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Abstract

The concept of effective one-electron potentials (EOPs) has proven to be extremely use-

ful in efficient description of electronic structure of chemical systems, especially

extended molecular aggregates such as interacting molecules in condensed phases. Here,

a general method for EOP-based elimination of electron repulsion integrals is presented,

that is tuned toward the fragment-based calculation methodologies such as the second

generation of the effective fragment potentials (EFP2) method. Two general types of the

EOP operator matrix elements are distinguished and treated either via the distributed

multipole expansion or the extended density fitting (DF) schemes developed in this work.

The EOP technique is then applied to reduce the high computational costs of the effec-

tive fragment charge-transfer (CT) terms being the bottleneck of EFP2 potentials. The

alternative EOP-based CT energy model is proposed, derived within the framework of

intermolecular perturbation theory with Hartree–Fock noninteracting reference

wavefunctions, compatible with the original EFP2 formulation. It is found that the com-

putational cost of the EFP2 total interaction energy calculation can be reduced by up to

38 times when using the EOP-based formulation of CT energy, as compared to the origi-

nal EFP2 scheme, without compromising the accuracy for a wide range of weakly inter-

acting neutral and ionic molecular fragments. The proposed model can thus be used

routinely within the EFP2 framework.
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electron potential

1 | INTRODUCTION

In the framework of the theory of intermolecular forces, charge transfer

(CT) is a rather technical term that originates due to algebraization in finite

basis sets and arbitrary fragmentation of a quantum mechanical

(QM) system.1–5 Nonetheless, in supermolecular calculations of a complex

the charge transferred among interacting subsystems can be quite signifi-

cant and the corresponding CT effect on the interaction energy is known

to be often non-negligible. This is particularly evident in donor-acceptor

systems such as H-bonded species and charged complexes.6,7

Since CT is associated with “interfragment” matrix elements, it con-

stitutes a part of a variety of induction-related effects that are rigorously
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defined in the symmetry adapted perturbation theory (SAPT).3 There-

fore, evaluation of CT contribution to the intermolecular interaction

potential4 is far from trivial due to its notably complex QM origins and

cannot be realized in terms of any classical nor semiclassical approach.

Even at the Hartree–Fock8 (HF) approximation any separation of CT

from intramolecular polarization is arbitrary and depends strongly on the

chosen basis set,9,10 to a point of becoming meaningless in the limit of a

complete basis.2 However, Stone and Misquitta showed that CT energy

can in principle be extracted from SAPT calculations by comparing the

induction energies of fictional systems in which basis functions are cen-

tered either solely on the monomers, or the entire interacting complex.5

CT energy was also formulated by Murrell et al.11 in their perturbation

theory in the region of small wavefunction overlap up to second order.

Nevertheless, all these theories are computationally too demanding to

be applied in efficient calculations of intermolecular forces during molec-

ular dynamics simulations, as they require evaluation of the electron

repulsion integrals (ERIs) and their four-index transformation to molecu-

lar orbital (MO) basis.

The apparent difficulty in theoretically characterizing the CT

energy in terms of the interacting molecular fragments is indeed a

challenge in the development of modern force fields or ab initio frag-

mentation methods,12 designed for modeling structure and dynamics

of condensed phase systems.13 This needs to be contrasted with the

Coulombic electrostatics, non-Coulombic repulsion due to Pauli exclu-

sion principle, or even dispersion and induction interactions, which all

to a certain extent can be adequately described by relatively simple

and computationally feasible mathematical models, like the distributed

multipole (DMTP) moments of charge densities, the model van der

Waals repulsive and attractive potentials, or the various distributed

polarizability models. For that reason, the CT effects are usually not

explicitly included in most of molecular mechanics force fields devel-

oped up to date.14 Only a few polarizable force fields exist which

explicitly incorporate the CT effects in an ab initio manner and are

readily applicable to the condensed-phase simulations.15 The notable

examples include the second generation of the effective fragment

potential (EFP2) method,9,16–23 the Sum of Interactions Between

Fragments Ab initio Computed (SIBFA) method,24,25 the Explicit Polar-

ization (X-Pol) method,26 and the S/G-1 approach.27 In all of the

above methods, CT energy formulation is based on the anti-

symmetrization of certain subsets of Hartree products of monomer

wavefunctions and a few additional approximations. Naturally, CT can

also be implicitly included by performing full QM electronic structure

simulations or nonforce-field-based fragmentation techniques.28,29

EFP2, being the most commonly used ab initio force field, was

derived from the first-principles at the HF level9,17,18,30–32 and augmented

with intermolecular dispersion effects by the response theory.33,34 That is

to say, the total intermolecular interaction potential, which is completely

free of any semiempirical parameters, is approximated as

EEFP2 ≈ECoul + EEx−Rep + EInd + EDisp + ECT , ð1Þ

where ECoul is the Coulombic interaction energy of the unperturbed

charge-density distributions of the monomers, represented by the

DMTP approximation with damping to account for the charge-

penetration effects,35 EEx − Rep is the exchange-repulsion energy origi-

nating from the Pauli exclusion principle,30,31 whereas EInd and EDisp

are the induction and dispersion energies obtained from the distrib-

uted polarizability approximation,32–34 and finally ECT is the CT

energy,17,18 being in the limelight of this work.

Despite the considerable success of the EFP2 approach in

accurately modeling the extended molecular systems like

solutions21–23,36 and recently even biomolecules37–40 with the

level of accuracy reaching in many cases19 that of the second-order

Møller–Plesset perturbation theory,41 evaluation of the CT energy

in EFP2 model is still relatively costly for typical applications in the

molecular dynamics simulations. It has been reported that the

implementation of the EFP2 CT energy and gradient in GAMESS

(US) computer program42 with canonical molecular orbitals (CMO)

is on average 20–30 times more computationally demanding than

the other components.17,19 Recent advancement of Xu and Gor-

don18 reduced this cost further by up to 50%–60% by minimizing

the size of the virtual orbital space via the use of quasi-atomic

minimal-basis orbitals.43 (QUAMBOs) In this approach, the diago-

nalization of a Fock matrix in QUAMBO basis yields the original HF

occupied orbitals and the virtual valence orbitals (VVO), which are

then used in the CT energy evaluation instead of the original

canonical virtual MOs (CVOs). Nevertheless, even with this

improvement, being now a standard default in most of EFP2 appli-

cations, the EFP2 CT term still remains the most time-consuming to

evaluate from among all the EFP2 contributions.

In effect, the CT energy component is sometimes ignored when

applying EFP2 to chemical problems.36–38,44–49 In fact, EFP2 CT term

is available only in the GAMESS (US) quantum chemistry program,42

whereas it is neither supported in the official release of the recent

LIBEFP library for linking quantum chemistry packages with the EFP2

functionalities,50 nor in the Q-CHEM quantum chemistry program,51

contrary to the remaining electrostatic, exchange-repulsion, induction,

and dispersion EFP2 terms.

