
Cell Complex Neural Networks

Mustafa Hajij
Department of Mathematics & Computer Science

Santa Clara University
mhajij@scu.edu

Kyle Istvan
kyleistvan@gmail.edu

Ghada Zamzmi
Department of Computer Science & Engineering

University of South Florida
ghadh@mail.usf.edu

Abstract

Cell complexes are topological spaces constructed from simple blocks called cells.
They generalize graphs, simplicial complexes, and polyhedral complexes that form
important domains for practical applications. They also provide a combinatorial
formalism that allows the inclusion of complicated relationships of restrictive
structures such as graphs and meshes. In this paper, we propose Cell Complexes
Neural Networks (CXNs), a general, combinatorial and unifying construction for
performing neural network-type computations on cell complexes. We introduce an
inter-cellular message passing scheme on cell complexes that takes the topology
of the underlying space into account and generalizes message passing scheme to
graphs. Finally, we introduce a unified cell complex encoder-decoder framework
that enables learning representation of cells for a given complex inside the Eucli-
dean spaces. In particular, we show how our cell complex autoencoder construction
can give, in the special case cell2vec, a generalization for node2vec.

1. Introduction

Motivated by the recent success of neural networks in various domains and data types (e.g., [30,
31, 42, 45, 44, 4]), we propose Cell Complex Neural Networks (CXNs), a general unifying scheme
that allows neural network-type computations on cell complexes; i.e., we define a neural network
structure on cell complexes.

Cell complexes are topological spaces constructed from pieces called cells that are homeomorphic
to topological balls of varying dimensions. They form a natural generalization of graphs, simplicial
complexes, and polyhedral complexes [25]. They also provide a combinatorial formalism that allows
the inclusion of complicated relationships not available to more restrictive structures such as graphs
and simplicial complexes, while retaining most of intuitive structure of these simpler objects.

Because the simplest nontrivial types of cell complexes are graphs [25], our work can be considered
as a generalization of Graph Neural Networks (GNNs) [11]. Earlier work that generalizes regular
Convolutional Neural Network (CNN) to graphs was presented in [19] and extended in [38, 18, 28].
Further, a significant effort has been made towards generalizing deep learning to manifolds, most
notably geometric deep learning and the work of Bronstein et al. [10, 8]. Other work includes utilizing
filters on local patches using geodesic polar coordinates [33] and heat kernels propagation schemes
[9], among many others [29, 9, 41, 49, 34]. We refer the reader to recent reviews [53, 48] of GNNs
and its variations and to [13] for a recent survey on geometric deep learning.

Topological Data Analysis and Beyond Workshop at the 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), Vancouver, Canada.



The main contributions of this work are summarized as follows. We propose CXNs, a general unifying
and simple training scheme on cell complexes that vastly expands the domains upon which we
can apply deep learning protocols. Our method encompasses most of the popular types of GNNs,
and generalizes those architectures to higher-dimensional domains such as 3D meshes, simplicial
complexes, and polygonal complexes. The training on a cell complex is defined in an entirely
combinatorial fashion, and hence, naturally extends general message passing schemes currently
utilized by GNNs. This combinatorial description allows for intuitive manipulation, conceptualization,
and implementation.

We introduce an inter-cellular message passing scheme on cell complexes that takes the topology of
the underlying space into account. Precisely, we define a message passing scheme that is induced
from the boundary and coboundary maps used to compute homology and cohomology in algebraic
topology. As a concrete example of this scheme, we define Convolutional Cell Complex Networks
(CCXN). Also, we propose a Cell Complex Autoencoder (CXNA) to incorporate CXNs in a deep
learning model and meaningfully represent cells of the complex in the Euclidean space. We provide
examples of representational learning on cell complexes that generalize well-known representational
learning on graphs such as graph factorization [2] and node2vec [2]. Computationally, a cell complex
net is defined using adjacency matrices, analogous to those used to encode the structure of a graph
neural network. This means their implementation can be readily adapted from the existing graph
neural networks libraries (e.g., [17]).

The rest of this paper is organized as follows. Section 1.1 presents background and important notations
about cell complexes. The proposed CXNs is presented in Section 2. Cell complex autoencoder CXNA
is introduced in Section 3. The topology-based message passing scheme on CXNs is discussed in
Section 4.4 of the Appendix followed by a presentation of potential applications in Section 4.5.

1.1. Cell Complexes: Background and Notations

A cell complex is a topological space X obtained as a disjoint union of cells, each of these cells is
homeomorphic to the interior of a k-Euclidean ball for some k. These cells are attached together via
attaching maps in a locally reasonable manner1. In our setting, the set of k-cells in X is denoted by
Xk, and it is called the k− skeleton of X . The set of all cells in X whose dimension is less than k
is denoted by X<k. The set X>k is defined similarly. The dimension of a cell c ∈ X is denoted by
d(c), and the dimension of a cell complex is the largest dimension of one of its cells. See Figure 1 for
various examples of cell complexes.

Figure 1: Examples of cell complexes.

