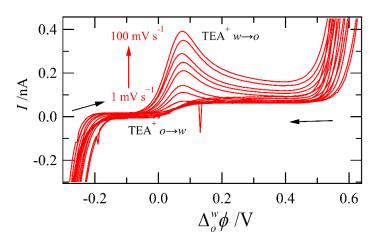
Electronic Supplementary Information for: Detection of *Pseudomonas aeruginosa* quorum sensing molecules at an electrified liquid|liquid micro-interface through facilitated proton transfer.

Edward D. Burgoyne, ^a Andrés F. Molina-Osorio, ^a Reza Moshrefi, ^b Rachel Shanahan, ^c Gerard P. McGlacken, ^c Talia Jane Stockmann, ^{b,*} and Micheál D. Scanlon ^{a,*}


- ^a The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
- ^b Memorial University of Newfoundland, Chemistry Department, 283 Prince Philip Dr., St. John's, NL Canada A1B 3X7
- ^c School of Chemistry and Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, Cork, Ireland

*Email: tstockmann@mun.ca (T.J.S)
*Email: micheal.scanlon@ul.ie (M.D.S)

Table of Contents

- 1. Electrochemical determination of microchannel radius.
- 2. Asymmetric Diffusion Regime
- 3. Investigation of proton sources on ligand complexation
- 4. Cyclic voltammetric response moving from [H⁺]≫[ligand] to the [H⁺]≈[ligand] regime
- 5. Linear Regression Error analysis.

1. Determination of microchannel radius

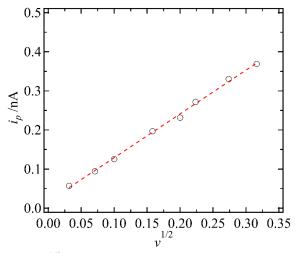
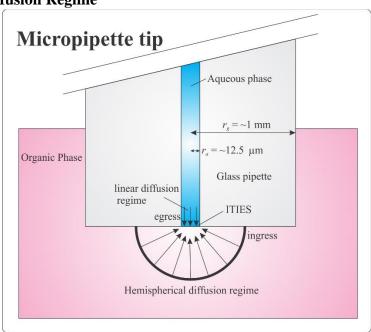

Figure S1: Cyclic voltammograms obtained using Cell S1 and varying the scan rate from 1- 100 mV s^{-1} .

Figure S1 shows the CVs generated using Cell S1 and by scanning the potential between roughly -0.35 and 0.55 V. During the forward scan (from low to high potentials) a peak-shaped wave was observed with a half-wave potential at 0.049 V. Meanwhile, a steady state or s-shaped wave was observe when scanning from 0.55 V to -0.35 V. Owing to the asymmetric geometry of the capillary, this leads to linear diffusion of ions leaving the pipette (crossing the interface from w \rightarrow 0, egress) and hemispherical diffusion of ions entering the pipette (crossing the interface from 0 \rightarrow w, ingress). Therefore, the peak-shaped wave is the transfer of TEA⁺ from w \rightarrow 0, while the sigmoidal wave is the ingress of TEA⁺ from 0 \rightarrow w.

The radius of the microchannel formed at the tip of the pulled borosilicate glass capillary was confirmed using cyclic voltammetric (CV) measurements of the peak-shaped ion transfer wave of tetraethylammonium (TEA⁺) from w \rightarrow o by varying the scan rate (v) as shown in Figure S1 and comparing the change in peak current intensity (i_p) in amperes to the Randles-Sevcik equation² below,


$$i_{p} = 0.4463 \left(\frac{F^{3}}{RT}\right)^{\frac{1}{2}} n^{\frac{1}{2}} A D_{i,\alpha}^{\frac{1}{2}} c_{i,\alpha}^{*} v^{\frac{1}{2}}$$
 [S1]

where A, F, R, T, and n are the interfacial surface area, Faraday's constant (96485.33 C mol⁻¹), Universal gas constant (8.314 J mol⁻¹ K⁻¹), absolute temperature (298.15 K), and the charge on the ion transferred (+1), respectively. $D_{i,\alpha}$ and $c_{i,\alpha}^*$ are the diffusion coefficient and initial/bulk concentration of species i in phase α . The diffusion coefficient of TEA⁺ in water was taken to be 9.8×10^{-6} cm² s⁻¹.³ i_p was plotted against $v^{1/2}$ in Figure S2. Using the slope obtained from linear regression analysis in Figure S2 (dashed line), the radius of the microchannel was calculated to be ~11.9 μ m which is within experimental error of the commercially obtained 12.5 μ m radius Pt wire used to form the microchannel.