One of the main goals of this work, apart from developing a more

efficient model of the CT energy that is compatible with the EFP2

approach, is to extend the definition of effective one-electron potential

(here referred to as the EOP) technique, that has been widely explored

in the past,8,10,17,52–60 to simplify the rigorous and costly fragment-

based quantum chemical models of extended systems with a particular

emphasis on solvation phenomena and molecular dynamics simulations.

The presented EOP technique of removing ERIs from the working

equations follows the notion of the importance of one-electron densi-

ties in chemistry,53,54 thus reducing the complicated summations

involving ERIs to much shorter expressions involving only one-

electron integrals (OEIs). Therefore, the generalized EOP computa-

tional method is first outlined in Section 2.1. Next, in Section 2.2, this

new extended technique is used to derive an alternative formulation

of the CT energy compatible with the EFP2 method. Subsequently,

after details of computations are discussed in Section 3, in Section 4

the validation of the EOP-based CT model is discussed and its perfor-

mance in terms of accuracy and computational speed is compared
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against the EFP2 model. Finally, a few concluding remarks and outlook

of future work are given in Section 5.

2 | THEORY

2.1 | Incorporating electron repulsion integrals into
effective potentials

2.1.1 | Generalized definition of EOPs for
fragment-based methods

EOP operator can be expressed as v̂eff = λv̂nuc +
Ð
dr j riveffel rð Þhr j, where

the electronic part, associated with a certain effective density ρeff, is

given by Equation (S1), whereas the nuclear part is defined in

Equation (S5)—see Supporting Information for details about the nota-

tion. Consider now an arbitrary linear functional ℱ that explicitly

depends on the ERIs. In this work, EOP-based ERI elimination proce-

dure is defined by the following expression

X
kl�A

ℱ ijjkAlA
D Eh i

= ijv̂eff,Ajj
D E

, ð2Þ

where v̂eff,A is the EOP operator associated with molecule (fragment)

A. Note that, its mathematical form depends on the linear functional

ℱ . In Equation (2), the summations over k and l orbitals are incorpo-

rated into a single one-electron matrix element. Thus, the total com-

putational effort is, in principle, reduced from the two-fold sum

involving evaluation of ERIs to just one much easier to compute OEI.

It is also possible to generalize the above expression even further by

summing over distinct linear functionals ℱt , as well as overall one-

electron operators ôA,

X
t

ℱt BXjAAh i½ �+
X
s

BjôAs jX
D E

=
X
ij�A

Bjv̂eff,Ai jiA
D E

S−1
h i

ij
jAjX
D E

: ð3Þ

where the capital italic letters denote subsets of orbitals associated

with a particular fragment and X = A or B (see the discussion below).

The above design has the advantage that it opens the possibility to

define first-principles effective fragments as long as the functionals

ℱt are well defined, computable and can be partitioned in between

the interacting fragments. The derivation of Equation (3) is shown in

Appendix A.

Three unique classes of ERIs can be recognized based on the

basis function partitioning scheme within the system composed of

two molecules (shall be A and B throughout the course of this work).

They are as follows:

1. the Coulomb-like ERIs of the type hAA| BBi ! hiAjA| kBlBi,
2. the overlap-like ERIs of the type hAA| ABi ! hiAjA| kAlBi, and
3. the exchange-like ERIs of the type hAB| ABi ! hiAjB| kAlBi.
In contrast to the first two classes of ERIs, exchange-like ERIs

cannot be incorporated into EOPs. The Coulomb and overlap-like clas-

ses, which are listed in Table 1, are usually approximated by expanding

the EOP operator in DMTP expansion series, and integrating over one

remaining electron coordinate17 (see Equation [S13]). In this work,

however, this method is considered already too expensive for applica-

tion in the CT energy because evaluation of Equation (S13) requires

calculation of electrostatic potential and electrostatic potential

gradient(s) OEIs. These kind of integrals are typically the most expen-

sive when compared to other standard OEIs such as overlap or kinetic

energy integrals. Therefore, Coulomb EOP matrix elements will be

treated via semiclassical DMTP expansion (see Section S4) which is

more approximate but much less expensive approach. The overlap-like

EOP matrix elements will be treated via the extended DF method,

which is discussed next.

2.1.2 | Extended DF of EOPs

Extended DF of EOPs, which will be referred to as the EDF scheme, is

applicable in case of matrix elements of iAjv̂eff,AjjB
D E

type. These matrix

elements require ERIs of type hAA|ABi only. To get the ab initio repre-

sentation of such an overlap-like matrix element, one can use a proce-

dure similar to the typical DF or resolution of identity (RI), which are

nowadays routinely used to compute electron-repulsion integrals

(ERIs) more efficiently, and reduce computational cost of post-HF

methods.61 DF was also applied to design ab initio force fields.57,58

An arbitrary one-electron potential acting on state vectors jAi of
molecule A can be expanded in an auxiliary and generally

nonorthogonal AO space jai centered on A as

v̂eff,A jAi= j aiVA
a , ð4Þ

where

VA
a = S

−1
aa ajv̂eff,AjA
D E

ð5Þ

under the necessary assumption that the auxiliary basis set is nearly

complete, that is, j aiS−1
aa ha jffi1aa . In the above equations, Sab = ha|bi

denotes the overlap AO integrals matrix. In practice, basis sets

approximately fulfilling such a RI are relatively much larger than the

primary AO basis sets. Therefore, it should be computationally more

efficient to utilize smaller auxiliary AO basis set jmi, which satisfies

v̂eff,A jAi≈ jmiVA
m : ð6Þ

In Equation (6), the EOP matrix VA
m is for the time being unknown.