A cell complex is called regular if every attaching map is a homeomorphism onto the closure of
the image of its corresponding cell. In this paper, all cell complexes will be regular and consist of
finitely many cells. Regular cell complexes generalize graphs, simplicial complexes, and polyhedral
complexes while retaining many desirable combinatorial and intuitive properties of these simpler
structures. The information of attaching maps of a regular cell-complex are stored combinatorially in
a sequence of matrices called the boundary matrices (∂k ∶ R∣Xk ∣ → R∣Xk−1∣). These matrices describe,
roughly speaking, the number of times k-cells wrap around (k−1)-cells in X . The definition of these
matrices ∂k depends on whether the cells of X are oriented or not. Our method is applicable to both
oriented and non-oriented cell complexes. However, we only discuss the non-oriented case for the
sake of brevity, and leave the oriented case to section 4.3 of the Appendix. Since our cell complexes
are regular and non-oriented, the entries of ∂k are in {0,1}. Dually, we define ∂∗k ∶ R∣Xk−1∣ → R∣Xk ∣

to be the transpose of the matrix ∂k.

1The reader is referred to [25] for further technical details of cell complex definition and algebraic topology.

2



1 1
1 1
1 1

1
1

1 1
1

1
1
1

1 1

𝑣1 𝑣2 𝑣3 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5𝑣4

𝑣1 𝑣2

𝑣3
𝑣4

𝑒1

𝑒2

𝑒3

𝑒4
𝑒5

𝑓1

𝑣1
𝑣2
𝑣3

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5

𝑣4

𝐴𝑎𝑑𝑗

0

0

𝑋

2
3

3
2

2
2

2

𝑣1 𝑣2 𝑣3 𝑒1 𝑒2 𝑒3 𝑒4 𝑒5𝑣4
𝑣1
𝑣2
𝑣3

𝑒1
𝑒2
𝑒3
𝑒4
𝑒5

𝑣4

𝐷𝑎𝑑𝑗

0

0

𝑣2

𝑣4

𝑒2

𝑒4

𝑒5𝑓1

𝑓2

𝑣1

𝑣3

𝑒1
𝑒3

𝑒6

𝑣5 1
1

1 1
1

0 1
1

1 1
1

0 1
1 0

1 1
1 1

1
1

1 1
1 1

1
1

𝑒1 𝑒2 𝑒3 𝑒4
𝑒1
𝑒2
𝑒3
𝑒4
𝑒5

𝑒5 𝑒6 𝑓1 𝑓2

𝑒6
𝑓1
𝑓2

𝐴𝑐𝑜

0

0

𝑌

4
3

0

5
4

3
3

1
1

𝑒1 𝑒2 𝑒3 𝑒4
𝑒1
𝑒2
𝑒3
𝑒4
𝑒5

𝑒5 𝑒6 𝑓1 𝑓2

𝑒6
𝑓1
𝑓2

𝐷𝑐𝑜

0

0

Figure 2: Examples of adjacency and coadjacency matrices for simplicial complexes. Left: the
adjacency matrix Aadj and adjacency degree matrix Dadj of the simplicial complex X . The blue and
the orange submatrices in Aadj represent A0

adj and A1
adj of X , respectively. The yellow and grey

submatrices of Dadj represent D0
adj and D1

adj , respectively. Right: the coadjacency matrix Aco and
coadjacency degree matrix Dco of the simplicial complex Y . The pink and the light green matrices in
Aco represent A1

co and A2
co of Y , respectively. The red and dark green submatrices of Dco represent

D1
co and D2

co, respectively. Note that the entries of adjacency and coadjacency matrices in case of a
simplicial complex, and more generally polyhedral complexes, are always in {0,1}.

LetX be a cell complex, cn denotes an n-cell inX , and facets(cn) denotes the set of all (n−1)-cells
X that are incident to cn. Similarly, let cofacets(cn) denotes the set of all (n + 1)-cells of X that
are incident to cn. Note that facets(cn) or cofacets(cn) might be the empty set. We say that two
n-cells an and bn are adjacent if there exists an (n + 1)-cell cn+1 such that an,bn ∈ facets(cn+1).
Likewise, we say that an and bn are coadjacent in X if there exists an (n − 1)-cell cn−1 with
an,bn ∈ cofacets(cn−1). The set of all cells adjacent to a cell a in X is denoted by Nadj(a) while
the set of all cells coadjacent to a cell a in X is denoted by Nco(a). If an,bn are n-cells in X , then
we define the set CO[an, bn] to be the intersection of cofacets(an) ∩ cofacets(bn). Note that this
notation is symmetric: CO[an, bn] = CO[bn, an] 2. Similarly, the set C[an, bn] is defined to be the
intersection of facets(an) ∩ facets(bn).

Note that these notions generalize the analogous notions of adjacency and coadjacency matrices
defined on graphs. More precisely, let X be a cell complex of dimension n. Let N denotes the total
number of cells in the complex X and define N̂ ∶= N − ∣Xn∣. Let c1,⋯, cN̂ denotes all the cells in
X<n. Then, we define the matrix Aadj of dimension N̂ × N̂ by storing a ∣CO[ci, cj]∣ in Aadj(i,j)
if the cell ci is adjacent to cj , otherwise, we store a 0 in Aadj(i,j). Note that the matrix Aadj(i,j)
does not store the adjacency information of n-cells in X since the dimension of the complex X is
n. We denote the adjacency matrix between k-cells in X by Ak

adj , where 0 ≤ k < n. The adjacency
degree matrix Dadj is defined via Dadj(i,i) = ∑j Aadj(i,j), and hence, we define the adjacency
degree matrix between k-cells Dk

adj (0 ≤ k < n) similarly. Finally, the coadjacency matrix Aco, the
coadjacency degree matrix Dco, the k-cells coadjacency matrices Ak

co, and the k-cells coadjacency
degree matrices Dk

co for 0 < k ≤ n, are defined similarly. Examples of these matrices are presented in
Figure 2.

