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Abstract In this work we propose a new Bayesian model
for unsupervised image segmentation based on a combina-
tion of the Spatially Varying Finite Mixture Models (SVFMMs)
and the Non Local Means (NLM) framework. The proba-
bilistic NLM weighting function is successfully integrated
into a gauss-markov random field, yielding a prior density
that adaptively imposes a local regularization to simultane-
ously preserve edges and enforce smooth constraints in ho-
mogeneous regions of the image. Two versions of our model
are proposed: a pixel-based model and a patch-based model,
depending on the design of the probabilistic NLM weighting
function. Contrary to previous methods proposed in the liter-
ature, our approximation does not introduce new parameters
to be estimated into the model, because the NLM weight-
ing function is completely known once the neighborhood
of a pixel is fixed. The proposed model can be estimated
in closed-form solution via a Maximum A Posteriori (MAP)

Javier Juan-Albarracı́n
Biomedical Data Science Lab (BDSLab), Instituto Universitario de
Tecnologı́as de la Información y Comunicaciones (ITACA), Univer-
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estimation in an expectation-maximization scheme. We have
compared our model with previously proposed SVFMMs
using two public datasets: the Berkeley Segmentation dataset
and the BRATS 2013 dataset. The proposed model performs
favorably to previous approaches in the literature, achieving
better results in terms of Rand Index and Dice metrics in our
experiments.
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1 Introduction

Image segmentation is one of the most important core prob-
lems in computer vision, with an extended research history.
Unsupervised learning has historically played a key role in
the image segmentation task, constituting one of the first
paradigms to automatically identify objects and structures in
an image (Zhang et al., 2008). Specifically, clustering gath-
ered most of the efforts in unsupervised image segmenta-
tion research. Clustering is the task of finding natural groups
of data within a population, sharing a similar set of fea-
tures (Rokach and Maimon, 2005). Many clustering tech-
niques have been proposed in the literature during the past
decades (Saxena et al., 2017), ranging from distance based
techniques such as partitional clustering or hierarchical clus-
tering; density-based techniques such as DBSCAN (Ester
et al., 1996) or Mean Shift (Cheng, 1995); graph based al-
gorithms such as graph-cuts (Boykov et al., 2001); or prob-
abilistic models such as Finite Mixture Models (FMMs)(Pal
and Pal, 1993).

Specifically, probabilistic models intend to learn the prob-
ability density function (pdf) of an image by means of fitting
a multi-parametric statistical model to the data. In particu-
lar, FMMs fit of a weighted sum of statistical distributions,
each one representing a component of the image, to capture



2 Javier Juan-Albarracı́n et al.

the heterogeneity nature of the image information. Gaussian
Mixture Models (GMMs) are the most extended FMMs, be-
ing widely employed for image segmentation, as they have
proven to successfully capture the complexity of an image
(Juan-Albarracı́n et al., 2015). Moreover, GMMs can be ef-
ficiently estimated by means of maximum likelihood esti-
mation via the Expectation Maximization (EM) algorithm
(Dempster et al., 1977).

However, images are structured arrangements of data in
which, in addition to the pixel intensities, the location of
the pixels provides important information to properly un-
derstand its content. Images show patterns of local regular-
ity and spatial redundancy that enclose the idea that adjacent
pixels tends to belong to the same component. Conventional
FMMs, by the opposite, do not inherently take into account
this information. FMMs make a heavy assumption that data
in an image is independent and identically distributed (i.i.d.),
ignoring local information that may be useful to generate
more accurate and realistic results.

To overcome this limitation, several solutions have been
proposed in the literature (Blake and Rother, 2011). Most
of them rely on the inclusion of a Markov Random Field
(MRF) to model the local dependencies between pixels in
an image. Specifically, a variant to the FMM called SVFMM
was proposed in (Sanjay-Gopal and Hebert, 1998), which re-
places the classics mixing coefficients of the FMM by con-
textual mixing coefficients for each pixel of the image. This
approximation allows to introduce a MRF over these contex-
tual mixing coefficients to incorporate the idea that neigh-
boring pixels tends to share the same component.