To find an expression for VA
m , consider a certain orthonormal

MO basis

TABLE 1 Types of matrix elements with EOP operators

Matrix element Overlap-like Coulomb-like

ijv̂eff,Ajj
D E

jjv̂eff,Ajl
D E

Partitioning scheme i � A, j � B j, l � B

ERI class hAA| ABi hAA| BBi
DF/RI form

P
ξ�AV

A
ξiS

AB
ξj

P
ξζ�AS

BA
jξ VA

ξζS
AB
ζl

DMTP form – ρBjl
J

ρeff,A

400 BŁASIAK ET AL.



jXi= j aiTaX ð7Þ

for TaX = S
−1
aa ajXh i , which is as small as possible but accurately repre-

sents the EOP operator, that is,

v̂eff,A jAi= jXi Xjv̂eff,AjA
D E

, ð8Þ

with T†
aXSaaTaX =1XX due to orthonormality. The similarity transforma-

tion matrix TaX can be found from essential eigenvectors of the

covariance matrix of VA
a expressed in the orthogonal RI basis after

Löwdin symmetric orthogonalization, that is,

TaX = S
−1

2
aa QU~a~X , ð9Þ

where

V~aV
†
~a =U~a~Xg~X~XU

†
~a~X

ð10Þ

and

V~a = S
1
2
aaVa : ð11Þ

The operator Q in Equation (9) selects only eigenvectors U~a~X

associated with the nonvanishing eigenvalues stored in the diagonal

matrix g~X~X . Note that, the size of basis X is bounded from above by

the number of state vectors A, which is also an upper bound for the

size of the auxiliary AO basis m. The latter can be found by maximiz-

ing the overlap between the X MOs and their approximate expansion

in basis m, that is,

Z m½ �=max Tr SXX0f g , ð12Þ

where the overlap matrix is

SXX0 = T†
aXSamS

−1
mmSmaTaX

� �1
2
: ð13Þ

The approximate transformation matrix in m basis can be found

by using the basis set projection method of Polly et al.,62

TmX = S
−1
mmSmaTaXS

−1
XX0 : ð14Þ

From the above analysis, the approximate identity operator is

1mm ≈ jmiTmXS
−1
XX0T†

mXhm j , ð15Þ

which results in the following expression for the EOP matrix,

VA
m =TmXS

−1
XX0T†

mXSmaV
A
a : ð16Þ

Equations (9)–(16) define the EDF method and once basis m is

found Equation (6) can be used to effectively eliminate ERIs and

replace them with products of EOP matrix VA
m and overlap matrix

involving m AOs. Note that, in the limiting case of jmi = j ai the EDF

method reduces to the usual DF in the nearly-complete AO basis

according to Equation (5).

It is emphasized here that other possibilities of formulating the

VA
m matrix exist (see Section S5). However, it was found that Equa-

tion (16) seems to be the most computationally efficient because only

overlap integrals are required.

2.2 | Charge transfer interaction energy for
fragment potentials

As the theory that is necessary to eliminate ERIs from fragment-based

models has been given in the previous section, we shift our attention

to the CT energy formulation for the EFP2 model. In the CT treat-

ments of bi-molecular complexes, the CT energy can be expressed as

a sum of the stabilization energy due to excitations from molecule A

to B and vice versa, that is,

ECT = EA!B + EB!A : ð17Þ

2.2.1 | EFP2 model

To provide a complete account on the new CT energy expression pro-

posed here, the original EFP2 formulation is briefly reviewed first. Li,

Gordon, and Jensen used the expansion of the overlap density in Tay-

lor series and found four different approximate theories for the CT

energy.17 The optimal theory, which was shown to well reproduce the

CT energies obtained by using the reduced variational space (RVS)

analysis of Stevens and Fink,63 reads as

EA!B ≈2
XOcc

i�A

XVir
n�B

UA!B
in

�� ��2
εi−Tnn

, ð18Þ

where

UA!B
in

�� ��2 ≈ uin

1−
PAll

m�AS
2
mn

uin +
XOcc

j�B

Sij Tnj−
XAll
m�A

SnmTmj

 !( )
, ð19Þ

and

uin �Ueff,B
in −

XAll
m�A

Ueff,B
im Smn , ð20Þ

in which the summations extend over occupied (denoted by “Occ”),
virtual (denoted by “Vir”) or both (denoted by “All”) sets of MOs. Note

that, in case of using QUAMBOs as MO basis for Fock matrix, VVOs

and resulting orbital energies (instead of the original canonical HF
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orbitals and energies) are to be used. The effective potential energy

matrix elements are defined by

Ueff,B
in � − ijv̂Btotjn

D E
, ð21Þ

and are evaluated by expanding the v̂Btot operator in DMTP series

according to Equation (S13). The apparent success of the EFP2

scheme is rooted in the dramatic simplifications of the ab initio

expressions for interaction energy, in which the relatively costly ERIs

have been effectively removed from the working models while

maintaining the required accuracy. That is, in the case of the EFP2 CT

energy component, the MO energies εi are constant parameters,

whereas the overlap Snm, kinetic energy Tmn, and effective one-

electron electrostatic potential Ueff
in matrix elements are all certain

types of OEIs, orders of magnitude cheaper to evaluate than ERIs.

Unfortunately, due to extensive summations over virtual orbitals,

evaluating Equation (18) is still considerable in cost because typically

large basis sets need to be used for generating the EFP2 parameters.

In effect, calculation of Ueff
in is more expensive as compared to other

types of OEIs and is the bottleneck of EFP2 CT energy calculation,

even when using VVOs. In the following subsections, the alternative

model of the CT energy is proposed by introducing EOPs. Although

application of the EOP method to the CT formulation in EFP2 method

is probably possible, it would be relatively difficult to discuss the

resulting EOP-based EFP2 models because there are four distinct ver-

sions of this theory with a set of different approximations, selected

based on performance assessment rather than a rigorous derivation

manner.17 Instead, perturbation theory of Murrell et al.11 with the

explicit formulation for closed shell systems by Otto and Ladik,10

which is somewhat more rigorous than the EFP2 CT model, is chosen

as a starting point in this work. It is believed that this choice will

enable a clear demonstration of the EOP technique in fragment-based

modeling.

2.2.2 | Otto-Ladik's model: Starting point

The CT energy at HF level of theory can be expressed by10,11

EA!B =2
XOcc

i�A

XVir
n�B

UA!B
in

�� ��2
εi−εn

, ð22Þ

where the coupling constant is given by Otto and Ladik,10 here

referred to as the OL method, as

UA!B
in = − ij v̂Btotjn

D E
+
XOcc

j�B

ij v̂Bjnj j
D E

+
XOcc

k�A

Snk kj v̂Btotj i
D E

+
XOcc

j�B

Sij jj v̂Ai jn
D E

−
XOcc

k�A

XOcc

j�B

Skj 1+ δikð Þ ij v̂Bjnjk
D E

,

ð23Þ

where ijv̂kljjh i� − ijjklh i (see the notation convention explained in

Supporting Information). In the above expression, the following EOP

operators,

v̂Btot = v̂
B
nuc + 2

XOcc

j�B

v̂Bjj and ð24aÞ

v̂Ai = v̂
A
tot−2v̂Aii , ð24bÞ

were introduced without making any approximation to the original

equation from Ref. [10] Note that, ERIs in MO basis are necessary to

evaluate all terms in Equation (23).

2.2.3 | Otto-Ladik's model: Application of EOP
technique

One can immediately notice that the five summation terms from

Equation (23) can be classified based on Table 1 into three groups

regarding the type of ERIs that are required: (i) overlap-like hAB| BBi—
the first two terms; (ii) Coulomb-like hAA| BBi—the third term and

(iii) Coulomb-like hBB| AAi—the two last terms. Note also that, there

are no exchange-like terms needed in this case. Therefore, all the con-

tributions can be recast in terms of the EOPs.