2. Cell Complex Neural Networks (CXNs)

We define below a general CXNs using a message passing scheme that generalizes the notations of
message passing schemes in graphs. Section 4 of the Appendix provides a brief review of message
passing schemes on graphs (Section 4.2), and introduce message passing schemes on cell complexes
(Section 4.4). We also present here CCXN (Section 2.1) as an example of CXNs. The forward
propagation computation of a cell complex neural net requires the following data as inputs: (1) A cell
complex X of dimension n, possibly oriented and (2) For each m-cell cm in X , we have an initial
vector h(0)

cm ∈ Rl0m . The forward propagation algorithm then performs a sequence of message passing
executed between cells in X . Precisely, given the desired depth L > 0 of the net one wants to define

2This is not the case when X is not oriented. See Section 4 in the Appendix for more details.

3



target node

(a) (b)

e2

e3 e4

e6

e7

trainable function trainable function 

trainable function trainable function trainable function trainable function trainable function trainable function 

Figure 3: Two layers Cell Complex Neural Network (CXN). The example demonstrates a simplicial
complex neural network for clarity. The computation is demonstrated with respect to the red target
vertex. The information flow goes from lower cells to higher incident cells.

on the complex X , the forward propagation algorithm on X consists of L × n inter-cellular message
passing scheme defined for 0 < k ≤ L:

h
(k)
c0
∶= α(k)

0 (h(k−1)
c0

,Ea0∈Nadj(c0)(φ(k)
0 (h(k−1)

c0
,h

(k−1)
a0 , Fe1∈CO[a0,c0](h(k−1))

e1
))) ∈ Rlk0 , (1)

⋮

h
(k)
cn−1

∶= α(k)
n−1(h(k−1)

cn−1
,Ean−1∈Nadj(cn−1)(φ(k)

n−1(h(k−1)
cn−1

,h
(k−1)
an−1 , Fen∈CO[an−1,cn−1](h(0)

en ))) ∈ Rlkn−1 (2)

where h(k)
em , h

(k)
am ,h

(k)
cm ∈ Rlkm , E,F are permutation invariant differentiable functions3, and α(k)

j ,φ
(k)
jare trainable differentiable functions where, 0 ≤ j ≤ n − 1 and 0 < k ≤ L 4. Note that for each cell

an in X , the vectors h(0)
an are never updated during the training of a CXN. Although the formulation

above is simple, it can generalize most types of the popular types of GNNs (e.g., [28, 46] ).

Figure 3 demonstrates the above construction/formulation on a simplicial complex network with
depth L = 2. We will use X to denote this complex. Note that we abuse the notation in the figure and
do not distinguish between a simplex s and its vector h(k)

s . For each vertex {vi}5i=1 in X , we assume
we are given a vector h(0)

vi ; we have h(0)
ej for each edge {ej}7j=1, and have h(0)

Fi
for the faces {Fi}2i=1.

In the first stage, we start the computation for cells with dimension 0. In this stage, each vi, 0 ≤

i ≤ 5, computes : h(1)
vi ∶= α(k)

0 (h0vi ,Evj∈Nadj(vi)(φ
(1)
0 (h(0)

vi ,h
(0)
vj , h

(0)
eij ))), where eij is the edge that

connects vi to vj . Figure 3 (a) shows this graph for v1. Notice that all nodes share the same trainable
functions α(1)

0 and φ(1)
0 . Further, each edge ei induces a computational graph and computes h(1)

ei ,

1 ≤ i ≤ 7: h(1)
ei ∶= α(k)

1 (h0ei ,Eej∈Nadj(ei)(φ
(1)
1 (h(0)

ei ,h
(0)
ej , h

(0)
Fij

))), here Fij denotes the unique face

that bounds both edges ei and ej . Note that all edges share the same trainable functions α(1)
1 and φ(1)

1 .
In stage 2, we compute h(2)

s for all simplices s of dimension 0 and 1. Figure 3 shows this computation
for h(2)

v1 . Note that (1) the computational graphs that feed into it are the ones computed in stage 1 and
(2) how the information from this node flows from the surrounding nodes, edges, and faces.

2.1. Convolutional Cell Complex Nets (CCXN)

We present CCXN, the simplest type of cell complex neural networks. Specifically, using the adjacency
matrices on a cell complex X defined in 1.1 and Figure 2, we extend the definition of convolutional
graph neural networks (CGNN) [28] to CCXN. The input for a CCXN is specified by cell embeddings
H(0) ∈ RN̂×d that define the initial cells features on every cell in X<n. Here, d is the embedding
dimension of the cells. The convolutional message passing scheme on X is defined by :

H(k) ∶= ReLU(ÂadjH
(k−1)W (k−1)) (3)

3The permutation invariance condition on F and E may not be necessary in general (e.g. on triangulated
meshes only cyclic invariance is needed). However, a permutation invariant function is needed whenever there is
no canonical way to order the cofaces adjacent to a face in the complex.