Many variants of MRFs have been proposed in the lit-
erature to capture the local information contained in an im-
age. In (Nikou et al., 2007) a family of Gauss-Markov Ran-
dom Fields (GMRFs) was proposed, successfully produc-
ing better results than the classic FMMs. However, such ap-
proximation introduces a local isotropic smoothing over the
contextual mixing coefficients, that ignores the presence of
edges in the image. Therefore, the contextual mixing coef-
ficients estimated under the GMRF approximation are iter-
atively smoothed, yielding prior probability maps that lose
the information of image edges. Sfikas et al (Sfikas et al.,
2008) proposed a t-Student MRF that allowed to regulate
the smoothing between pixels in an edge. However, this ap-
proximation introduces new parameters to be estimated in
the model, yielding a non closed-form analytic solution for
it.

In this work, we present a fully Bayesian SVFMM model,
called Non-Local Spatially Varying Finite Mixture Model
(NLSVFMM), that combines the SVFMM framework with
the NLM filtering schema. Our proposed model has 2 vari-
ants: the pixel-wise version (NLv-SVFMM) and the patch-
wise version (NLp-SVFMM). The model introduces a GMRF
weighted by the probabilistic NLM function proposed in

(Wu et al., 2013) to regulate the smoothing depending on the
structure of the image. Such approximation avoids the intro-
duction of new parameters, reducing the degrees of freedom
of the model and the number of samples required for a re-
liable estimation of the parameters. Results obtained show
that our method performs favorably to other SVFMM ap-
proaches in terms of Rand Index (RI) and Dice metrics.

2 Background on Spatially Variant Finite Mixture
Models

The SVFMM is a modification of the classic FMM, mainly
oriented to image data, in which the coefficients of the mix-
ture are extended for each pixel of the image.

Let X =
(
x1, . . . ,xN

)
a set of observations corresponding

to the pixels of an image, where xi ∈ RD and represents a
vector of D features for the ith pixel. The SVFMM is defined
as:

p(X |Θ) =
N

∏
i=1

K

∑
j=1

π
i
jφ
(
xi|θ j

)
where φ

(
xi|θ j

)
is a pdf used to model the data, Π =

{
π1, . . . ,πN

}
are called the contextual mixing coefficients, with

∀π i, 0≤ π
i
j ≤ 1,

K

∑
j=1

π
i
j = 1

and Θ =
{

θ1, . . . ,θK ,π
1, . . . ,πN

}
is the set of parameters of

the model.
A Maximum A Posteriori (MAP) estimate of Θ is em-

ployed to impose a proper prior over Π to introduce the idea
that neighboring pixels in an image tend to belong to the
same component.

Θ̂MAP = argmax
Θ

log p(X |Θ)+ log p(Π)

Several variants of p(Π) has been previously proposed
in the literature. Specifically, the directional class-adaptive
GMRF, which we have used as the basis of our approach,
takes the form:

p(Π) =
N

∏
i=1

K

∏
j=1

D

∏
d=1

∏
m∈M i

d

1√
2πβ 2

j,d

exp

−
(

π i
j−πm

j

)2

2β 2
j,d


where β 2

j,d is the variance of the corresponding gaussian in-
stance and M i

d is the set of neighbors of the ith observation
that lies in the d direction. Typically, 4 directions can be con-
sidered in 2-D images, which correspond to the horizontal,
vertical and diagonals.
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In short, the directional class-adaptive GMRF encodes
the idea that differences between adjacent mixing coeffi-
cients are Gaussian distributed in the form

π
i
j−π

m
j ∼N

(
0,β 2

j,d
)

Inference on this model is not analytically tractable so
numerical optimization methods must be employed. Thus, a
MAP-EM algorithm is typically used to iteratively estimate
the parameters of the model. The corresponding Q function
for the EM schema is:

