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ABSTRACT 
The widespread use of High-Throughput Sequencing (HTS) for detection of plant viruses 
and sequencing of plant virus genomes has led to the generation of large amounts of data 
and of bioinformatics challenges to process them. Many bioinformatics pipelines for virus 
detection are available, making the choice of a suitable one difficult. A robust 
benchmarking is needed for the unbiased comparison of the pipelines, but there is 
currently a lack of reference datasets that could be used for this purpose. We present 7 
semi-artificial datasets composed of real RNA-seq datasets from virus-infected plants 
spiked with artificial virus reads. Each dataset addresses challenges that could prevent virus 
detection. We also present 3 real datasets showing a challenging virus composition as well 
as 8 completely artificial datasets to test haplotype reconstruction software. With these 
datasets that address several diagnostic challenges, we hope to encourage virologists, 
diagnosticians and bioinformaticians to evaluate and benchmark their pipeline(s). 
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Introduction 

Viruses are responsible for epidemics in a wide variety of crops and pose a major threat to agriculture and 

food security worldwide (Domingo and Holland, 1997). RNA viruses are the most common virus group infecting 

plants. Within their host, they exhibit a high level of genetic diversity that is mainly due to the low fidelity of 

their RNA-dependent RNA polymerases, their high mutation rates, their short generation times and large 

population sizes (Elena and Sanjuán, 2007). The constant maintenance of genetic diversity within the virus 

population allows it to adapt quickly to changing environments, for instance by overcoming plant resistance 

genes or emerging in a new host (García-Arenal and McDonald, 2003; Longdon et al., 2014). Being able to 

perform a reliable and accurate diagnostic is therefore crucial to implement effective management practices, 

reduce disease spread and prevent epidemics. Traditional diagnostic methods include transmission electron 

microscopy (TEM), which allows to visualize viral particles, but also serological and molecular methods such as 

Enzyme-Linked ImmunoSorbent Assay (ELISA), Polymerase Chain Reaction (PCR), Reverse Transcription PCR 

(RT-PCR) or quantitative PCR (qPCR), which allow the detection and/or quantification of a particular virus 

species or strain. While these methods show high sensitivity, specificity and reproducibility, they rely on our 

knowledge and characterization of the virus as well as the availability of antibodies or specific primers (Massart 

et al., 2014). Moreover, they are extremely sensitive to the presence of genetic variants, which appear 

frequently in RNA virus populations through mutations, recombination or reassortment. 

 

In the last decade, High-Throughput Sequencing (HTS) has revolutionized plant virus discovery and 

diagnosis (Maree et al., 2018; Massart et al., 2014). The main advantage of this technology is that it allows a 

complete characterization of the virus populations infecting a plant, without any a priori knowledge of the 

infecting viruses. Current HTS platforms can ascertain the molecular sequences of large quantities of nucleic 

acid fragments at a very low base pair price, allowing the simultaneous sequencing of many samples. The 

increased use of HTS in the diagnostic field has led to the generation of massive amounts of data and resulted 

in computational and bioinformatics challenges to process them (i.e. storage, processing speed, bioinformatics 

competence) (Olmos et al., 2018). Many bioinformatics pipelines for plant virus detection have been 

developed, from easy-to-use commercial software to command line tools (for review, see Blawid et al., 2017; 

Jones et al., 2017). A typical diagnostic pipeline will do quality control, pre-processing of the reads (e.g. quality 

filtering/trimming, adapter removal, optional merging of forward and reverse reads), an optional plant host 

removal and/or assembly step, taxonomic classification of reads or contigs (mapping, sequence/domain 

similarity searches or k-mer based approaches against virus or more general databases) and finally - if 

necessary - haplotype reconstruction. Dedicated software combining all analyses steps exist, such as VirAnnot 

(Lefebvre et al., 2019), Virusdetect (Zheng et al., 2017), Virfind (Ho and Tzanetakis, 2014), Virtool (Rott et al., 

2017), IDseq (Kalantar et al., 2020), Galaxy (Afgan et al., 2018) with for example Kodoja as plug-in (Baizan-Edge 

et al., 2019), Truffle (Visser et al., 2016), but also more general commercial software, such as CLC Genomics 

Workbench and Geneious Prime. Most of them aim to improve virus detection and/or reduce processing time, 

but the high number of pipelines available complicate the choice of the most appropriate for a given goal or 

environment. Moreover, the sequence analysis strategy can have a significant influence on the ability to detect 

viruses from identical datasets, as shown by a large-scale performance testing involving 21 plant virology 
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laboratories (Massart et al., 2019). Performing a robust benchmarking is therefore essential for the unbiased 

comparison of the pipelines (Escalona et al., 2016; Jones et al., 2017). 