4Examples of the functions α(k)
j ,φ

(k)
j in practice are MLP. A concrete example is given in 2.1

4



where Âadj = IN̂ +D−1/2
adj AadjD

−1/2
adj , H

(k) ∈ RN̂×d are the cell embeddings computed after k steps
of applying 3, andW (k−1) ∈ Rd×d is a trainable weight matrix at the layer k. We discuss the following
few remarks about the definition above. First, observe that we chose the embedding dimension of
cells to be d for all H(k). However, this restriction is not necessary in general and we chose it only
for notational convenience. Second, we train the CCXN with a single weight W k for every layer k
for all cells. This restriction is also not necessary in general. As indicated in equations (1,2), one
may choose to train a different CCXN for every k-cells adjacency matrix Ak

adj individually. In this
case, we need to train n − 1 cell complex networks. Finally, the matrix Âadj in equation 3 is typically
normalized to avoid numerical instabilities when stacking multiple layers [28]. Specifically, with
the renormalization trick, we make the substitution IN̂ +D−1/2

adj AadjD
−1/2
adj → D̃

−1/2
adj ÃadjD̃

−1/2
adj in

equation 3 where Ãadj = Aadj + IN̂ and D̃adj(i,i) = ∑j Ãadj(i,j). Observe that with this simplified
case, this version for CCXN is a generalization of CGNN where the only difference being the
generalized notion of adjacency on cell complexes.

3. Cell Complex Autoencoders (CXNA) and Cell Complex Representations

In this section, we present how to incorporate the cell complex structure into a deep learning model.
Given a cell complex X , we want to learn a function that embeds the cells of X into some Euclidean
space such that the structure information of these cells is preserved. Inspired by the success of graph
autoencoders in representational learning on graphs [24], we propose a general method to learn cell
complex representations. While the method provided in [24] is general and encompasses various
representational learning strategies (e.g., Graph Factorization [2], node2vec [20], and DeepWalk
[35]), it assumes a node to node message passing scheme using edges. Because our setting has
to accommodate for different message passing schemes on a cell complex, we present below an
autoencoder definition that is consistent with the inter-cellular message passing scheme in equation
1. Other cell autoencoder definitions that are consistent with different message passing schemes
can be defined similarly. It is important to note that we are aware of a related work [21] appeared
simultaneously with our work, and [6, 39] where a vector representation based on random walks on
simplices in a simplicial complex was suggested. Contrary to these works, our approach is a unified
framework that describes these special cases to a larger set of vector-based representations and a
larger set of complexes.

A cell complex autoencoder consists of three components: (1) an encoder-decoder system, the
trainable component of the autoencoder, (2) a similarity measure on the cell complex, which is a
user-defined similarity function that represents a notion of similarity between the cells in the complex,
and (3) a loss function, which is a user-defined function utilized to optimize the encoder-decoder
system according to the similarity measure. Mathematically, let X be a cell complex of dimension n.
Then, an encoder on X is a function of the form:

enc ∶X<n → Rd.

This encoder associates to every k-cell ck (0 ≤ k < n) a feature vector zc ∈ Rd that encodes the
structure of this cell and its relationship to other cells in X . A decoder is a function of the form:

dec ∶ Rd ×Rd → R+

This decoder associates to every pair of cell embeddings a measure of similarity that quantifies
some notion of relationship between these cells. The pair (enc,dec) on X is called a cell complex
encoder-decoder system on X 5. The functions enc and dec are typically trainable functions that
are optimized using user-defined similarity measure and loss function. A similarity measure on a
cell complex is a function of the form simX ∶ X<n ×X<n → R+ such that simX(ak,cl) reflects a
user-defined similarity between the two cells ak and cl inX<n. We will assume that simX(ak,cl) = 0
whenever k ≠ l. An example of a similarity measure defined on X is Aadj defined in Section 2.1. We
want the encoder-decoder system specified above to learn a representation embedding of the cells in

5In our definition of the encoder-decoder system, we chose to embed all cells onX in the same ambient space.
This assumption is not needed in general and we are only making this restriction for notational convenience.
Alternatively, one may have a sequence of similarity measure to describe the similarity between cells that have
the same dimension.

5



X<n such that: dec(enc(ak), enc(cl)) = dec(zak , zcl) ≈ simX(ak,cl). To this end, let l ∶ R×R→ R
be a user-defined loss function and define:

Lk = ∑
all possible CO[ak,ck]⊂Xk+1

l(dec(enc(zak), enc(zck)),sim(ak,ck)), (4)

and finally define L ∶= ∑n−1
k=0 Lk.

Different concrete CXNAs can be provided as shown in Table 1. After training the encoder-decoder
model, we can use the encoder to generate the embeddings for k-cell, 0 ≤ k < n.