Q
(

Θ |Θ (t)
)
=

N

∑
i=1

K

∑
j=1

zi
j
(
logπ

i
j + logφ

(
xi|θ j

))
+ log p(Π)

The posterior density of the hidden variables Z =
(
z1, . . . ,zN

)
,

associated to each component, is computed at the E-step as
follows

zi
j
(t)

=
π i

j
(t)

φ

(
xi|θ j

(t)
)

K
∑

k=1
π i

k
(t)

φ

(
xi|θk

(t)
)

while at the M-step the parameters of the model Θ , when
φ
(
xi|θ j

)
∼N

(
xi|µ j,Σ j

)
, are estimated by

µ
(t+1)
j =

1
N
∑

i=1
zi

j
(t)

N

∑
i=1

zi
j
(t)xi

Σ
(t+1)
j =

1
N
∑

i=1
zi

j
(t)

N

∑
i=1

zi
j
(t)
(

xi−µ
(t+1)
j

)(
xi−µ

(t+1)
j

)T

The updates for contextual mixing coefficients π i
j
(t+1)

are obtained as the roots of the following second degree
equation

(
π

i(t+1)
j

)2 D

∑
d=1

∣∣M i
d

∣∣
β 2

j,d
−
(

π
i(t+1)
j

) D

∑
d=1

∑

m∈M i
d

πm
j

β 2
j,d

−
zi

j

2
= 0

which always have a real non-negative solution. However, a
limitation of this estimation is that it does not take into ac-
count the constraint that ∑ j π i

j = 1, ∀i. Instead, reparatory
techniques such as the one proposed in (Blekas et al., 2005)
must be employed to ensure the probabilities to sum 1.

An interesting alternative to avoid reparatory projections
is to consider that Π is governed by a Dirichlet Compound
Multinomial (DCM) distribution. This means that the hidden
random variable zi is governed by a multinomial distribution
with parameters π i, which in turn is governed by a Dirich-
let distribution with parameters α i. In (Nikou et al., 2010)

Nikou et al demonstrated that, following such hierarchical
model, π i

j can be computed as

π
i
j =

α i
j

K
∑

k=1
α i

k

yielding a fully Bayesian model that always guarantees that
∑ j π i

j = 1 ∀i.
The parameters of the Dirichlet distribution only require

to satisfy that α i
j > 0 ∀i, j, making easier its optimization.

Thus, a directional class-adaptive GMRF density can be im-
posed over A =

{
α1, . . . ,αN

}
to enforce local regularity

p(A) =
N

∏
i=1

K

∏
j=1

D

∏
d=1

∏
m∈M i

d

1√
2πβ 2

j,d

exp

−
(

α i
j−αm

j

)2

2β 2
j,d


Hence, the Q function associated to the DCM-SVFMM

becomes

Q
(

Θ |Θ (t)
)
= ∑

N
i=1 ∑

K
j=1 zi

j

log
α i

j
K
∑

k=1
α i

k

+ logφ
(
xi|θ j

)+ log p(A)

Optimizing the corresponding Q function for this model
yields identically updates for µ

(t+1)
j and Σ

(t+1)
j , but setting

∂Q/∂α i
j yields a third degree equation of the form

(
α

i(t+1)
j

)3
+
(

α
i(t+1)
j

)2
(

Ai
− j−

Ci
j

Bi
j

)

−
(

α
i(t+1)
j

)(Ai
− jC

i
j

Bi
j

)
−

zi
jA

i
− j

2Bi
j

= 0

where

Ai
− j =

K

∑
k=1
k 6= j

α
i
k

Bi
j =

D

∑
d=1

∣∣M i
d

∣∣
β 2

j,d

Ci
j =

D

∑
d=1

∑

m∈M i
d

αm
j

β 2
j,d

Finally, β 2
j,d is estimated by

β
2
j,d =

1
N

N

∑
i=1

∑
m∈M i

d

(
α i

j−αm
j

)2∣∣M i
d

∣∣



4 Javier Juan-Albarracı́n et al.

3 Background on Probabilistic Non Local Means

The NLM filter (Buades et al., 2005) proposes a schema for
image filtering where pixels are restored by a weighted sum
of similar neighbor patches.

