeo.be/geoserver/MONOCLE/wms?service=WMS&version=1.3.0&request=GetMap&layers=MONOCLE:20190703_BalatonRGB-Test-20210218-224007_F01_RGB_TUR_sub&styles=&bbox=720257.0,5199643.0,720398.0,5199788.0&width=746&height=768&srs=EPSG:32633&format=application/openlayers
https://dev.mapeo.be/geoserver/MONOCLE/wms?service=WMS&version=1.3.0&request=GetMap&layers=MONOCLE:20190703_BalatonRGB-Test-20210218-224007_F01_RGB_TUR_sub&styles=&bbox=720257.0,5199643.0,720398.0,5199788.0&width=746&height=768&srs=EPSG:32633&format=application/openlayers
https://dev.mapeo.be/geoserver/MONOCLE/wms?service=WMS&version=1.3.0&request=GetMap&layers=MONOCLE:20190703_BalatonRGB-Test-20210218-224007_F01_RGB_TUR_sub&styles=&bbox=720257.0,5199643.0,720398.0,5199788.0&width=746&height=768&srs=EPSG:32633&format=application/openlayers
https://docs.geoserver.org/stable/en/user/services/wcs/reference.html
https://docs.geoserver.org/stable/en/user/services/wms/reference.html
https://wispcloud.waterinsight.nl/api/query?SERVICE=data&VERSION=1.0

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 24 of 39

can be turned on again for short periods in ‘Maintenance mode’ when a reverse tunnel is
open.

• Bluetooth and the VictronConnect-app can be used on-site to connect to the power
manager to see the status of the battery and solar panel and monitor the charging cycle.

• SSH (over 3g/4g) is used by WI to collect the data and ancillary information into a

PostgreSQL server. Upon turning on a “maintenance mode” flag on the server by Water

Insight, the instrument will, after reading the flag in its next cycle, open a reverse SSH

tunnel over its LTE modem that will stay open for a limited amount of time to enable

remote configuration of e.g. the measurement schedule. During a maintenance mode

cycle the instrument can be (if necessary) updated by cloning updates from a private GIT

repository. After each measurement cycle the instrument pushes the data over the LTE

modem to the WISPcloud database and receives a confirmation. If there is no

connectivity, or the transfer is incomplete, the instrument saves the data package in a

local SQLite database. In the next cycle a new attempt will be made. If, by the end of the

day there are still unsent packages, they are stored permanently on the instrument. Any

successfully received data package is deleted from the instrument to save space.

• WISPcloud and a dedicated API provide access to calibrated observations. The API
manual can be retrieved by pointing a browser to the following URL:
https://wispcloud.waterinsight.nl/api/query?SERVICE=Data&VERSION=1.0&REQUEST=Get

Documentation

using user=demo and passwd=demo as credentials.
Additionally, instructions how to use the API are available at:
https://gitlab.com/waterinsight-public/wispcloud-api-tutorial

• A dashboard shows the status of instruments every 15 minutes by querying the API. The
dashboard can be ported to clients on request.

• WISPcloud data are further transmitted to the MONOCLE SOS server by (in-house)

middleware. Functionality has been designed and implemented to set up a secure

connection to first register a sensor and secondly to retrieve a dataset from the

WISPcloud API, reformat the data into OGC compliant XML format which is subsequently

pushed to the SOS server.

Example usage

The WISPstation will be installed at a fixed location or a stable buoy. There will be intensive contact

between Water Insight and the user prior to the installation to select the optimal measurement site

and to define the installation parameters. The site parameters will be included in the instrument

configuration file which resides in WISPcloud and on the instrument. If necessary and feasible Water

Insight personnel can help to perform the installation on site. There is a detailed manual describing all

the steps of the physical installation process. It is sent together with the instrument and all required

tools and parts.