Table 1: Various definitions of CXNAs.
Method Decoder similarity Loss

Laplacian eigenmaps [5] ∣∣za − zc∣∣22 general dec(za,zc).sim(a,c)
Inner product methods [1] zTa zc Aadj(a,c) ∣∣dec(za,zc) − sim(a,c)∣∣22

Random walk methods [20, 35] ezTa zc

∑b∈Xk ezTa zb
pX(a∣c) −log(dec(za,zc))

We end this section by noting how the random walk method given in Table 1 effectively defines
cell2vec, a cell complex representation method that generalizes node2vec [20] and DeepWalk [35] to
cell complexes6.

Referencias
[1] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola. Distributed

large-scale natural graph factorization. In Proceedings of the 22nd international conference on
World Wide Web, pages 37–48, 2013.

[2] R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing Surveys
(CSUR), 40(1):1–39, 2008.

[3] S. Arora. A survey on graph neural networks for knowledge graph completion. arXiv preprint
arXiv:2007.12374, 2020.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

[5] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14:585–591, 2001.

[6] J. C. W. Billings, M. Hu, G. Lerda, A. N. Medvedev, F. Mottes, A. Onicas, A. Santoro, and
G. Petri. Simplex2vec embeddings for community detection in simplicial complexes. arXiv
preprint arXiv:1906.09068, 2019.

[7] D. Bommes, B. Levy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. Quad-mesh
generation and processing: A survey. In Computer Graphics Forum, volume 32, pages 51–76.
Wiley Online Library, 2013.

[8] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst. Learning
class-specific descriptors for deformable shapes using localized spectral convolutional networks.
In Computer Graphics Forum, volume 34, pages 13–23. Wiley Online Library, 2015.

[9] D. Boscaini, J. Masci, E. Rodola, and M. Bronstein. Learning shape correspondence with
anisotropic convolutional neural networks. In Advances in neural information processing
systems, pages 3189–3197, 2016.

[10] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

6Random walks on graphs can be naturally extended to cell complexes by using the adjacency relations on
cell complexes as a mean to define a random walk between cells of the same dimension.

6



[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[12] E. Bunch, Q. You, G. Fung, and V. Singh. Simplicial 2-complex convolutional neural nets.
NeurIPS workshop on Topological Data Analysis and Beyond, 2020.

[13] W. Cao, Z. Yan, Z. He, and Z. He. A comprehensive survey on geometric deep learning. IEEE
Access, 8:35929–35949, 2020.

[14] Y. Chen, M. Rohrbach, Z. Yan, Y. Shuicheng, J. Feng, and Y. Kalantidis. Graph-based global
reasoning networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 433–442, 2019.

[15] T. K. Dey, K. Li, C. Luo, P. Ranjan, I. Safa, and Y. Wang. Persistent heat signature for pose-
oblivious matching of incomplete models. In Computer Graphics Forum, volume 29, pages
1545–1554. Wiley Online Library, 2010.

[16] S. Ebli, M. Defferrard, and G. Spreemann. Simplicial neural networks. NeurIPS workshop on
Topological Data Analysis and Beyond, 2020.

[17] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

[18] C. Gallicchio and A. Micheli. Graph echo state networks. In The 2010 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2010.

[19] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pages 729–734. IEEE, 2005.

[20] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 855–864, 2016.

[21] C. Hacker. k-simplex2vec: a simplicial extension of node2vec. NeurIPS workshop on Topologi-
cal Data Analysis and Beyond, 2020.

[22] M. Hajij, B. Wang, C. Scheidegger, and P. Rosen. Visual detection of structural changes in
time-varying graphs using persistent homology. In 2018 IEEE Pacific Visualization Symposium
(PacificVis), pages 125–134. IEEE, 2018.

[23] M. Halstead, M. Kass, and T. DeRose. Efficient, fair interpolation using catmull-clark surfaces.
In Proceedings of the 20th annual conference on Computer graphics and interactive techniques,
pages 35–44, 1993.

[24] W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017.

[25] A. Hatcher. Algebraic topology. 2005.

[26] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken. Improving the accuracy, scalability, and
performance of graph neural networks with roc. Proceedings of Machine Learning and Systems
(MLSys), pages 187–198, 2020.

[27] J. Jung, W. Jin, H.-m. Park, and U. Kang. Accurate relational reasoning in edge-labeled graphs
by multi-labeled random walk with restart. WORLD WIDE WEB-INTERNET AND WEB
INFORMATION SYSTEMS, 2020.

[28] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[29] I. Kokkinos, M. M. Bronstein, R. Litman, and A. M. Bronstein. Intrinsic shape context
descriptors for deformable shapes. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 159–166. IEEE, 2012.

7



[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[32] M. Marinov and L. Kobbelt. A robust two-step procedure for quad-dominant remeshing. In
Computer Graphics Forum, volume 25, pages 537–546. Wiley Online Library, 2006.

[33] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst. Geodesic convolutional neural
networks on riemannian manifolds. In Proceedings of the IEEE international conference on
computer vision workshops, pages 37–45, 2015.

[34] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein. Geometric
deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[35] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 701–710, 2014.

[36] L. Piegl and W. Tiller. The NURBS book. Springer Science & Business Media, 1996.

[37] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap.
A simple neural network module for relational reasoning. In Advances in neural information
processing systems, pages 4967–4976, 2017.