Figure S2: Plot of i_p versus $v^{1/2}$ from Figure S1. Dashed, red curve is the product of linear regression analysis with an \mathbb{R}^2 value of 0.998.

2. Asymmetric Diffusion Regime

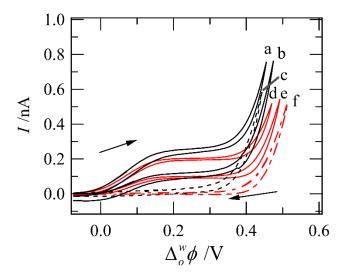
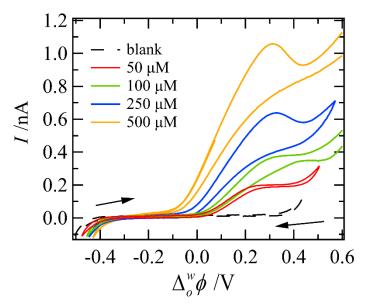


Figure S3: Schematic of the asymmetric diffusion regimes for egress and ingress of material across the ITIES held at the tip of a micropipette with external glass radius (r_g) and an internal microchannel radius (r_a) as indicated.


Figure S4: CVs recorded using Cell S1 and S2 with a scan rate of 25 and 50 mV s⁻¹ for the black and red trace demonstrating the TEA⁺ (tetraethylammonium) and OBSA⁻ (4-octylbenzenesulfonate) asymmetric ion transfer peak current responses, respectively, based on charge and the pipette geometry as shown in Figure S3.

3. Investigation of proton sources on ligand complexation

Figure S5: CVs using Cells 1 (curves d, e, f) and 2 (curves a, b, c) with the pH adjusted to 3.5 using HCl and citric acid, respectively, and L = HHQ at 25 (b and e) and 50 μ M (a and d). Curves c and f were recorded without HHQ in the DCE phase (blank curves). All other experimental parameters are the same as in Figure 1 of the main text.

4. Cyclic voltammetric response moving from [H⁺]≫[ligand] to the [H⁺]≈[ligand] regime

Figure S6: CVs recorded using Cell 1 with L = HHQ and [HHQ] varied from 0-500 μ M as indicated inset with a scan rate of 25 mV s⁻¹.

5. Linear regression error analysis

The upper and lower associated error with the *line-of-best-fit* (LOBF) was determined using a method described in Skoog *et al.*⁴ where the standard deviation (s_c) about the LOBF is defined as,

$$s_c = s_r \sqrt{\frac{1}{N} + \frac{N(x - \overline{x})^2}{N \sum x^2 - (\sum x)^2}}$$

where s_r is the standard error from linear regression statistics and the upper and lower error bounds are,

Upper LOBF+ =
$$y = mx + b + ts_c$$

Lower LOBF- = $y = mx + b - ts_c$

In this case, *t* is students *t* value taken from standard tables using a 99.8% confidence interval and *degrees-of-freedom* as defined as N–2, where N is the population or number of data points used to construct the curve.

References

- 1. Z. Samec, Pure Appl. Chem., 2004, 76, 2147-2180.
- 2. A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, John Wiley, New York, 2nd edn., 2001.
- 3. J. Strutwolf, M. D. Scanlon and D. W. M. Arrigan, Analyst, 2009, 134, 148-158.
- 4. D. A. Skoog, *Principles of instrumental analysis*, Fourth edition. Fort Worth: Saunders College Pub., [1992] ©1992, 1992.