The core of NLM schema is the computation of the weight
function between patches, which has taken a lot of variants
in the literature. Specially, Wu et al. (Wu et al., 2013) de-
rived the probabilistic version of the NLM algorithm and its
associated probabilistic weighting function.

Linking the description of the probabilistic NLM with
the SVFMM background, let’s consider di,m

j,d the distance be-
tween a pair of adjacent Dirichlet parameters

di,m
j,d =

(
α i

j−αm
j

)2

2β 2
j,d

Assuming that local differences are i.i.d., we have di,m
j,d ∼

χ2
1 . For a patch-based version of the algorithm, the distance

between two patches centered at ith and mth locations is de-
fined as

Di,m
j,d = ∑

k∈P
di+k,m+k

j,d

where P is the set of offsets that define a local patch around
a given pixel. If patches are completely disjoint, then Di,m

j,d ∼
χ2
|P|, however, in most cases, overlapping occurs between

patches, so the i.i.d. assumption does not hold. In such cases,
an approximation to the sum of a set of correlated χ2 distri-
butions can be computed as

Di,m
j,d ∼ γmχ

2
ηm

where

γm = var
[
Di,m

j,d

]
/2E

[
Di,m

j,d

]
ηm = E

[
Di,m

j,d

]
/γm

and

E
[
Di,m

j,d

]
= |P|

var
[
Di,m

j,d

]
= 2 |P|+

∣∣Oi,m∣∣
with Oi,m the set of overlapping pixels between the patches
centered at ith and mth pixels.

Hence, the weight function ui,m
j,d proposed in the proba-

bilistic NLM approach is defined as

ui,m
j,d = χ

2
ηm

(
Di,m

j,d/γm

)
=

(
Di,m

j,d/γm

)(ηm/2)−1
exp
(
−Di,m

j,d/2γm

)
2ηm/2Γ (ηm/2)

4 The Non Local Spatially Variant Finite Mixture
Model

One of the main drawbacks of the previous aforementioned
SVFMM is that this model enforces local smoothness on the
contextual mixing coefficients, without taking into account
the structure of the image. In other words, the SVFMM it-
eratively applies an isotropic local Gaussian smoothing to
the contextual mixing coefficients, which finally yields into
a over-smoothed prior probability map that losses the infor-
mation of edges and structure in the image.

To overcome this limitation, Nikou et al (Nikou et al.,
2007) proposed a variant of the SVFMM where local dif-
ferences between Dirichlet parameters follow a t-Student
distribution. Such an approach was intended to exploit the
heavy-tailed nature of the t-Student distribution, to perform
a robust estimation of the Dirichlet coefficients when edges
and structures are present in their local neighborhoods.

α
i
j−α

m
j ∼S t

(
0,β 2

j,d ,ν j
)

Following the Bishop’s development in (Bishop, 2006),
a S t distribution can be expressed as

α
i
j−α

m
j ∼N

(
0,β 2

j,d/gi,m
j,d

)
gi,m

j,d ∼ G
(
ν j,d/2,ν j,d/2

)
This model introduces a new set of latent variables gi,m

j,d ,
whose posterior density should be estimated at the E-step,
and an additionally new set of parameters ν j,d , which yield
a non closed-form analytic solution of the model. Numerical
optimization methods should be employed to estimate ν j,d .

In this sense, we propose the NLSVFMM as a modifi-
cation of this model by replacing the gi,m

j,d random variable

by the probabilistic NLM ui,m
j,d weight. Therefore, we pro-

pose to reformulate the local differences between contextual
Dirichlet parameters in the form

α
i
j−α

m
j ∼N

(
0,β 2

j,d/χ
2
ηm

(
Di,m

j,d/γm

))
Di,m

j,d ∼ χ
2 (ηm)

with Di,m
j,d being latent variables of the model.