The operator is requested to open the lid covering the connections panel a day before the actual

installation and turn the instrument on with the ignition key. From that moment, the instrument is

https://wispcloud.waterinsight.nl/api/query?SERVICE=Data&VERSION=1.0&REQUEST=GetDocumentation
https://wispcloud.waterinsight.nl/api/query?SERVICE=Data&VERSION=1.0&REQUEST=GetDocumentation
https://gitlab.com/waterinsight-public/wispcloud-api-tutorial

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 25 of 39

sending data and log files over an LTE modem to the cloud database (WISPcloud) and the performance

of the instrument can be monitored in terms of internal humidity, temperature and power

consumption and the (ir)radiance measurements. While the instrument can connect over LAN and

WLAN in the laboratory, these connections are normally shut down for field operation because of

power consumption considerations. After each completed measurement the WISPstation sends the

data to the cloud database and, after receiving confirmation, the data is deleted from the system.

When there is no confirmation (or no connection at all) the data is stored on the system until the next

cycle, to make a new attempt. Data that were not successfully send during one day are permanently

stored on the system. Just before installation, the user removes the caps that cover the (ir)radiance

sensors.

Before, during and after the installation the operator can consult the VictronConnect-app to monitor

the power flow from the solar panel to the instrument and the battery load status. Thus, it can be

checked if the connection to the solar panel is properly done and working.

After the installation, the orientation of the instrument should be accurately measured since the

observation azimuths should be precisely known. In principle, the side that carries the radiance

sensors should be facing North on the Northern hemisphere. This will ensure that the instrument

observes in the NNE and NNW directions and a choice can be made which orientation results in the

least sun glint. Any deviation from this optimal orientation will be included in the configuration file. If

a user changes the orientation, this will have to be reported to Water Insight. In concert with the user

the sampling times and intervals can be set in the instrument’s crontab. During the period of operation

Water insight can change sampling times, frequency and perform software maintenance by SSH over

a secure reverse tunnel. A dashboard at Water Insight allows to monitor the main performance

parameters of an operational WISPstation. WISPcloud handles the processing of raw observations

(counts) to calibrated remote sensing reflectance and some standard water quality parameters based

on published robust water quality algorithms (mostly suitable for case 2 waters). The user can, at all

times, connect to the output API and collect reflectance spectra and WQ parameters. Users can also

collect the data at L1, constituting of calibrated (ir)radiances per single measurement (normally sets

of 10 are measured per channel per cycle). The API can be queried per instrument, area and time

window. Login credentials are supplied to each new user.

Support is available through support@waterinsight.nl.

mailto:support@waterinsight.nl

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 26 of 39

 System developer guide
This chapter provides additional technical detail on selected system components to help system

developers to configure a data environment, or individual components similar to the MONOCLE data

ecosystem. This information is provided without guarantee and is not updated to reflect software

updates. We advise its use only by experienced developers on non-critical systems.

 SOS server

SOS

Location in system: Backend PML

Requirements

• Tomcat server installed
o version 6 or higher (But not version v8.0.8, 7.0.54, or 6.0.41)
o with Java 8.0 or higher but not 9

• PostgreSQL Server installed
o version 9 or higher
o PostGIS 2.0 or higher

Installation

1. Locate the WAR file
o Download the desired SOS release: https://github.com/52North/SOS/releases
o Unzip the bundle
o The WAR file we need are found in ~/bin/target

2. Create the database
o Create a new PostgreSQL database using the PostGIS template created during the PostGIS

installation.
o Verify that PostGIS is installed and functioning:

SELECT PostGIS_full_version();
o Create a user, or allow access to the new database for an existing user

3. Install the WAR file
o Either upload through the tomcat manager: ~/manager/html

or copy the WAR file to the appropriate webapps directory
4. Configure your SOS instance

o Go to the service page (by default /52n-sos-webapp/)
o Configure the webapp to point to the PostgreSQL database
o Change the password for the admin user
o Restrict Transactional Security to be local IPs only

(Admin > Setttings > Transactional Security)
o tick the box at the bottom of the Transaction Security page marked Delete observation or

procedure physically
o Configure any remaining parameters, as per the documentation below