Group (i). Group (i) can be rewritten by using Equation (3) to elimi-

nate the interfragment ERIs of the overlap-like type:

hi j − v̂Btotjni+
XOcc

j�B

v̂Bnjjji
" #

ffi ij
X
η�B

VB
ηnjη

* +
ð25Þ

where the EOP matrix is given according to Equation (5) by

VB
ηn =

X
ζ

S−1
h i

ηζ
vBζn ð26Þ

(with [Saa]ηζ ≡ Sηζ) and

vBζn = −
X
y�B

W yð Þ
ζn +

XOcc

j�B

2 ζnjjjh i−hζjjnjif g : ð27Þ

Note that, all the calculations that are required to obtain VB
ξn are

performed solely on the densities and basis sets associated with the

unperturbed molecule B. Therefore, VB
ξn can be considered as effective

fragment parameters used to compute the first two terms of Equa-

tion (23) and the final expression reads

− ijv̂Btotjn
D E

+
XOcc

j�B

ijv̂Bnjjj
D E

ffi
X
η�B

SiηV
B
ηn , ð28Þ
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which is a great simplification over the original form of group

(i) because only the overlap integrals between the ith MO on molecule

A and ηth auxiliary orbital on molecule B need to be evaluated. Note

that, the only approximation made so far was the application of DF

and RI. If the RI basis set is sufficiently large, the errors due to this

approximation can be minimal and negligible in principle. Alternatively,

the optimized auxiliary AO basis set instead of the RI AO basis set can

be used according to the EDF method developed in Section 2.1.2. In

this case, the matrix elements of the EOP matrices are given by Equa-

tion (16) instead of Equation (5), and the labels η and ζ in Equation (26)

refer to the minimal auxiliary basis set of fragment B. This variant is

easiest to realize when the VVOs are used because their amount is

always less than the minimal basis set size, making the lower bound of

the size of the auxiliary AO basis set very small.

Group (ii). The term belonging to this group can be considered as

a sum of interaction energies between the total charge density distri-

bution of molecule B and the partial density ρik(r) of molecule A,

weighted by the overlap integrals Snk. Using the DMTP expansion

based at the charge centroids of the localized molecular orbitals

(LMOs), ri = iĵrjih i with χ i(r) being localized, this group can be approxi-

mated by

XOcc

k�A

Snk kjv̂Btotji
D E

≈ Sniρ
A
ii � ρBtot : ð29Þ

Here, it was assumed that jρik(r) j � ρii(r) for i ≠ k in most loca-

tions in the case of LMOs, which allows one to conjecture that

ρAki � ρBtot ≈ δikρ
A
ii � ρBtot : ð30Þ

Now, the DMTP expansion of the interaction energy in the right

hand side of Equation (30) can be expressed as

ρAii � ρBtot ≈qi
XAt
y�B

Zy

j ry−ri j +2
XOcc

j�B

qj
j rj−ri j

" #
, ð31Þ

because the distributed charges qi = − 1 whereas the distributed

dipole moments centered at their respective LMO charge centroids

vanish.64 This means that Equation (29) can be finally given as follows:

XOcc

k�A

Snk kjv̂Btotji
D E

≈ −Sni
XAt
y�B

Zy

ryi
−
XOcc

j�B

2
rji

" #
: ð32Þ

Therefore, only overlap integrals and relative distances between

atomic and LMO centroid positions are needed, which leads to a great

reduction of the calculation cost, as compared either to the original

expression or to the multipole expansion (left- and right-hand sides of

Equation (29), respectively). We shall refer to this approximation as to

the local overlap approximation (LOA) resulting in similar expressions

to the ones obtained by Jensen and Gordon in their exchange-

repulsion interaction energy EFP2 model (see eq. [39] in ref. [30]).

Note that, to make this approximation valid, occupied molecular

orbitals need to be spatially localized.

Group (iii). The terms with the overlap integrals involving the

occupied MO on A can be combined into a single summation term,

that is,

XOcc

j�B

Sij jj v̂Ai jn
D E

−
XOcc

k�A

XOcc

j�B

Skj 1−δikð Þ jj v̂Aikjn
D E

=
XOcc

k�A

XOcc

j�B

Skj jj v̂A,effik jn
D E

ffi
XOcc

k�A

XOcc

j�B

Skjρ
B
jn� ρA,effik ,

ð33Þ

where the effective potential vA,effik (with the associated effective den-

sity ρA,effik ) is defined by

v̂A,effik � δik v̂Atot−2v̂Akk + v̂
A
ik

h i
− v̂Aik : ð34Þ

In order to include the ρBjn density, it is approximately represented

here by a set of effective cumulative atomic charges qB, jnð Þ
y

n o
associ-

ated with the effective one-particle density matrix

PB, jnð Þ
βδ =CβjCδn : ð35Þ

In this work, the effective charges were defined via the Mulliken

method as discussed in Supporting Information with λ = 0. By applying

the LOA for the ρAik density the effective potential from Equation (34)

simplifies to

v̂A,effik ≈ δik v̂Atot−2v̂Akk

n o
, ð36Þ

which leads to

XOcc

j�B

Sij jjv̂Atotjn
D E

−
XOcc

k�A

XOcc

j�B

Skj jjv̂Aikjn
D E

≈
XOcc

j�B

Sij
XAt
y�B

qB, jnð Þ
y

XAt
x�A

Zx

rxy
+

2
riy

−
XOcc

k�A

2
rky

" #
:

ð37Þ

Final EOP-based forms of the coupling constant. Gathering the

results from previous paragraphs, the coupling constant can be given

as follows

VA!B
in ≈GA!B

1,in +
XLMO

i0�A

LAii0 GA!B
2,i0n +GA!B

3,i0n

n o
, ð38Þ

where the symbols Gn (n = 1, 2, 3) denote a particular group of

terms from Equations (28), (32), and (37), and the primes denote

the localized MOs with the LA matrix being the CMO–LMO

transformation matrix of molecule A. For completeness, we list

all the EOP-approximated contributions to the coupling constants

below:
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GA!B
1; in �

XRI
η�B

VB
nηSηi , ð39aÞ

GA!B
2; i0n � −Sni0u

BA
i0 , ð39bÞ

GA!B
3; i0n �

XOcc

j�B

Si0 j
XAt
y�B

qB, jnð Þ
y wBA

yi0 , ð39cÞ

where the auxiliary variables are defined as

uBAi �
XAt
y�B

Zy

ryi
−
XOcc

j�B

2
rji

, ð40aÞ

wBA
yi �

XAt
x�A

Zx

rxy
+

2
riy

−
XOcc

k�A

2
rky

: ð40bÞ

Note that, the LOA-based contributions G2 and G3 need to be

transformed back to the canonical MO basis. Thus, the final working

formula for the interaction energy due to CT with excitations from A

to B reads

EA!B ≈2
XOcc

i�A

XVir
n�B

1
εi−εn

GA!B
1,in +

XLMO

i0�A

LAii0 GA!B
2,i0n +GA!B

3,i0n

n o !2

: ð41Þ

The total CT energy is given by the sum of the above contribution

and the twin contribution due to CT from molecule B to A according

to Equation (17).