Following the conventional EM scheme, the posterior
densities of Di,m

j,d should be calculated at the E-step. How-

ever, this leads to a different calculation of Di,m
j,d than the

proposed by Wu et. al (see Section 3). Therefore, in order
to preserve the use of the original NLM weights, we will
follow a Variational EM approach (Neal and Hinton, 1999;
Bishop, 2006). The Variational EM framework introduces
the concept of partial E-step, in which a functor of the la-
tent variables can be used when the posterior densities of



Non-local Spatially Varying Finite Mixture Models for Image Segmentation 5

these variables cannot be calculated, or when it is desir-
able to calculate them differently for reasons of efficiency or
performance. As demonstrated by Neal and Hinton (1999),
such functor can take any form as long as the log-likelihood
function is increased at each iteration, effectively driving the
model to a local optimum of the function, and hence to an
optimum of the parameters of the model. Therefore, follow-
ing this framework, the Di,m

j,d latent variables are estimated
at the E-step as the standard quantitative Chi-squared test
proposed by Wu et. al:

Di,m
j,d = ∑

k∈P

(
α

i+k
j −α

m+k
j

)2

2β 2
j,d

Once these latent variables are estimated, the ui,m
j,d weights

are calculated at the M-step following ui,m
j,d = χ2

ηm

(
Di,m

j,d/γm

)
.

Since ui,m
j,d depends on both the ith and mth observations, this

model specifies a different instance of a Gaussian distribu-
tion for each

(
α i

j−αm
j

)
pair of contextual Dirichlet coeffi-

cients in the MRF. This allows ui,m
j,d to regulate the variance

of the corresponding Gaussian between the ith and mth ob-
servations, if an edge or an homogeneous area is detected at
this location. Thus, as ui,m

j,d increases, the Gaussian distribu-
tion for the corresponding pair shrinks around zero impos-
ing a hard smoothing between the observations. On the con-
trary, as ui,m

j,d decreases, the variance of the Gaussian distri-
butions increases producing a lower pdf value that prevents
the smooth.

This approximation avoids the introduction of new pa-
rameters since ηm and γm are completely known once i and
m are fixed. Therefore, no numerical approximate methods
are required, simplifying the model and reducing its degrees
of freedom and the number of samples required for its sta-
tistically reliable estimation.

The graphical model of the NL-SVFMM is shown in
Figure 1.

Imposing the directional class-adaptive GMRF to this
model, the new density for p(A) becomes

p(A) = ∏
N
i=1 ∏

K
j=1 ∏

D
d=1 ∏m∈M i

d

1√
2πβ 2

j,d/ui,m
j,d

exp

(
−
(

α i−αm
j

)2
ui,m

j,d

2β 2
j,d

)

which setting ∂Q/∂α i
j yields a new third degree equation of

the form

(
α

i(t+1)
j

)3
+
(

α
i(t+1)
j

)2
(

Ai
− j−

Ĉi
j

B̂i
j

)

−
(

α
i(t+1)
j

)(Ai
− jĈ

i
j

B̂i
j

)
−

zi
jA

i
− j

2B̂i
j

= 0

α i
jDi,m

j,d
π i

j

zi
j

xi

β j,d µ j

Σ j

N

K

D

Fig. 1 Graphical model for the non-local spatially varying finite mix-
ture model. Superscripts i,m ∈ [1,N] denote pixel indexes, subscript
j ∈ [1,K] denotes mixture component and subscript d ∈ [1,D] denotes
neighborhood direction.

where

B̂i
j =

D

∑
d=1

∑

m∈M i
d

ui,m
j,d

β 2
j,d

Ĉi
j =

D

∑
d=1

∑

m∈M i
d

αm
j ui,m

j,d

β 2
j,d

Finally, β 2
j,d is now estimated as

β
2
j,d =

1
N

N

∑
i=1

∑
m∈M i

d

(
α i

j−αm
j

)2
ui,m

j,d∣∣M i
d

∣∣
Hereafter, the pixel-wise χ2

1 version of the proposed NLSVFMM
will be referred as NLv-SVFMM, while the patch-wise χ2

ηm
will be referred as NLp-SVFMM.