Documentation

• SOS Standard Documentation

• SOS Server Documentation

• Examples: see /<install-path/client in your installation

https://github.com/52North/SOS/releases
https://www.ogc.org/standards/sos
https://wiki.52north.org/SensorWeb/SensorObservationServiceV

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 27 of 39

 SOS Proxy

SOS

Location in system: Backend PML

Requirements

• Docker server
o version 19 or higher

• Postgres Database
o Version 9 or higher

Installation

1. Download source
https://github.com/pml-snee/MONOCLE-SOS-proxy

2. Build docker
docker build . --tag sos-proxy

3. Upload docker to docker server
4. Start service

docker run -d -p 80:8080 --name sos-proxy-container sos-proxy

Configuration

• SOS

The direct SOS URL should be defined in the sos_service variable in the
~/auth_token_gen_app/app.js file

• Postgres

Your Postgres details should be added into the file ~/auth_token_gen_app/db/index.js
in the Pool object parameters

Create users in your database with
INSERT INTO users (username, password) VALUES ('YOUR_USERNAME',
'YOUR_PASSWORD');

Integration Examples

Authenticate with the server
http://yourserver:yourport/api/get_token/YOUR_SENSOR_NAME/YOUR_USER_NAME/YOUR_P
ASSWORD

Send your SOS xml through the passthrough endpoint with the token from the
previous step
http://yourserver:yourport/api/sos_proxy/YOUR_TOKEN/xml/submit

Documentation

Github
https://github.com/pml-snee/MONOCLE-SOS-proxy/blob/main/README.md

 KdUINO: KdUSTICK and KdUMOD

KdUSTICK

Location in system: Sensor CSIC

Requirements

Required hardware:

- LoPy4 MicroPython Dev. Board (Espressif Esp32 Chipset)
- Pytrack sensor shield (accelerometer, GPS)
- LoRa & Sigfox Antenna

https://github.com/pml-snee/MONOCLE-SOS-proxy/blob/main/auth_token_gen_app/app.js
https://github.com/pml-snee/MONOCLE-SOS-proxy/blob/main/auth_token_gen_app/db/index.js

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 28 of 39

- MicroSD card
- TCS34725 light sensors
- LiPo Battery

Software environment:

- Visual Studio Code with PyMakr Extension to upload code

Installation

Sources:
- https://git.csic.es/KdUINO/kdustick

List firmware versions:

- Pycom Firmware v1.20.2.r1

Integration Examples

Data analysis code: https://git.csic.es/36579996Z/KdUINO-data-analysis

Documentation

- https://git.csic.es/KdUINO/kdustick

KdUMOD

Location in system: Sensor (multiple sensors) CSIC

Requirements

Required hardware:
For each independent light sensor module:

- Esp8266 Dev. Board (Adafruit) + RTC and SD module
- MicroSD card
- AS7262 multispectral light sensors
- Temperature sensor

For the surface buoy transmitting data:
- LoPy4 MicroPython Dev. Board (Espressif Esp32 Chipset)
- Pytrack sensor shield (accelerometer, GPS)
- LoRa & Sigfox Antenna
- MicroSD card
- TCS34725 light sensors
- LiPo Battery

Software environment:
- Visual Studio Code with PyMakr Extension to upload code

Installation

Sources:
- https://git.csic.es/KdUINO/kdumod

Firmware versions:

- Pycom Firmware v1.20.2.r1
- MicroPython 1.13

Integration Examples

https://git.csic.es/36579996Z/kduino-data-analysis
https://git.csic.es/kduino/kdumod

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 29 of 39

Data analysis code: https://git.csic.es/36579996Z/KdUINO-data-analysis

Documentation

https://git.csic.es/KdUINO/kdumod

 iSPEX

iSPEX/Spectacle backend

Location in system
Middleware/Backend

DDQ

Requirements

Hardware

• Smartphone with optional iSPEX add on.

Software

• Parse server

The parse server can be deployed using docker or stand-alone on a linux system. In the present
system we used Ubuntu 11 for development and hosting.