[38] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[39] M. T. Schaub, A. R. Benson, P. Horn, G. Lippner, and A. Jadbabaie. Random walks on simplicial
complexes and the normalized hodge 1-laplacian. SIAM Review, 62(2):353–391, 2020.

[40] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling. Modeling
relational data with graph convolutional networks. In European Semantic Web Conference,
pages 593–607. Springer, 2018.

[41] D. I. Shuman, B. Ricaud, and P. Vandergheynst. Vertex-frequency analysis on graphs. Applied
and Computational Harmonic Analysis, 40(2):260–291, 2016.

[42] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[43] J. Stam. Flows on surfaces of arbitrary topology. ACM Transactions On Graphics (TOG),
22(3):724–731, 2003.

[44] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

[45] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9, 2015.

[46] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[47] Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding: A survey of approaches
and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):2724–2743,
2017.

[48] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2020.

8



[49] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1912–1920, 2015.

[50] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[51] Z. Yasseen, A. Nasri, W. Boukaram, P. Volino, and N. Magnenat-Thalmann. Sketch-based
garment design with quad meshes. Computer-Aided Design, 45(2):562–567, 2013.

[52] S.-X. Zhang, X. Zhu, J.-B. Hou, C. Liu, C. Yang, H. Wang, and X.-C. Yin. Deep relational
reasoning graph network for arbitrary shape text detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9699–9708, 2020.

[53] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural networks:
A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

9



4. APPENDIX

4.1. Why Cell Complex Nets?

This work focuses on the construction of the necessary tools that perform neural networks-type
computations over domains that have geometric and combinatorial characteristics. Our ultimate goal
is to harness the power of deep learning in solving problems that arise when studying these domains
or working on problems that are naturally modeled by such domains.

With the above goal in mind, one may wonder why we chose cell complexes for representation over
other less general complexes available in algebraic topology? Cell complexes neural nets (CXNs) are
generalization of graph neural networks (GNNs), and the gap of generalization between graphs and
cell complexes contain many other complexes (e.g., simplicial complexes, polyhedral complexes, and
∆-complexes) that are less general than cell complexes. We discuss below the reasons of why CXNs
form a better and more expressive generalization than, say, graph and simplicial complex neural
networks 7.

Hierarchical relational reasoning representation: Graphs are natural objects for mode-
ling relations between entities. In this context and towards building intelligent behaviour,
GNNs have been extensively explored to build relational reasoning between various objects
[37, 52, 14, 40] and in knowledge graphs [3, 47]. However, we believe building intelligent
behaviour goes beyond the ability to create relational reasoning between entities. Abstraction
and analogy that humans are capable of require building relations among the relations in
a hierarchical manner. The importance of this perspective is evident in the unprecedented
success of deep learning models where complicated concepts are built from simpler ones in
a hierarchical fashion.

Therefore, utilizing GNNs for relational reasoning is “shallow” because the edges can be
only used to model relationships between entities. Even labeled multi-graph [40, 27] are
insufficient to model hierarchical relational reasoning because the relationships modeled
by the multi edges or multi nodes remain between the raw entities and no deeper relations
can be made. CXNs have the ability to model hierarchical relational reasoning. Precisely,
the 1-skeleton of a cell complex can represent the shallow relation between objects while
the higher cells can be used to build more abstract relations between the relations in a
hierarchical manner. Note that other objects, such as simplicial complexes, have uniform
structure, in the sense that k-faces have fixed number of edges, which is not natural to model
hierarchical complex relational reasoning. Within this context, knowledge graphs can be
generalized to knowledge cell complexes where entities and relations in knowledge graphs
are replaced with hierarchical representation of abstract entities and relations between them.

Nature of data and application: Contrary to simplicial complex neural networks, our
definition is a unifying and combinatorial framework that accommodates for almost all data
forms that are significant in practice such as polygonal 2d and 3d meshes. In addition to the
nature of data, the application at hand determines, in many cases, the type of complexes one
needs to work with. For instance, in several CAD [36, 32] and simulation applications [51],
quad meshes are preferred over simplicial complexes [7]. Quad meshes are also preferred
when solving PDE on surface and are best suited for defining Catmull-Clark subdivision
surfaces [43, 23].

Trainability of neural networks over geometric domains and resource efficiency: As is
well-known, GNNs are challenging to train for large graphs [26], and simplicial complexes
require massive amount of memory and computational power even without doing deep
learning computations on them. Hence, it is essential to consider the complexity of the
geometric object representation when designing a neural network over these domains. In this
context, building geometric objects with cell complexes requires significantly less number
of cells than building the same objects with simplicial complexes or other complexes.

7We are aware of few related works about unoriented simplicial neural networks [12, 16] that were published
at the same time our work got published. We note, however, that our approach is applicable to a more general set
of complexes and handles both oriented and non-oriented cases. See Section 4.3 for the oriented case.