3 | METHODS

3.1 | Implementation

The benchmark CT energy was assumed to be the CT energy defined

in the RVS method.63 All the models that were used to test the theory

presented in this work, that is, the EFP2, OL, EOP, and RVS methods,

as well as the EDF method, were implemented in our in-house plugin

to PSI4 quantum chemistry program.65 For the CT EFP2 component,

potential energy integrals from Equation (S13) were calculated with

the CAMM up to quadrupoles (distributed centers are atoms), instead

of the DMA (distributed centers are atoms and mid-bond points) as

implemented in most of quantum chemistry programs. The choice of

CAMM versus DMA was due to convenience of implementation and,

because the quantitative accuracy of our EFP2 CT energy code is

comparable to the EFP2 code of GAMESS (US). Thus using only atomic

distribution centers does not affect the interpretation of results in

Section 4. It was also found that accuracy of the LOA from Equa-

tions (32) and (37) is usually slightly better when the Boys localization

method66 is used, as compared to the Pipek–Mezey method.67

Henceforth, the former method was used for molecular orbital

localization throughout all the production calculations. For the sake of

convenience, Cartesian d and f functions were utilized in all calcula-

tions. QUAMBOs were implemented based on the restricted open-

shell Hartree–Fock68 solutions of free atoms. 1s22s12p3 electronic

configuration was assumed for free carbon atom.

3.2 | Validation: bi-molecular complexes

To perform statistical analysis of the accuracy of the EOP CT energy

evaluation, structural databases of bi-molecular complexes in the

noncovalent interactions database NCB31 developed by the Truhlar's

group,69,70,70,71 as implemented in the PSI4 program,65 as well as the

database for ionic systems of Řeźač and Hobza,72 were utilized.

To analyze the asymptotic dependence of the CT energy, four

complexes: (i) (H2O)2, (ii) H2O–CH3OH, (iii) H2O–NH+
4 , and (iv)

NO−
3 –NH+

4 , were chosen as model systems. The reference (zero-dis-

placement) geometries were obtained by performing energy-

optimizations at the HF/6-31+G(d,p) level,73–76 as implemented in the

GAUSFSIAN 16 quantum chemistry program package.77 Subsequently,

30 displaced geometries for each model complex were obtained by

translating one of the monomers along the vector co-linear with the

H-bond or N–N distance in the case of ammonium nitrate. The refer-

ence structures as well as the translation vectors are indicated in the

insets of Figure 2. Throughout all the calculations for bi-molecular sys-

tems, 6-311++G(d,p) primary73,78–82 and aug-cc-pVDZ-JKFit auxil-

iary83 basis sets were used to obtain the EOP matrices (see

Equation (5)) CT energies, unless the EDF scheme (Equation (16)) was

utilized in the case of which the auxiliary basis sets were optimized

for each species separately (see description below). For helium, 6-311

+G(d,p) primary80 and aug-cc-pVDZ-RI auxiliary84 basis sets

were used.

3.3 | Validation: multi-fragment complexes

To test the total accuracy of the EFP2 method with the EOP-based

CT term, three different multi-fragment model systems were selected.

The structures were randomly sampled from classical molecular

dynamics simulations of bulk water, DMSO, and (C2mim)(NTf2) ionic

liquid in standard conditions, and subsequently optimized at EFP2/6-

31++G(d,p) level by using the “GLOBOPT” routine of GAMESS

(US) program.42 Due to considerable size of the complexes chosen, 6-

31++G(d,p) basis set73–76,78,82,85 was used to obtain the interaction

energies. Full RHF interaction energies were calculated as the refer-

ence values in the aggregate-centered basis set86 (ACBS), to eliminate

the basis set superposition error (BSSE). To superimpose EFP2 param-

eters (including the EOP matrices), the Kabsch method was used.87,88

Generation of the EFP2 parameters for reference EFP2 interaction

energy calculations was undertaken by using the “MAKEFP” routine

of GAMESS (US) program.42 The DMA method89,90 was used to gener-

ate the DMTP expansion for electrostatics. Due to technical aspects

of the implementation in our in-house code, the core MOs were also
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included. Boys method was used to localize the MOs.66 Charge-

penetration effects for Coulomb and induction interactions were

taken into account by using the overlap-correction method91 and the

Tang–Toennies method,92 respectively. The Tang–Toennies damping

constant was set to a default value of 0.6 in GAMESS (US). Infinite cut-

off thresholds for the evaluation of Coulomb, induction, exchange-

repulsion, and CT interactions were assumed. Since the reference

level of theory is HF, dispersion interactions were not considered in

this work and, therefore, they were omitted in all the EFP2 interaction

energy calculations.

3.4 | Auxiliary AO basis set optimizations

The optimization routine of the EDF method was fully automatized in

our in-house computer program. Basin hopping global optimization

algorithm93–96 was used, as implemented in the SCIPY Python

library.97 Since the local minima of the objective function are usually

separated by c.a., 0.002 × Zmax where Zmax is equal to the number of

VVOs, the consecutive basin hopping step was assumed to be

accepted with the Metropolis probability of exp − Znew−Zold
0:002×Zmax

� �
. In all of

our optimizations the optimal value of objective function exceeded

0.99×Zmax and was reached in only 10 basin hopping steps. To find

the local minimum in each step, the Sequential Least Squares Pro-

gramming method98 was used with tolerance 1.0×10−9, whereas

bounds for orbital exponents and contraction coefficients were set as

[0.0002,5000.0] and [0.001,1.000], respectively. Additional constraint

for the normalization of contraction coefficients was also

implemented. All optimized auxiliary basis sets were assumed to be

triply-contracted minimal basis sets with a single set of polarization p-

type functions on the 1-row atoms and d-type on larger atoms. The

starting guess parameters were found to be only weakly dependent

on the chemical composition and the primary basis set. The optimized

basis sets for selected molecules are given in Supporting Information,

Section S8.

3.5 | CPU time profiling

Time profiling of the code for the EFP2 and the EOP methods was

performed for all the computational operations required for a single

point energy calculation in a hypothetical sequential run on multiple

geometries such as during a typical molecular dynamics calculation.

Therefore, all the multi-fragment system dependent calculables were

taken into account in the profiling, that is, calculations of OEIs in AO

basis, their two-index transformations to MO basis and assembling of

the interaction energy terms. On the other hand, calculations of the

effective fragment parameters and initial computation of spherical

harmonics transforms necessary for computation of the OEIs were

not included, since they need to be evaluated only once. Time profil-

ing was performed on 1.2 GHz AMD EPYC™ 7301 16-Core Processor

a single core.

4 | RESULTS AND DISCUSSION

In this work, two variants of EOP-based CT energy model were con-

sidered that differ only in the treatment of the G1 terms: (i) the con-

ventional DF from Equation (5) with the use of standard RI basis sets,

referred here simply as to the “EOP” variant; (ii) the EDF method from

Equation (16) with the use of optimal polarization auxiliary AO basis

sets, referred here as to the “EOPm” variant.