Installation

Backend:
The installation (Parse server instance) javascript file is downloadable from:
https://github.com/monocle-h2020/ispex_snippets/blob/master/spectacle_dev.js

The apps will generate the ‘table/document’ structure in the MongoDB server (part of the default
Parse configuration) if no previous data exist.

Spectacle data collection app for smartphone:
IOS app
Android app

Configuration

The parse server is set up following the manual on their website (parseserver.org). For creating
listeners/instances use the provided javascript (see installation above). For starting these services
up on system boot we use the pm2 javascript process manager, but this is not a requirement.

For Push Notifications on Android we use firebase cloud messaging (which is required).
https://firebase.google.com/docs/cloud-messaging

For Push Notifications on iOS/Apple we use the parse push notification service, this is configured
in the parse spectacle_dev.js startup file.

Integration Examples

The apps are connected via their respective software libraries (Parse_ios and Parse_android).

For example:
 Parse.setLogLevel(Parse.LOG_LEVEL_DEBUG);

 // initialize parse with strings from strings.xml

https://git.csic.es/36579996Z/kduino-data-analysis
https://git.csic.es/kduino/kdumod
https://github.com/monocle-h2020/ispex_snippets/blob/master/spectacle_dev.js
https://github.com/monocle-h2020/spectacle_android
https://firebase.google.com/docs/cloud-messaging

Project MONOCLE H2020 (grant 776480) Start / Duration 1 February 2018/ 48 Months

Dissemination PUBLIC Nature REPORT

Date 08 Mar 2021 Version 1.1

 Page 30 of 39

 Parse.initialize(new Parse.Configuration.Builder(this)

 .applicationId(getString(R.string.app_id))

 // if defined

 .clientKey(getString(R.string.client_key))

 .server(getString(R.string.server_url))

 .build()

);

Documentation

The apps are documented in-line (see the MONOCLE GitHub)
https://zenodo.org/record/3967124#.X0-NQi2w1QJ#

 Exploitation and Dissemination
This guide may be re-used freely for non-commercial purposes to inform future development and

usage of sensor to backend and user interfaces, while acknowledging the source document. The

MONOCLE data ecosystem will continue to be further developed as testing is ramped up to include

multiple live sensors and users.

 Future activities/recommendations
The information contained herein is expected to become obsolete over time, as new software versions

and solutions are made available. For demonstration purposes at the limited scale of the MONOCLE

network, the network will not be grown into a fully scaled (e.g. cloud-based) solution. However, if the

popularity of the network described here were to increase, this should be considered as a useful

follow-on, saving individual sensor developers time in setting up dynamic data flows.

 References
Heard J, Simis S, Ceccaroni L, & Clymans W. (2018, November). Water Quality Survey of the

Multiscale Observation Networks for Optical monitoring of Coastal waters, Lakes and Estuaries

(MONOCLE) project. Zenodo. http://doi.org/10.5281/zenodo.1625594

 Appendix

 SOS example xml templates (for So-Rad)

The following templates provide an example of using the SOS backend for storing radiometric data

and data about the sensor platform. This example of a ‘complex’ data offering can be used to derive

templates for other sensors. Note that this template does not cover all metadata requirements listed

in this guide and is solely intended to guide developers on the inclusion of multiple data types in a SOS

result. The following sections describe, respectively, the template XML documents for the procedures

to (1) Insert a new sensor instance into the SOS backend, (2) insert a result template into the SOS

backend for that sensor, and (3) to insert a single result.

https://zenodo.org/record/3967124%23.X0-NQi2w1QJ%23
http://doi.org/10.5281/zenodo.1625594