10



4.2. Graph Neural Networks

Given a graph G = (V,E), a graph neural network on G with depth L > 0 updates a feature
representation for every node in the graph L times. Initially, every node i is given a feature vector
h
(0)
i . On the k stage of the computation, each node i in the graph collects messages from its neighbors
j, represented by their feature vectors h(k−1)

j , and aggregates them together to form a new feature

representation h(k)
i for the node i. A graph neural network requires the following input data:

1. A graph G = (V,E).

2. For each node i ∈ V we have an initial vector h(0)
i ∈ Rl0 .

Given the above data, the feedforward neural algorithm on G executes L message passing schemes
defined recursively for 0 ≤ k ≤ L by:

h
(k)
i ∶= αk(h(k−1)

i ,Ej∈N (i)(φk(h(k−1)
i ,h

(k−1)
j , ei,j))) ∈ Rlk , (5)

where eij ∈ RD is an edge feature from the node j to the node i, E is a permutation invariant
differentiable function, and αk,φk are trainable differentiable functions. Note that at each stage k, all
messages share the same differentiable functions φk and αk.

Consider the graph given in Figure 4. Let’s say we want to build a graph neural network on this graph
with depth 2. To illustrate the computation, we pick a vertex v1 in the graph. In the first stage, the
surrounding neighbors of v1, namely {v2,v3,v4}, pass their messages to v1. The information obtained
from these messages are aggregated and combined together via trainable differentiable functions α1

and φ1. In the second stage, all neighbors of v1 collect the messages information from their respective
neighbors in a similar fashion as illustrated in Figure 4.

target node
v1

v2

v3
v4 v5

Figure 4: An example of graph neural net with depth 2. The computation are only illustrated on
the red node. In this figure, we abuse the notation and do not distinguish between a node i and its
associated vector h(k)

i . The blue box represents the differentiable functions α1 and φ1 while the white
box represents the functions α2 and φ2.

4.3. The adjacency relation when complex X is oriented

In this section, we discuss the adjacency and coadjacency relations in a cell complex X when X is
oriented. Recall that each cell a in X has two possible orientations. An oriented cell complex is a cell
complex in which every cell has a chosen orientation. When X is regular, then the entries of ∂k are in
{0, ± 1}.

The definitions of facets(cn) and cofacets(cn) are more complicated for the oriented case as
compared to the non-oriented case. When X is oriented, we store along with each cell in facets(cn)
and cofacets(cn) the orientation induced by cn with respect to the maps ∂n and ∂∗n, respectively.

In this case, we use facets+(cn) ⊂ facets(cn), facet−(cn) ⊂ facets(cn) to the subsets of
facets(cn) to denote the cells that are positively oriented and negatively oriented with respect
to cn, respectively. The set cofacets+(cn) and the set cofacets−(cn) are defined analogously. Ob-
serve that facets(cn) = facets+(cn)∪facets−(cn) and facets+(cn)∩facets−(cn) = ∅. Similarly,
cofacets(cn) = cofacets+(cn) ∪ cofacets−(cn) and cofacets+(cn) ∩ cofacets−(cn) = ∅.

11



F1

F2

e2

e1

v1 v2

(a) (b)

v1

v2 v3

v4

e1

e2

e3

e4

e5

e6

F1
F2 F3

e7

Figure 5: Examples of computing the adjacency and co-adjacency neighbors of cells in cell complexes.

Consider the cell complexes given in Figure 5, we compute few examples of the sets we define
above to illustrate the concept. For Figure 5 (a), we have cofacets(v1) = {−e1,e2}, cofacets(v2) =
{e1, − e2, − e3, − e4,e5}, cofacets(v3) = {e3,e4, − e5,e6,e7} and cofacets(v4) = {−e6, − e7}.
Moreover, facets(F1) = {e1, − e2}. Finally, cofacets(e6) = {F3} and cofacets(e7) = {−F3}. On
the other hand, for Figure 5 (b) cofacets(e1) = {F1, − F2} and cofacets(e2) = {F1, − F2}.

If X is an oriented complex, then a cell bn is said to be adjacent to an n-cell an with respect to
an (n + 1)-cell cn+1 when an ∈ facets+(cn+1) and bn ∈ facets−(cn+1). Similarly, an n-cell bn
is said to be coadjacent to an with respect to an (n − 1)-cell cn−1 if an ∈ cofacets+(cn−1) and
bn ∈ cofacets−(cn−1). The set of all adjacent cells of a cell a in X is denoted byNadj(a). Similarly,
the set of all coadjacent cells of a cell a in X is denoted by Nco(a).

In Figure 5 (a), we have Nadj(v2) = {v1,v3} Nadj(v4) = ∅. For Figure 5 (b), we have Nco(F1) =
{F2}. This is because F1 ∈ cofacets+(e1) and F2 ∈ cofacets−(e1). On the other hand, Nco(F2) =
∅. Note that in this example Nadj(e1) = Nadj(e2) = ∅
If an and bn are n-cells inX , then we define the set CO[an, bn] to be the intersection cofacets(an)∩
cofacets+(bn). The set CO[an, bn] describes the set of all incident (n + 1)-cells of bn that have an
as an adjacent cell. Note that in general CO[an, bn] ≠ CO[bn, an]. Similarly, the set C[an, bn] is
defined to be the intersection of facets(an) ∩ facets+(bn).

In Figure 5 (a), we have CO[v2, v3] = {e3,e4} whereas CO[v3, v2] = {e4}. On the other hand, we
have CO[e1, e2] = CO[e2, e1] = ∅ in Figure 5 (b). See also Figure 6 for an illustrative example on
adjacency and coadjacency relationships.