4.1 | Accuracy

4.1.1 | EOP variant

The root mean square errors (RMSE) of CT energy evaluations by

using the OL, EFP2, and EOP formulations across various sets of bi-

molecular systems are shown in Table 2, and the scatter plots against

the reference (RVS) is shown in Figure 1 for the VVO basis, and

Figure (S1) for the CVO basis. The overall accuracies of all the models

are good and comparable within approximately 1 kcal/mol tolerance,

with the OL/CVO method being the most accurate (RMSE of

1.13 kcal/mol), and EFP2/CVO and OL/VVO method being the least

accurate (RMSE of about 2.6 kcal/mol). The EOP method performs on

average slightly better than the EFP2 method by about 0.6 kcal/mol

regardless of the type of virtual MOs (CVOs or VVOs) being used.

Interestingly, although ideally the accuracies of the EOP method

should be similar as the OL method, our results show that the accu-

racy of the EOP method is better when using the VVO basis, and

worse when using the CVO basis, as compared to the OL method.

Close inspection of this discrepancy shows that the ERI elimination

technique works quantitatively well only for the overlap-like ERIs

TABLE 2 Accuracy of approximate CT energy methods across
wide range of bi-molecular complexes

Root mean square error (kcal/mol)

Database CVO VVO

OL EOP EFP2 OL EOP EFP2

HB6/04a 0.85 0.86 1.94 2.06 1.63 0.49

DI6/04a 0.71 0.51 0.71 1.42 1.14 0.90

CT7/04a 0.94 1.37 5.44 4.06 1.52 5.19

WI7/04b 0.03 0.05 0.04 0.04 0.04 0.04

PPS5/05b 0.09 0.71 0.52 0.24 0.18 0.13

Ionicc 1.74 3.42 2.20 3.12 2.31 1.39

Total 1.13 2.07 2.58 2.55 1.60 2.20

Note: RVS/6–311++G(d,p) CT energy is the reference. Abbreviations:

“OL” - Otto and Ladik's expression from Equation (4) in ref. [10]; “EOP”—
this work, Equation (41); “EFP2”—ref. [17], here Equation (18). See

Section 3 for more details about the AO basis set settings.
aRefs. [69–71].
bRefs. [69,70,99].
cRef. [72].
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(G1 terms), whereas the contributions of the Coulomb-like ERIs (G2

and G3 terms) are typically overestimated relative to the

corresponding OL results, especially when the VVOs are used. There-

fore, the errors due to the LOA in G2 and G3 terms contribute to an

accidental error cancellation in the VVO basis and loss of accuracy in

the CVO basis. It is also worth noting that despite quite similar overall

accuracy of EFP2 and EOP models in the VVO basis, only EOP model

correctly describes the neutral charge-transfer complexes (compare

blue dots with blue crosses in Figure 1(A)). However, in the case of H-

bonded neutral systems as well as ionic systems (black and red

markers in Figure 1(A), respectively) VVO EFP2 performs better than

VVO EOP by roughly 1 kcal/mol.

The asymptotic dependence of the CT/VVO energy shown in

Figure 2 indicates that in the region near the equilibrium and farther

the EOP method (see solid green dots) is similarly accurate as the

EFP2 method (see solid blue dots) except for the H2O–NH+
4 system,

in the case of which the EOP model overestimates the CT energies

roughly by a factor of 2 whereas the EFP2 model well reproduces the

RVS estimates. In the short-distance regions, the EFP2 method works

quantitatively well for neutral systems, and slightly underestimates

the CT energies for ionic systems, while the EOP model consistently

underestimates the CT energies in all cases except for the H2O–NH+
4

system. In contrast to the VVO basis, using the CVO basis with combi-

nation of the EOP formulation leads to unreasonably large over-

estimation of the CT energy in the ionic systems (see Figure [S2]).

Therefore, the CVO basis is generally not suitable for the EOP model

and, from that point onward, we focus our attention only on the

VVO-based models.

4.1.2 | EOPm variant

Interestingly, using optimal polarization auxiliary basis sets as alter-

native (“EOPm” variant, green open circles in Figure 2) drastically

improves the behavior of the EOP model in the short-distance

region. This is likely due to the fruitful cancellation of errors upon

truncation of the RI space in the G1 terms. Near the equilibrium and

in the long-distance limit “EOP” and “EOPm” variants generate simi-

lar results.

4.1.3 | Multi-fragment systems

From the above results one can conclude that the EFP2 model and

the EOP CT model perform on overall comparably well when the VVO

basis is used, except for the “EOP” variant in the short-range regions

in the case of which CT energies are often underestimated. Neverthe-

less, accuracies near equilibrium geometries are acceptable for both

“EOP” and “EOPm” variants. Therefore, we have applied the follow-

ing three variants of the full EFP2 model for several multi-fragment

model systems (Table 3): (i) original EFP2 formulation; (ii) original

EFP2 but with the CT term replaced with the “EOP” variant—denoted

as the EFP2EOP method; (iii) EFP2 with EOP-based term in “EOPm”
variant—denoted as the EFP2EOPm method. As can be seen from

Table 3, the accuracy of the EFP2EOP method is good and comparable

to the original EFP2 method in most of the cases studied. The total

errors fall in the range of 2–4 kcal/mol as compared to the full HF

results, except for the ðC2mim+ Þ4ðNTf−2 )4 system where the EOP

term introduced error of 7.1 kcal/mol. It is also found that the

EFP2EOPm method performs rather similarly in (H2O)15 and (DMSO)9

systems, and even slightly better in the ðC2mim+ Þ4ðNTf−2 )4 system.

For the latter, the error was reduced by 3 kcal/mol as compared to

the EFP2EOP method, resulting in a total error of 4.1 kcal/mol. How-

ever, EFP2 method is more accurate in ionic liquid system, which is

also consistent with Table 2 where the EFP2 model outperforms EOP

F IGURE 1 Performance of the EOP and EFP2 methods for the
charge transfer (CT) interaction energy with VVOs in bi-molecular
complexes. Structural datasets: The HB6/04 hydrogen bonding
database (black),69–71 the DI6/04 dipole interaction database
(green),69–71 the CT7/04 charge-transfer complex database
(blue),69–71 the WI7/05 weak interaction database (orange),69,70,99 the
PPS5/05 the π–π stacking database (purple),69,70,99and the ionic
systems database (red)72
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in the ionic systems database set. Nevertheless, the general accuracy

of the EOP and EOPm models is acceptable.