5 Experimental results

First, we have performed an evaluation of our algorithm with
the Brain Tumor Segmentation (BRATS) 2013 high grade
glioma synthetic dataset, which includes 25 cases segmented
into 7 classes: 1) white matter (WM), 2) grey matter (GM),
3) cerebro-spinal fluid (CSF), 4) peripheral edema (ED), 5)
tumor core (split into enhancing tumor (5.1) and necrotic
core (5.2)) (TC) and 6) vessels (VS). For each 3-D voxel,
intensities on pre- and post-gadolinium T1-weighted MRI,
T2-weighted MRI and FLAIR sequence were employed for
the segmentation.

Later, we have evaluated our proposed model with the
300 real-world images of the Berkeley Segmentation Dataset.
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In our experimentation, we employed a 3-dimensional fea-
ture vector for each pixel, comprising the 3 channels of the
L*a*b color space. We also applied a local median smooth-
ing to each channel using a 5× 5 window centered at each
pixel. We have evaluated the performance of each algorithm
for different values of K = {3,5,7,10,15,20}.

We have compared our proposed NLv- and NLp-SVFMM
model with the conventional FMM, the SVFMM and the
S t-SVFMM. For the spatially varying algorithms we have
employed the DCM Bayesian approximation and the direc-
tional class-adaptive GMRF prior specified in 4. All algo-
rithms in all experiments were initialized with a determin-
istic version of K-means++ (Arthur and Vassilvitskii, 2007)
to ensure a fair comparative.

Figure 2 compares the behavior of the weighting func-
tions G=

{
gi,m

j,d

}
for the S t-SVFMM model and U =

{
ui,m

j,d

}
for the NLv-SVFMM model (NLp-SVFMM weighting func-
tion is not depicted because is not comparable to the S t
and NLv-SVFMM models). As figure shows, U function be-
haves more aggressive for differences between observations
than the S t-SVFMM, hence yielding more dichotomous
weighting maps (see Figure 3). For the shake of simplicity,
each pixel of each picture of Figure 3 represent ∑

D
d=1 ∑m∈M i λ

i,m
j,d ,

with λ = g for S t-SVFMM and λ = u for NLv- or NLp-
SVFMM models respectively.

Fig. 2 Comparison between the behavior of the weighting functions
G =

{
gi,m

j,d

}
for the S t-SVFMM model and U =

{
ui,m

j,d

}
for the NLv-

SVFMM (NLp-SVFMM weighting function is not depicted because is
not numerically comparable to the S t and NLv-SVFMM functions).

Table 1 and Figure 4 show the superiority of the pro-
posed NL-SVFMM (in both variants) to generate higher con-
fidence prior probability maps for each component. An ex-
ample of the contextual mixing coefficient maps for the HG0014
case of the BRATS 2013 dataset and its associated mix-
ing coefficient values for different pixels obtained by each
method is shown. In almost all evaluations, the NLp-SVFMM
version achieves the best results, indicating that the patch-

Fig. 3 Comparison between G maps of the S t-SVFMM and U maps
for the NLv- and NLp-SVFMM models for a case of the BRATS 2013
dataset. Each pixel i of the images represent ∑

D
d=1 ∑m∈M i λ

i,m
j,d , with

λ = g or λ = u for S t-SVFMM and NLv- or NLp-SVFMM models
respectively.