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 31 of 39

10.1.1 InsertSensor procedure template
<?xml version="1.0" encoding="UTF-8"?>
<swes:InsertSensor
 xmlns:swes="http://www.opengis.net/swes/2.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:sml="http://www.opengis.net/sensorml/2.0"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:gco="http://www.isotc211.org/2005/gco"
 xmlns:gmd="http://www.isotc211.org/2005/gmd" service="SOS" version="2.0.0" xsi:schemaLocation="http://www.opengis.net/sos/2.0
http://schemas.opengis.net/sos/2.0/sosInsertSensor.xsd http://www.opengis.net/swes/2.0 http://schemas.opengis.net/swes/2.0/swes.xsd">
 <swes:procedureDescriptionFormat>http://www.opengis.net/sensorml/2.0</swes:procedureDescriptionFormat>
 <swes:procedureDescription>
 <sml:PhysicalSystem gml:id="sensor10">
 <!--Unique identifier -->
 <gml:identifier codeSpace="uniqueID">urn:sos:h2020:monocle:pml:procedure:example:1</gml:identifier>
 <sml:identification>
 <sml:IdentifierList>
 <sml:identifier>
 <sml:Term definition="urn:ogc:def:identifier:OGC:1.0:longName">
 <sml:label>longName</sml:label>
 <sml:value>So-rad</sml:value>
 </sml:Term>
 </sml:identifier>
 <sml:identifier>
 <sml:Term definition="urn:ogc:def:identifier:OGC:1.0:shortName">
 <sml:label>shortName</sml:label>
 <sml:value>So-rad</sml:value>
 </sml:Term>
 </sml:identifier>
 </sml:IdentifierList>
 </sml:identification>
 <sml:capabilities name="offerings">
 <sml:CapabilityList>
 <!-- Special capabilities used to specify offerings. -->
 <!-- Parsed and removed during InsertSensor/UpdateSensorDescription, added during DescribeSensor. -->
 <!-- Offering is generated if not specified. -->
 <sml:capability name="offeringID">
 <swe:Text definition="urn:ogc:def:identifier:OGC:offeringID">
 <swe:label>So-rad Instruments</swe:label>
 <swe:value>urn:sos:h2020:monocle:pml:so-rad:offering:1</swe:value>
 </swe:Text>
 </sml:capability>
 </sml:CapabilityList>
 </sml:capabilities>

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 32 of 39

 <sml:capabilities name="metadata">
 <sml:CapabilityList>
 <!-- status indicates, whether sensor is insitu (true)
 or remote (false) -->
 <sml:capability name="insitu">
 <swe:Boolean definition="insitu">
 <swe:value>false</swe:value>
 </swe:Boolean>
 </sml:capability>
 <!-- status indicates, whether sensor is mobile (true)
 or fixed/stationary (false) -->
 <sml:capability name="mobile">
 <swe:Boolean definition="mobile">
 <swe:value>true</swe:value>
 </swe:Boolean>
 </sml:capability>
 </sml:CapabilityList>
 </sml:capabilities>
 <sml:featuresOfInterest>
 <sml:FeatureList definition="http://www.opengis.net/def/featureOfInterest/identifier">
 <swe:label>featuresOfInterest</swe:label>
 <sml:feature xlink:href="urn:sos:h2020:monocle:pml:feature-of-interest:so-rad:example:1"/>
 </sml:FeatureList>
 </sml:featuresOfInterest>
 <sml:inputs>
 <sml:InputList>
 <sml:input name="test_observable_property_10">
 <sml:ObservableProperty definition="urn:sos:h2020:monocle:pml:observable-property:example:1"/>
 </sml:input>
 </sml:InputList>
 </sml:inputs>
 <sml:outputs>
 <sml:OutputList>
 <sml:output name="test_observable_property_10_1">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:example:1:1">
 <swe:uom code="NOT_DEFINED"/>
 </swe:Quantity>
 </sml:output>
 <sml:output name="h2020_monocle_pml_so-rad_measurements">
 <swe:DataRecord>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_pc_time">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:pc_time"></swe:Text>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_gps_time">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:gps_time"></swe:Text>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_gps_fix">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:gps_fix">