4.2 | Reduction of computational costs

The utmost goal of this work is to reduce the computational cost

of the CT energy evaluation in the calculations involving effective

fragment potentials. In Table 4, estimation of the computational

cost of the EFP2 and EOP models is shown. It is apparent that

EFP2 requires much more quantities to be computed as compared

to the EOP method (“Calculables” in the table). Clearly, evaluation

of the EFP2 CT expression from Equation (18) involves quite a

number of different types of OEIs. According to our estimations

that assume sequential (two-step) two-index AO-MO transforma-

tions of OEI matrices and large AO basis sets, the computational

cost is of an order of 2p3(s + t) + 3vop2, where the o and p denote

the number of occupied orbitals and the number of atomic basis

functions, respectively. Here, s, t, and v are the relative costs of

evaluation of the overlap, kinetic energy, and multipole potential

F IGURE 2 Asymptotic
dependence of the charge
transfer energy in the CT
formulation with VVOs for
selected bi-molecular complexes.
(A) Water dimer, (B) water–
methanol complex, (C) water–
ammonium complex, and
(D) ammonium–nitrate complex,

were one molecule has been
translated along the vector
specified in the insets relative to
initial geometry, optimized at
HF/6-31+G(d,p) level. The total
interaction energy is also shown
for comparison in purple color in
this figure. All interaction
energies were obtained at the
HF/6-311++G(d,p) level of
theory

TABLE 3 Interaction energies and
CPU timings for multi-fragment model
systems

(H2O)15 (DMSO)9 ðC2mim+ Þ4ðNTf−2 )4

ΔE Time ΔE Time ΔE Time

Coul. EFP2 −186.1 −66.3 −326.5

Exch.-Rep. EFP2 +126.3 +48.5 +56.6

Ind. EFP2 −45.2 −18.7 −21.6

CT EFP2 −12.9 −0.8 −1.3

EOP −9.2 −3.4 −6.6

EOPm −13.3 −2.1 −3.6

Total EFP2 −117.9 0.89 −37.3 14.2 −292.8 90.9

EFP2EOP −114.2 0.11 −39.9 0.60 −298.1 2.7

EFP2EOPm −118.3 0.07 −38.6 0.37 −295.1a 2.4a

Full HF −115.0 – −40.8 – −291.0 –

Note: Interaction energies and CPU timings are given in kcal/mol and seconds, respectively. All the

calculations were undertaken by using the 6-31++G(d,p) primary basis set and VVOs for the CT energy

calculations. CPU timings for the reference RHF calculation results are assumed to be infinite due to a

few orders of magnitude longer timings as compared to the EFP2 models studied here. See Section 3 for

more details regarding the methods.
aMinimal polarization auxiliary AO basis applied only to C2mim+ fragments.
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OEIs, respectively, with the latter being most expensive but neces-

sary to compute Ueff matrices from Equation (21). On the contrary,

EOP-based expression from Equation (41) requires only overlap

OEIs that are the least expensive, and has the cost of approximate

magnitude of 2sop2 for relatively small auxiliary basis sets. Note

also that, among the calculables that are needed in each EOP-

based CT energy evaluation, are the auxiliary vectors and matrices

from Equations (40a) and (40b), the cost of which is negligible. The

amount of effective fragment parameters, that needs to be sup-

erimposed during the calculations by applying rotation of orbitals

and basis functions (“Superimposable parameters”) is rather the

same in EFP2 and EOP models. This includes the LCAO-MO coef-

ficients in canonical basis, and the primary basis set, with an addi-

tion of the auxiliary basis set for the EOP model. Therefore, the

cost of parameter superimposition should not be significantly larger

as in the EFP2 formulation, provided sufficiently small auxiliary

basis set is used. For example, assuming a water dimer system and

6-311++G(d,p) primary and minimal auxiliary basis set with

s = t = v ≈ 1, the EOP CT method is predicted to be roughly

12–16 times faster than EFP2 CT method. In practice, the parame-

ters t and v will have larger values, especially the latter.

Comparison of the time profiling of full EFP2 and EFP2EOP

methods, shown in Table 3, reveals considerable CPU time savings

when the EOP CT term is used. Based on our implementation, 8-, 23-,

and 33-fold speed-ups in the case of (H2O)15, (DMSO)9, and

ðC2mim+ Þ4ðNTf−2 )4 systems were observed, respectively. The CPU

time saving generally increases with the size of the fragment.

It was also found that using the “EOPm” variant leads to a

further 50% reduction of the CPU time for the CT term evalua-

tion as compared to the “EOP” variant. In effect, the CPU time

for the total energy evaluation reduces by a factor of 1.6 when

using the EFP2EOPm method, since the EOP-based CT term is of

comparable cost as the EFP2 exchange-repulsion term. As a

result, the total CPU time required to evaluate total interaction

energy with the EFP2EOP(m) methods gets dramatically reduced.

The order of magnitude of these speed-ups is in good agreement

with our theoretically predicted values based on Table 4 dis-

cussed above.

The time needed to compute the CT parameters in the prepara-

tory EFP2 calculation is comparable when using the original EFP2

method and the EFP2EOPm method. However, minimization of the

auxiliary basis set size through the EDF scheme, which is required for

the “EOPm” variant, is more costly and, based on our current imple-

mentation, requires additional few CPU hours. Nevertheless, the over-

all CPU time required to compute the EOP CT parameters in the

“EOPm” variant is still negligible as compared to the CPU time needed

for a typical molecular dynamics simulation employing the EFP2

force-field.

4.3 | Memory requirements

The memory requirements for generating the EFP2 and EOP CT

parameters in the “EOP” variant are virtually the same. Slightly more

memory is required for generating parameters in the “EOPm” variant

due to the additional storage of intermediate basin hopping solutions

and steps during the gradient search when optimizing the auxiliary

basis set. However, memory requirements are still much lesser than

those to solve the coupled-perturbed Hartree–Fock (CPHF)

equations,100,101 which is necessary for the preparatory step of EFP2

parameters generation. Therefore, memory requirements are not

expected to be larger as compared to the EFP2 in a typical implemen-

tation of the EOP and the EDF method.

5 | CONCLUSIONS

In this work, the EOP operator technique of eliminating ERIs in the

fragment-based theories of intermolecular interactions was proposed.

It was shown that in general case two types of EOPs can be defined

and worked out either through the DF or the DMTP expansion. For

the first group of EOPs, the DF was extended via the optimization of

the auxiliary AO basis set to further reduce computational costs.

The EOP technique was then applied to calculate the CT energy

in a variety of bi-molecular complexes as well as a few multi-fragment

systems within the framework of the state-of-the-art EFP2 model.