Table 1 Contextual mixing coefficients for different voxels of the
HG0014 case of the BRATS 2013 challenge. Voxels correspond to co-
ordinates a = (151,127,85) ,b = (167,75,85) ,c = (151,152,85) ,d =
(97,89,85) ,e = (117,62,85) , f = (110,71,85) and f = (128,99,85)

SVFMM S t-SVFMM NLv-SVFMM NLp-SVFMM
πa

WM 0.457 0.486 0.481 0.499
πb

GM 0.296 0.429 0.497 0.606
πc

CSF 0.253 0.426 0.446 0.447
πd

ED 0.294 0.374 0.394 0.411
πe

ET 0.248 0.442 0.453 0.381
π

f
NC 0.267 0.291 0.285 0.361

π
g
V S 0.118 0.305 0.355 0.265

based probabilistic NLM weighting function better captures
the local similarities in the images.

Table 2 shows the Dice coefficients obtained for the eval-
uation based on the BRATS 2013 dataset. Consistently with
previous results, the NLp-SVFMM variant achieves the best
results in terms of segmentations based on the maximiza-
tion of the posterior probabilities (Bayes minimum classifi-
cation error). An improvement of about 3 points in Dice is
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Fig. 4 Example of contextual mixing coefficient maps for a case of
BRATS 2013, for each class of the segmentation.

obtained when comparing the NLp-SVFMM with the stan-
dard SVFMM and more than 1 point in Dice with respect
to the S t-SVFMM, thanks to the proposed prior density.
Moreover, in order to explore the capabilities of the pro-
posed prior densities to yield accurate segmentations, we
have also computed the Dice coefficients for the segmen-
tations based only on the maximization of the prior proba-
bility maps generated by each method. As Table 2 shows,
the NLv-SVFMM method, followed by the NLp-SVFMM,
achieves the best results. Of course the Dice coefficients are
significantly low because the segmentations do not take into
account the pixel intensities. However, the aim is to evalu-
ate which method better captures the local similarities in the
images, hence producing more accurate prior information
about the image.

Table 3 shows the results for the evaluation of the 300
images of the Berkeley dataset. RI is employed to measure
the degree of concordance between the automated segmen-
tation and the manual segmentations. Our experiments show
that the proposed methods are superior in terms of RI to the
other approaches in almost all situations. The NLv-SVFMM
performs comparable to the S t variant in most of cases,
achieving very similar results. However, the NLv-SVFMM
requires less parameters, hence alleviating the computational

cost to obtain the segmentations. Nevertheless, the NLp-
SVFMM method achieves, both in average and median cases,
the best results. Only in the K = 3 case (the simplest seg-
mentation), the SVFMM method outperforms the rest of the
models. However, as segmentation complexity increases, the
models including edge preserving priors performs better in
all cases.

It is worth noting that differences in RI are not signif-
icantly large between methods. This may be due because
prior probabilities become weaker when the number of ob-
servations increase, which is the case of pixel classification
in an image. As expected, small differences between meth-
ods demonstrate that prior densities have a limited effect on
the final segmentation when following a Bayesian decision
rule.

Additionally, a comparison in terms of the computational
time required by each method has been performed. Table 4
shows the average times (in seconds) and the std. deviation
of each method evaluated in the Berkeley 300 dataset for
different number of segments calculated in the images.

As expected, the SVFMM is the fastest method since
it doesn’t carry the extra computation of the weights for
constrain the β 2

j,d variances. It should be noted that only
the NLv-SVFMM and the S t-SVFMM are directly com-
parable since both perform the calculation of the u and g
weights respectively, and those weights are computed pixel-
wise. It can be seen that both methods perform very simi-
lar, with no significant difference between them. Although
the S t-SVFMM model requires a numerical iterative ap-
proximation of the ν j,d parameters, which is often a slow
procedure, the complexity in the computation of the gi,m

j,d

weights is lighter than the ui,m
j,d weights. That is the reason

why the NLv-SVFMM is a bit slower than the S t-SVFMM.
The calculation of ui,m

j,d weights requires the computation
of NKD |Md | χ2

ηm pdf values, which finally equals or even
slightly increases the computational time with respect the g
weights. The NLp-SVFMM performs the best in terms of
Dice and RI scores, but also requires more time to compute
the segmentation since it carries the extra computation of the
patch-based similarity.