 

In plant disease diagnostics, validation of the bioinformatics pipelines used for the detection of viruses in 

HTS datasets is at its infancy and there is currently a lack of reference datasets generated for benchmarking 

purposes. The development of such datasets is a key step in the standardization of bioinformatics protocols, 

since it allows objective comparison between pipelines. These observations have led to the creation of the 

Plant Health Bioinformatics Network (PHBN), an Euphresco network project aiming to build a community 

network of bioinformaticians/computational biologists working on plant health. One of the objectives of this 

project is to help researchers to compare and validate their virus detection pipelines by creating open access 

reference datasets. In this study, we first identified the major challenges that can occur when detecting and 

identifying plant viruses in Illumina RNA-seq data. Next, we selected 3 real datasets and created 7 semi-

artificial and 9 completely artificial datasets that can be used by the plant virology community as a starting 

point for testing and benchmarking pipelines to tackle some of the identified challenges. 

 

Creation of the datasets 

Two main kinds of reference datasets can be used: real and artificial ones. Working with real datasets offers 

the benefit of providing real life scenarios which are close to those encountered by plant pathologists and 

diagnosticians. However, the use of such purely empirical data has limitations since it is impossible to know 

with an absolute certainty the “true” value that should be used to benchmark the performance of the pipelines 

(Escalona et al., 2016). Artificial datasets do not have this drawback since their composition is totally controlled 

and known. However, completely artificial datasets are often unrealistic and too simple, and may thus fail to 

represent accurately the complexity of real HTS datasets. In order to overcome the drawbacks of these two 

approaches, we have chosen to create semi-artificial datasets composed each of a real HTS dataset from virus-

infected plants spiked with additional in-silico generated viral reads. The artificial component of these semi-

artificial datasets is totally known, but the datasets are still complex and close to real-life situations. We also 

developed and propose some real and some completely artificial datasets, which can be used for specific 

purposes as explained bellow. A detailed description of the procedure used to generate each kind of dataset 

is given in Text S1. 

 

As a starting point for the creation of the datasets, we identified the main challenges when detecting and 

identifying plant viruses in Illumina RNA-seq data (Figure 1). Next, we gathered existing RNA-seq datasets 

which were thoroughly characterized. A total of 8 real RNA-seq datasets from virus/viroid-infected plants 

obtained using Illumina technology were chosen in order to cover as much as possible host plant diversity (fruit 

trees, vegetables and biological indicator plants), pathogen diversity (RNA and DNA viruses, viroids) and 

sequencing options (reads length ranging from 50 to 301 bp between each dataset, number of reads per 

dataset from 65,177 to 49,052,832 reads, and single-end or paired-end reads) (Table S1). For each real dataset, 

the presence of the viruses/viroids identified was confirmed by PCR and/or ELISA. Five of these real datasets 

were used to create 7 semi-artificial datasets (Datasets 1, 2, 3, 4, 5, 6 and 10) (Table 1, Figure 1), either by 
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adding artificial reads of a virus/viroid (already present or not in the dataset) or by removing part of the real 

viral reads. The artificial viral reads were synthesized using the ART software (Huang et al., 2012) which allows 

the generation of artificial next-generation sequencing reads showing the same quality score as the reads from 

a real dataset. For each semi-artificial dataset, similar headers have been assigned to the artificial and real 

reads, and both types of reads have been mixed in each FASTA file. The three other real datasets (Datasets 7, 

8 and 9) were already showing a challenging viral composition (presence of a defective variant, presence of a 

cryptic virus and presence of several genomic segments showing different concentrations) and have not been 

modified. Each dataset was developed or selected to address one of the identified challenges that could 

prevent virus detection or a correct virus identification from HTS data (i.e. low viral concentration, new viral 

species, non-complete virus genome, etc) (Figure 1). 

 

In addition, eight fully artificial datasets (Datasets 11-18), composed only of viral reads were also created. 