The presented validation of the EOP technique against the Otto–

Ladik CT model as parent theory showed that in most cases elimina-

tion of ERIs is qualitatively correct and the proposed EOP-based

Otto–Ladik model is of comparable accuracy to the CT formulation of

the EFP2 model when the VVOs are used. More importantly, the

EOP-based model significantly outperformed the original EFP2 model

in terms of computational efficiency reaching overall speedups rang-

ing from 8 to 38 times. On the other hand, the magnitude of the EOP-

TABLE 4 Estimated computational cost of the EFP2 and EOP
methods for calculation of CT energy

Method EFP2 EOP

Constant

Parametersa
εi εi , εn, L

A
ii0

Superimposable

Parametersa
CA
αi , C

B
βn , {α}, {β} CA

αi , C
B
αn , {α}, {β}, {η},

Veff,B
nη

Calculablesa Sij , Snk, Snw, Tnn , Tkj, Twj,

Tnj, U
eff,B
in , Ueff,B

ik , Ueff,B
iw

Sij , Sηi, Sni, uBAi , wBA
yi

Costb sp(2p2 + 2op + o2) + tp

(2p2 + 2op + o2) + vop

(3p + o) + o2p

sop(2p + o + a) +

op(a + oN + 2o)

Note: Based on coupling constant expressions from Equation (19) and

Equation (39) for EFP2 and EOP method, respectively.
aThe subscript meaning is as follows: primary basis set functions of A: α;

primary basis set functions of B: β; auxiliary basis set functions of B: η,

occupied MOs of A: i, i
0
, k; occupied MOs of B: j; virtual MOs of A: w;

virtual MOs of B: n; atoms of B: y. Analysis is based on EA ! B term.
bNumbers of: primary basis set functions—p; auxiliary basis set functions—
a; occupied MOs—o; atoms—N. Relative costs: v—multipole potential,

t—kinetic energy; and s—overlap OEIs. It was assumed that the number of

virtual orbitals is equal to n.
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based CT energy is found to be overestimated in ionic systems when

using CVOs, which is not recommended.

Concluding, two new variants of the EFP2/VVO model with EOP-

based CT term: (i) EFP2EOP and (ii) EFP2EOPm were introduced here,

that are more efficient then the formulations proposed so far. The more

efficient EFP2EOPm variant is recommended for small and medium frag-

ments such as water and small organic molecules. For larger fragments,

in the case of which optimization of auxiliary basis sets would be too

costly, slightly slower EFP2EOP variant might be a better choice.

The proposed EOP-based model can be readily incorporated within

the EFP2 method, strongly facilitating the complete (CT-including)

EFP2 energy calculations and molecular dynamics simulations in large

systems. The significant CPU time savings observed in our implementa-

tion demonstrate the high potential of the EOP-based ERI elimination

technique and we expect comparable speed-ups for the subsequent

implementations of our EOP CT formulation in other mainstream codes

such as the GAMESS (US) program and the LIBEFP library.

Furthermore, the proposed EOP-based ERI elimination technique

could in principle be used in virtually any other ab initio fragment-

based approaches for condensed-phase simulations, where ERIs pose

the computational challenge when confronted with the size of the

system. Currently, we are applying the EOP technique developed in

this work for efficient calculations of Frenkel excitonic Hamiltonians

of electronically coupled chromophores, and the results will soon be

published elsewhere.
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APPENDIX: A GENERAL FORM OF

INTERFRAGMENT-SEPARABLE ERI FUNCTIONALS

Here, we derive Equation (3) which defines the interfragment ERI

elimination technique. To generate EOP matrix elements out of inter-

fragment ERIs, the ERI functional must be linear with respect to ERIs

and separable in between fragments so that the effective potential

operators involving orbitals of same fragment can be defined. Here

we consider a general example of such ERI functional, that involves a

generalized Coulomb and exchange operators acting only within the

same fragment orbital subspace. For the case of the hBA| AAi ERI

class,

ℱtJ BAjAAh i½ �f gij = αA, tJð Þ
j

X
kl�A

QA, tJð Þ
kl fAtJ iBjAjkAlA

D Eh i
ðA1aÞ

ℱtK BAjAAh i½ �f gij = αA, tKð Þ
k

X
kl�A

QA, tKð Þ
kl fAtK iBkAjjAlA

D Eh i
, ðA1bÞ

where the linear functional of the electron–electron repulsion opera-

tor |r1 − r2|
−1 is

fAt iBjAjkAlA
D Eh i

�
ð ð

dr1dr2 ϕB
i r1ð ÞϕA�

j r1ð ÞfAt
1

j r1−r2 j
� �

ϕA
k r2ð ÞϕA�

l r2ð Þ :

ðA2Þ

Clearly, the above functionals are linear with respect to ERIs, and

separable in between fragments A and B so that EOP operator of sole

fragment A can be defined. The vectors αA, tJð Þ
j and αA, tKð Þ

k , matrices

QA, tJð Þ
kl , and QA, tKð Þ

kl , as well as functionals fAtJ and fAtK are arbitrary as long

as they depend solely on fragment A. For instance, it immediately fol-

lows that

ℱtJ BAjAAh i½ �f gij = iBjv̂eff,Aj jjA
D E

ðA3Þ

with

veff,Aj r1ð Þ� αA, tJð Þ
j

X
kl�A

QA, tJð Þ
kl

ð
dr2 fAtJ

1
j r1−r2 j
� �

ϕA
k r2ð ÞϕA�

l r2ð Þ : ðA4Þ

Now consider the sum over Coulomb and exchange functionals,

ℱtJ +ℱtK . When ERIs are represented in the same basis a unified EOP

operator cannot be defined. However, one can make use of another

(arbitrary) basis via the unitary transformation U such that

ϕjA rð Þ=
X
μ�A

UA
jμϕ

A
μ rð Þ , ðA5Þ

and expand j and k orbitals in the expressions for the Coulomb and

exchange functionals, respectively. Such basis sets might be for exam-

ple molecular orbitals and atomic basis functions. Now, the summa-

tions over ERIs can be combined and after a suitable interchange of

dummy summation variables the EOP is given by

ℱtJ +ℱtKf gij =
X
μ�A

iB j v̂eff,A, tð Þj j μA
D E

, ðA6Þ

where the EOP operator reads

veff,A, tð Þj r1ð Þ�
X
kl�A

ð
dr2 αA, tJð Þ

j QA, tJð Þ
kl fAtJ

1
j r1−r2 j
� �

ϕA
k r2ð ÞϕA�

l r2ð ÞUA
jμ

�

+ αA, tKð Þ
j QA, tKð Þ

kl fAtK
1

j r1−r2 j
� �

ϕA
j r2ð ÞϕA�

l r2ð ÞUA
kμ

�
:

ðA7Þ

Defining EOPs for the hBB| AAi ERI class allows the following

functionals

ℱt BBjAAh i½ �f gij =
X
kl�A

YA, tð Þ
kl fAt iBjBjkAlA

D Eh i
, ðA8Þ

(YA, tð Þ
kl matrices being arbitrary) which immediately can be recast

via an EOP

ℱt BBjAAh i½ �f gij = iB j v̂eff,A, tð Þ j jB
D E

ðA9Þ

with

veff,A r1ð Þ�
X
kl�A

YA, tð Þ
kl

ð
dr2 fAt

1
j r1−r2 j
� �

ϕA
k r2ð ÞϕA�

l r2ð Þ : ðA10Þ

By summing over t (all distinct functionals), one arrives to two-

electron part of Equation (3). The derivation of the one-electron part

of this equation is straightforward.
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