Electronic Supporting Information

Aqueous Surface Chemistry of Gold Mesh Electrode in a Closed Bipolar Electrochemical Cell

Alonso Gamero-Quijano,^a Grégoire Herzog,^b Micheál D Scanlon^{a,c*}

^a The Bernal Institute and Department of Chemical Sciences, School of Natural Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland.

^b Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, CNRS, Université de Lorraine, 405 rue de Vandoeuvre, Villers-lès-Nancy, F-54600, France.

^c Advanced Materials and Bioengineering Research (AMBER) Centre, Ireland.

*E-mail: <u>micheal.scanlon@ul.ie</u>

Fig. S1. Image of the 4-electrode closed bipolar electrochemical cell (CBPEC) used in this study. Each pole of the bipolar electrode consisted of gold mesh wires, with one immersed in each compartment, denoted P_w in the aqueous phase and P_0 in the organic phase, and connected with an electric wire.

Fig. S2. *Varying the aqueous electrolyte anion.* (a) CVs obtained using a 3-electrode cell with 10 mM Li₂SO₄ and 10 mM LiClO₄ aqueous electrolytes and a gold mesh working electrode. Sulphate anions (SO₄²⁻) absorb strongly at the gold surface giving rise to characteristic electrochemical features, as indicated by the asterisks. Perchlorate anions (ClO₄⁻) absorb more weakly to the gold surface, with the CV containing noticeably less features by comparison. The scan rate used was 20 mV·s⁻¹. (b) Enhanced view of the region of the CV in part (a) involving significant SO₄²⁻ adsorption. Notably the additional voltammetric peak on the forward sweep at more positive potentials with Li₂SO₄ as the aqueous electrolyte appeared within the key potential range of +0.410 to +0.630 V *vs*. SHE (the potential window experienced by P_w during the 4-electrode CPBEC experiments).

Fig. S3. *Reductive and oxidative pre-treatment of the aqueous pole of the bipolar electrode* (P_w). CVs were obtained with a 2 mM phosphate buffer solution and no electron donor species present in the TFT organic phase. Just prior to the 4-electrode CBPEC experiment, the gold mesh electrode acting as P_w underwent either electrochemical oxidative (+1.2 *vs.* SHE) or reductive (-0.9 V *vs.* SHE) pre-treatment for 100 seconds. The scan rate used was 20 mV·s⁻¹. The full configuration for the 4-electrode CBPEC experiments is shown in Scheme 1.

Fig. S4. *Reductive and oxidative pre-treatment of the aqueous pole of the bipolar electrode* (P_w). CVs were obtained with a 10 mM Li₂SO₄ aqueous electrolyte and 20 µM DcMFc present in the TFT organic phase after electrochemical oxidative (+1.2 V *vs.* SHE) or reductive (-0.9 V *vs.* SHE) pre-treatment of the gold mesh electrode acting as P_w . For the latter, the first 3 CV scans are shown. The scan rate used was 20 mV·s⁻¹ in all experiments, see the full configuration for 4-electrode CBPEC experiments in Scheme 1.

Fig. S5. *Nature of the aqueous pole of the bipolar electrode.* Platinum mesh electrodes and gold mesh electrodes were used as both P_w and P_o . CVs were obtained with a 2 mM phosphate buffer solution and 10 μ M DcMFc present in the TFT organic phase. P_w was investigated without pretreatment. Scan rate used was 20 mV·s⁻¹. The full configuration for the 4-electrode CBPEC experiments is shown in Scheme 1.

Fig. S6. Anaerobic conditions. CVs were obtained with a 2 mM phosphate buffer solution (degassed with N_2 for 30 minutes prior to the experiment beginning and then maintained under a flow of N_2 that was saturated with organic solvent), and 10 μ M DcMFc present in the TFT organic phase. The scan rate used was 20 mV·s⁻¹. The full configuration for the 4-electrode CBPEC experiments is shown in Scheme 1. P_w was investigated without pre-treatment, and after reductive and oxidative electrochemical pre-treatment.

Table S1. Monitoring the potential window of the oxidatively or reductively pre-treated gold mesh electrode acting as P_w using a multimeter and an auxiliary Ag/AgCl *pseudo*-reference as an electric contact while the Galvani potential difference in the 4-electrode CBPEC was scanned from -1.200 to +0.200 V. Li₂SO₄ was the aqueous electrolyte and 50 μ M DcMFc was present in the TFT organic phase. The scan rate used was 20 mV·s⁻¹. The full configuration for the 4-electrode CBPEC experiments is shown in Scheme 1.

Oxidative pre-treatment of Pw (+1.2 V vs. SHE) for 100 seconds	
CV cycle number	Potential window measured on P _w
1	+1.159 to +0.787 V
2	+1.059 to +0.555 V
3	+0.997 to +0.296 V
5	+0.834 to +0.191 V
6	+0.898 to +0.148 V
Reductive pre-treatment of Pw (-0.9 vs. SHE) for 100 seconds	
CV cycle number	Potential window measured on Pw
1 to 6	+0.725 to -0.062 V