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 33 of 39

 <swe:uom code="h2020_monocle_pml_so-rad_gps-fix-units"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_gps_speed">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:gps_speed">
 <swe:uom code="h2020_monocle_pml_so-rad_speed-units"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_platform_bearing">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:platform_bearing">
 <swe:uom code="h2020_monocle_pml_so-rad_platform-bearing-units"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_sun_azimuth">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:sun_azimuth">
 <swe:uom code="h2020_monocle_pml_so-rad_sun-azimuth-units"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_sun_elevation">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:sun_elevation">
 <swe:uom code="h2020_monocle_pml_so-rad_sun-elevation-units"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_motor_temp">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:motor_temp">
 <swe:uom code="h2020_monocle_pml_so-rad_motor-temp-units"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_driver_temp">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:driver_temp">
<swe:uom code="h2020_monocle_pml_so-rad_driver-temp-units"/>
 </swe:Quantity>
</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_pi_cpu_temp">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:pi-cpu-temp">
 <swe:uom code="h2020_monocle_pml_so-rad_pi-cpu-temp-units"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_tilt_avg">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:tilt_avg">
 <swe:uom code="h2020_monocle_pml_so-rad_tilt_avg-units"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_tilt_std">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:tilt-std">
 <swe:uom code="h2020_monocle_pml_so-rad_tilt-std"/>
 </swe:Quantity>
 </swe:field>

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 34 of 39

<swe:field name="h2020_monocle_pml_so-rad_measurements_bearing_accuracy">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:bearing_accuracy">
 <swe:uom code="h2020_monocle_pml_so-rad_bearing_accuracy"/>
 </swe:Quantity>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_sorad_version">

 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:sorad-version">
 </swe:Text>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_batt_v">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:batt-v">
 <swe:uom code="h2020_monocle_pml_so-rad_batt_v"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_inside_temp">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:inside-temp">
 <swe:uom code="h2020_monocle_pml_so-rad_inside-temp"/>
 </swe:Quantity>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_inside_rel_hum">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:inside_rel_hum">
 <swe:uom code="h2020_monocle_pml_so-rad_inside_rel_hum"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_n_rad_obs">
 <swe:Count definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:n-rad-obs"></swe:Count>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_sensor_id">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:sensor_id"/>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_inttime">
 <swe:Count definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:int-time"></swe:Count>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_measurement_hash_1">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:measurement_hash_1"></swe:Text>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_measurement_hash_2">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:measurement_hash_2"></swe:Text>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_measurement_hash_3">

 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:measurement_hash_3"></swe:Text>
 </swe:field>
 <swe:field name="test_observable_property_example_boolean">
 <swe:Boolean definition="urn:sos:h2020:monocle:pml:observable-property:example:boolean"></swe:Boolean>
 </swe:field>
 </swe:DataRecord>
 </sml:output>
 </sml:OutputList>

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 35 of 39

 </sml:outputs>
 <sml:parameters>
 <sml:ParameterList>
 <sml:parameter name="settings">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:parameter:example:1" updatable="false">
 <swe:label>Test parmeter</swe:label>
 <swe:uom code="test"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>0.01 10.0</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </sml:parameter>
 </sml:ParameterList>
 </sml:parameters>
 </sml:PhysicalSystem>
 </swes:procedureDescription>
 <swes:observableProperty>monocle-observable-property-pml-test-10-1</swes:observableProperty>
 <swes:observableProperty>monocle-observable-property-pml-test-10-8</swes:observableProperty>
 <swes:metadata>
 <sos:SosInsertionMetadata>
 <sos:observationType>http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_Measurement</sos:observationType>
 <sos:observationType>http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_ComplexObservation</sos:observationType>
 <sos:observationType>http://inspire.ec.europa.eu/featureconcept/TrajectoryObservation</sos:observationType>
 <!-- multiple values possible -->
 <sos:featureOfInterestType>http://www.opengis.net/def/samplingFeatureType/OGC-OM/2.0/SF_SamplingPoint</sos:featureOfInterestType>
 <sos:featureOfInterestType>http://www.opengis.net/def/samplingFeatureType/OGC-OM/2.0/SF_SamplingCurve</sos:featureOfInterestType>
 </sos:SosInsertionMetadata>
 </swes:metadata>
</swes:InsertSensor>