-

-

-

+

+

+

target cell

(a) (b)

+

Figure 6: The adjacency and coadjacency of a cell. (a) The adjacent 1-cells of the orange target 1-cells.
(b) The coadjacent 2-cells of the orange 2-cell. This adjacency/coadjacency relations will be used for
inter-cellular message passing schemes.

4.4. General Message Passing Scheme

The inter-cellular message passing scheme given in Section 2 updates the vectors on the flows from a
given 0-cell and gathers the information from surrounding cells in a radial fashion defined by the
adjacency matrices of the cell complex. Although this message passing scheme is natural from the

12



target face

(a)

(b)

e2
e3 e4

e6

e7

F3

V6

Figure 7: CXN with 2 layers. This example demonstrates a simplicial complex neural network for
clarity. The computation is only demonstrated with respect to the light grey face. The information
flow goes from higher cells to lower incident cells.

perspective of generalizing GNNs passing schemes, it forms a single method out of many other
natural methods that can be defined in the context of CXNs.

4.4.1. Co-adjacency Message Passing Scheme

The message passing scheme given in Section 2 does not update the vectors associated with the final
n− cells on the complex. In certain applications, it might be desirable to make the flow of information
go from the lower cells to the higher cells. An example of such an application is mesh segmentation
where it is desirable to update the information associated with a face on the mesh after gathering
local surrounding information. The scheme given in Section 2 can be easily adjusted for this purpose.
To this end, we utilize the data on the cells complex as before while re-defining the message passing
schemes as follows:

h
(k)
cn ∶= α(k)

n−1(h(k−1)
cn ,Ean∈Nco(cn)(φ(k)

n−1(h(k−1)
cn ,h

(k−1)
an , Fen−1∈C[an,cn](h(k−1))

en−1
))) ∈ Rlkn , (6)

⋮

h
(k)
c1
∶= α(k)

1 (h(k−1)
c1

,Ea1∈Nco(c1)(φ(k)
1 (h(k−1)

c1
,h

(k−1)
a1 , Fe0∈C[a1,c1](h(0)

e0
))) ∈ Rlk1 (7)

Note that the initial vector associated with zero cells in X is never updated in this case. An example
of these computations is illustrated in Figure 7.

4.4.2. Homology and Cohomology-Based Passing Schemes

This subsection briefly outlines a message passing scheme that is consistent with the boundary and
coboundary maps in the context of homology and cohomology of a cell complex.

Let hk be a cell in a, possible oriented, cell complex X . Let Bd(x) be set of cells y of dimension
k − 1 such that y ∈ ∂(x) and x and y have compatible orientations. Similarly, let CoBd(x) denotes
all cells of y ∈X with h ∈ ∂(y) and both x and y have compatible orientations. Denoted by I(x) to
the union Bd(x) ∪CoBd(x), we may define the passing scheme as follows:

h
(k)
cm ∶= α(k)

m (h(k−1)
cm ,Ea∈I(x)(φ(k)

m,d(a)(h(k−1)
cm ,h(k−1)

a ))) ∈ Rlkm (8)

13



Notice that the trainable function φ(k)
m,d(a) needs to accommodate for the fact that the dimension of

the vector associated with a, namely x(k−1)a , may vary for different a ∈ I(x).

4.5. Potential Applications

The proposed CXNs has several potential applications. For example:

1. Studying the type of underlying spaces. The topological type of the underlying space is a
central question in topology. Specifically, given two spaces A and B, are they equivalent up
to a given topological equivalence? In practice, this can be translated to a similarity question
between two structures. Indeed, TDA has been extensively utilized towards this purpose [15,
22]. On the other hand, deep learning allows studying the structure of the underlying space
by building complex relationship between various elements in this space. Cell complexes
form a general class of topological spaces that encompasses graphs, simplicial complexes,
and polyhedral complexes. Hence, CXNs provides a potential tool to study the structure
similarity between discrete domains such as 3D shapes and discrete manifolds 8.

2. Learning cell complex representation. The cell complex autoencoder framework introdu-
ced in 3 extends the applications of graphs autoencoder to a much wider set of possibilities.
In particular, cell complexes are natural objects for language embedding as they can be
used to build complex relationships of arbitrary length. Specifically, we can build a cell
complex out of a corpus of text: words are vertices, they share an 1-cells if they are adjacent
in the corpus, within a sentence, sentences form the boundaries of 3-cells, paragraphs form
the boundaries of 4-cells, chapters form the boundaries of 4-cells, etc. Notice that unlike
less general complexes (e.g. simplical complexes), a k-cell in a cell complex may have an
arbitrary number of (k − 1) incident cells.

8Within this context, GNNs with their current neighborhood aggregation scheme have been shown to not
being able to solve the graph isomophism problem [50].

14


	Introduction
	Cell Complexes: Background and Notations

	Cell Complex Neural Networks (CXNs)
	Convolutional Cell Complex Nets (CCXN)

	Cell Complex Autoencoders (CXNA) and Cell Complex Representations
	APPENDIX
	Why Cell Complex Nets?
	Graph Neural Networks
	The adjacency relation when complex X is oriented
	General Message Passing Scheme
	Co-adjacency Message Passing Scheme
	Homology and Cohomology-Based Passing Schemes

	Potential Applications