Finally, Figure 5 shows several examples of segmenta-
tions of images of the Berkeley dataset obtained with the
NLp-SVFMM method.

6 Conclusion

In this study we have proposed a new unsupervised image
clustering algorithm that successfully merges the SVFMM
framework with the well-known NLM filtering scheme. The
main advantage of this algorithm is the proposed new MRF
density over the contextual mixing proportions, which en-
forces local smoothness while preserving edges and the struc-
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Table 2 Results on the DICE coefficient over the 25 synthetic high-grade gliomas of the BRATS 2013 dataset for each algorithm evaluated.
Segmentations based on the maximization of the posterior and prior probabilities are shown.

Segmentation SVFMM S t-SVFMM NLv-SVFMM NLp-SVFMM
Mean Median St. dev. Mean Median St. dev. Mean Median St. dev. Mean Median St. dev.

Posterior 0.7766 0.7680 0.0368 0.7912 0.7817 0.0384 0.7988 0.7833 0.0397 0.8044 0.7936 0.0351
Prior 0.2231 0.2247 0.0092 0.2467 0.2461 0.0103 0.2576 0.2578 0.0113 0.2494 0.2495 0.0106

Table 3 Results on the RI over the 300 images of the Berkeley dataset for each algorithm evaluated.

SVFMM S t-SVFMM NLv-SVFMM NLp-SVFMM
K Mean Median St. dev. K Mean Median St. dev. K Mean Median St. dev. K Mean Median St. dev.
3 0.6952 0.6915 0.0986 3 0.6941 0.6891 0.0988 3 0.6940 0.6891 0.0988 3 0.6944 0.6897 0.0987
5 0.7274 0.7478 0.1086 5 0.7284 0.7482 0.1086 5 0.7284 0.7482 0.1085 5 0.7288 0.7480 0.1086
7 0.7283 0.7585 0.1208 7 0.7312 0.7596 0.1207 7 0.7313 0.7597 0.1206 7 0.7316 0.7599 0.1207
10 0.7250 0.7618 0.1335 10 0.7281 0.7632 0.1333 10 0.7283 0.7634 0.1334 10 0.7288 0.7639 0.1334
15 0.7184 0.7585 0.1431 15 0.7215 0.7594 0.1428 15 0.7214 0.7595 0.1428 15 0.7221 0.7612 0.1429
20 0.7136 0.7495 0.1479 20 0.7161 0.7538 0.1478 20 0.7162 0.7538 0.1478 20 0.7166 0.7545 0.1479

Fig. 5 Example of segmentation maps for K ∈ {3,5,7,10,15,20} obtained with the NLp-SVFMM for 4 images of the Berkeley dataset.

Table 4 Average and std. deviation time comparison (in seconds) for
each algorithm evaluated in the study on the Berkeley 300 dataset for
each number of segments computed in the images.

K SVFMM S t-SVFMM NLv-SVFMM NLp-SVFMM
3 0.91±0.04 1.48±0.06 1.73±0.06 2.01±0.09
5 1.39±0.08 2.27±0.12 2.56±0.13 2.99±0.13
7 1.87±0.08 3.05±0.15 3.37±0.14 3.98±0.16
10 2.69±0.14 4.40±0.20 4.92±0.21 5.75±0.17
15 3.91±0.17 6.32±0.22 6.96±0.26 8.23±0.30
20 5.18±0.47 8.39±0.75 9.27±0.82 10.92±0.96

ture of the image. This MRF improves the previously pro-
posed S t-MRF in terms of performance of the model, and
also reducing the number of parameters to be estimated. Ex-
perimental results demonstrated the superiority of the pro-
posed method with respect to previous state-of-the-art algo-

rithms proposed in the literature when evaluated in a public
reference dataset.
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