10.1.2 InsertResult procedure template
<?xml version="1.0" encoding="UTF-8"?>
<sos:InsertResultTemplate
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:swes="http://www.opengis.net/swes/2.0"
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:swe="http://www.opengis.net/swe/2.0"
 xmlns:sml="http://www.opengis.net/sensorML/1.0.1"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:om="http://www.opengis.net/om/2.0"
 xmlns:sams="http://www.opengis.net/samplingSpatial/2.0"
 xmlns:sf="http://www.opengis.net/sampling/2.0"

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 36 of 39

 xmlns:xs="http://www.w3.org/2001/XMLSchema" service="SOS" version="2.0.0" xsi:schemaLocation="http://www.opengis.net/sos/2.0
http://schemas.opengis.net/sos/2.0/sosInsertResultTemplate.xsd http://www.opengis.net/om/2.0 http://schemas.opengis.net/om/2.0/observation.xsd
http://www.opengis.net/samplingSpatial/2.0 http://schemas.opengis.net/samplingSpatial/2.0/spatialSamplingFeature.xsd">
 <sos:proposedTemplate>
 <sos:ResultTemplate>
 <swes:identifier>urn:sos:h2020:monocle:pml:so-rad:template:1</swes:identifier>
 <sos:offering>urn:sos:h2020:monocle:pml:so-rad:offering:1</sos:offering>
 <sos:observationTemplate>
 <om:OM_Observation gml:id="sensor2obsTemplate">
 <om:type xlink:href="http://www.opengis.net/def/observationType/OGC-OM/2.0/OM_ComplexObservation"/>
 <om:phenomenonTime nilReason="template"/>
 <om:resultTime nilReason="template"/>
 <om:procedure xlink:href="urn:sos:h2020:monocle:pml:procedure:example:1"/>
 <om:observedProperty xlink:href="monocle-observable-property-pml-test-10-8"/>
 <om:featureOfInterest xlink:href="urn:sos:h2020:monocle:pml:feature-of-interest:so-rad:example:1" xlink:title="So_rad_feature"/>
 <om:result/>
 </om:OM_Observation>
 </sos:observationTemplate>
 <sos:resultStructure>
 <swe:DataRecord>
 <swe:field name="phenomenonTime">
 <swe:Time definition="http://www.opengis.net/def/property/OGC/0/PhenomenonTime">
 <swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
 </swe:Time>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements">
 <swe:DataRecord definition="monocle-observable-property-pml-test-10-8">

<swe:field name="h2020_monocle_pml_so-rad_measurements_pc_time">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:pc_time"></swe:Text>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_gps_time">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:gps_time"></swe:Text>
</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_gps_fix">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:gps_fix">

 <swe:uom code="h2020_monocle_pml_so-rad_gps-fix-units"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_gps_speed">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:gps_speed">
 <swe:uom code="h2020_monocle_pml_so-rad_speed-units"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_platform_bearing">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:platform_bearing">
 <swe:uom code="h2020_monocle_pml_so-rad_platform-bearing-units"/>
 </swe:Quantity>
 </swe:field>

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 37 of 39

<swe:field name="h2020_monocle_pml_so-rad_measurements_sun_azimuth">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:sun_azimuth">
 <swe:uom code="h2020_monocle_pml_so-rad_sun-azimuth-units"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_sun_elevation">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:sun_elevation">
 <swe:uom code="h2020_monocle_pml_so-rad_sun-elevation-units"/>
 </swe:Quantity>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_motor_temp">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:motor_temp">
 <swe:uom code="h2020_monocle_pml_so-rad_motor-temp-units"/>
 </swe:Quantity>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_driver_temp">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:driver_temp">
 <swe:uom code="h2020_monocle_pml_so-rad_driver-temp-units"/>
 </swe:Quantity>
</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_pi_cpu_temp">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:pi-cpu-temp">
 <swe:uom code="h2020_monocle_pml_so-rad_pi-cpu-temp-units"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_tilt_avg">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:tilt_avg">
 <swe:uom code="h2020_monocle_pml_so-rad_tilt_avg-units"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_tilt_std">
 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:tilt-std">
 <swe:uom code="h2020_monocle_pml_so-rad_tilt-std"/>
 </swe:Quantity>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_bearing_accuracy">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:bearing_accuracy">
 <swe:uom code="h2020_monocle_pml_so-rad_bearing_accuracy"/>
 </swe:Quantity>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_sorad_version">

 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:sorad-version">
 </swe:Text>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_batt_v">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:batt-v">
 <swe:uom code="h2020_monocle_pml_so-rad_batt_v"/>
 </swe:Quantity>

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 38 of 39

 </swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_inside_temp">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:inside-temp">
 <swe:uom code="h2020_monocle_pml_so-rad_inside-temp"/>
 </swe:Quantity>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_inside_rel_hum">

 <swe:Quantity definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:inside_rel_hum">
 <swe:uom code="h2020_monocle_pml_so-rad_inside_rel_hum"/>
 </swe:Quantity>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_n_rad_obs">
 <swe:Count definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:n-rad-obs"></swe:Count>
 </swe:field>
 <swe:field name="h2020_monocle_pml_so-rad_measurements_sensor_id">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:sensor_id"/>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_inttime">
 <swe:Count definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:int-time"></swe:Count>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_measurement_hash_1">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:measurement_hash_1"></swe:Text>
 </swe:field>

<swe:field name="h2020_monocle_pml_so-rad_measurements_measurement_hash_2">
 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:measurement_hash_2"></swe:Text>

</swe:field>
<swe:field name="h2020_monocle_pml_so-rad_measurements_measurement_hash_3">

 <swe:Text definition="urn:sos:h2020:monocle:pml:observable-property:so-rad:measurements:measurement_hash_3"></swe:Text>
 </swe:field>
 <swe:field name="test_observable_property_example_boolean">
 <swe:Boolean definition="urn:sos:h2020:monocle:pml:observable-property:example:boolean"/>
 </swe:field>
 </swe:DataRecord>
 </swe:field>
 <swe:field name="samplingGeometry">
 <swe:Vector definition=http://www.opengis.net/def/param-name/OGC-OM/2.0/samplingGeometry
referenceFrame="http://www.opengis.net/def/crs/EPSG/0/4326">
 <swe:coordinate name="latitude">
 <swe:Quantity definition="latitude" axisID="lat">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="longitude">
 <swe:Quantity definition="longitude" axisID="lon">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>

http://www.opengis.net/def/param-name/OGC-OM/2.0/samplingGeometry

Project MONOCLE H2020 (grant 776480) Date 08 Mar 2021

 Page 39 of 39

 </swe:field>
 </swe:DataRecord>
 </sos:resultStructure>
 <sos:resultEncoding>
 <swe:TextEncoding tokenSeparator="#" blockSeparator="@"/>
 </sos:resultEncoding>
 </sos:ResultTemplate>
 </sos:proposedTemplate>
</sos:InsertResultTemplate>

10.1.3 InsertResult procedure template

<?xml version="1.0" encoding="UTF-8"?>
<sos:InsertResult
 xmlns:sos="http://www.opengis.net/sos/2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" service="SOS" version="2.0.0" xsi:schemaLocation="http://www.opengis.net/sos/2.0
http://schemas.opengis.net/sos/2.0/sos.xsd">
 <sos:template>urn:sos:h2020:monocle:pml:so-rad:template:1</sos:template>
 <sos:resultValues>2@2019-12-19T13:20:30+02:00#datetime1#datetime2#12.4#159.15#45.5#10#1.1#2.1#3.1#4.1#34#3#78#0.6#12#11.4#43#42#sensor id we should not
see#1576754430#put your#measurement values#here#true#27.992421#-15.362673@2019-12-
19T13:20:33+02:00#datetime3#datetime4#12.5#159.15#45.6#20#1.1#2.1#3.1#4.1#34.1#3.1#78#0.6#12#11.4#43#42#sensor id we should see#1576754430#put your#measurement
values#here#true#27.992421#-15.362673@</sos:resultValues>
</sos:InsertResult>