These datasets can be used to test haplotype reconstruction software, the goal being to evaluate the ability to 

reconstruct all the isolates present in a dataset. Viral haplotype reconstruction is one of the most challenging 

problem in bioinformatics. For instance, a recent study shows that most of the commonly used haplotype 

reconstruction software perform poorly when they are used on an artificial HIV-1 virus population showing 

high genetic diversity (Eliseev et al., 2020). Viral haplotype reconstruction being a hard task, we have generated 

completely artificial datasets, which already constitute a useful and challenging resource. They are also the 

first datasets composed of plant RNA viruses and developed for this purpose since earlier artificial datasets 

always focused on human and animal viruses (Schirmer et al., 2014). Each artificial dataset consists of a mix of 

several isolates from the same viral species showing different frequencies. The virus species have been 

selected to be as divergent as possible. Therefore, the selected viruses have (i) a DNA or RNA genome, (ii) a 

single or double-stranded genome, (iii) a linear, circular and/or segmented genome, and (iv) show a genome 

length ranging from 2.8 to 17.1 kb. For each isolate, artificial viral reads of 150 bp have been synthesized using 

the ART software (Huang et al., 2012) from NCBI reference genomes and no single nucleotide polymorphisms 

(SNPs) have been added. 

 

Note that all the datasets were sequenced or simulated using an Illumina four-channels system (either 

HiSeq or Miseq), except the datasets 9 and 10 which were sequenced on an Illumina two-channels system 

(NextSeq) (Table 1). Recently, a technological bias corresponding to erroneous guanine base calls has been 

revealed when using the two-channels system (De‐Kayne et al., 2020). Users should therefore be aware that 

the use of their pipelines on datasets from two-channels system after benchmarking with our datasets (mainly 

generated with four-channels system) may require additional steps in order to identify this potential bias. 

Availability and description of the datasets 

A GitLab repository (https://gitlab.com/ilvo/VIROMOCKchallenge) is available and provides a complete 

description of the composition of each dataset, the methods used to create them, a link to download them 

and their goals. The datasets themselves are stored in Dryad (datadryad.org). We provide here a quick 

summary of the composition of the datasets and the challenges they address (Table 1).

https://gitlab.com/ilvo/VIROMOCKchallenge
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Figure 1. Schematic representation of the bioinformatics challenges presented in this study that could prevent detection of, e.g., viruses, viral strains, viral 

isolates, SNPs. Each challenge is addressed by at least one dataset. The datasets are either real (blue), semi-artificial (orange) or completely artificial (grey). 
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- Dataset 1: The challenge addressed is the detection of several virus strains showing different concentrations, 

some being very low. In this case, one or more strains can be missed, especially if the sample has not been 

enriched in viral sequences (Barzon et al., 2013; Knierim et al., 2019). The real dataset is composed of mixed 

infections of citrus tristeza virus (CTV), citrus vein enation virus (CVEV), citrus exocortis viroid (CEVd), citrus 

viroid III (CVd-III) and hop stunt viroid (HSVd) on citrus. Artificial reads for three CTV strains (JQ911663 – strain 

T68, KU883267 – strain S1 and MH323442 – strain T36) have been added to the dataset at different read depth. 

 

- Dataset 2: The challenge addressed is the identification of different types of mutations at different 

frequencies. The viral populations infecting a plant are usually composed of closely related virus genotypes, 

differing by a few SNPs (substitution) or indels (insertion or deletion) and at differing relative concentrations. 

Some variants can be missed depending on their frequencies, the bioinformatics strategy or the presence of 

sequencing errors (Lefterova et al., 2015). The same real data set from a naturally infected citrus as in dataset 

1 has been used with the addition of artificial reads for the CTV MH323442 isolate, using 5 nearly identical 

sequences of this isolate, each differing by 1 substitution, 1 base deletion and 1 base insertion. Artificial reads 

for the unmutated MH323442 isolate have also been added to the dataset 2. The reads for the various 

MH323442 variants have been added at different frequencies. 

 

- Dataset 3: The challenge addressed is the detection of several viral/viroid species showing different 

frequencies and incomplete virus genome coverage. The assembly process can result in incomplete genome 

sequences, making virus identification challenging (Boonham et al., 2014), in particular when the whole 

genome is not completely covered, or when a genomic segment is absent or is covered by a low number of 

reads in the case of a multipartite virus. The real dataset corresponds to a mixed infection of grapevine 

rupestris vein feathering virus (GRVFV), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine 

leafroll-associated virus 2 (GLRaV2), hop stunt viroid (HSVd) and grapevine yellow speckle viroid 1 (GYSVd1) 

on grapevine. Reads assigned to GRSPaV, GRVFV and GLRaV2 have been randomly removed in order to obtain 

incomplete virus genome coverage for these 3 viruses. 

 

- Dataset 4: The challenge addressed is the detection of closely related viroids. Closely related virus/viroid 

species within a genus can share high nucleotide identities, leading to taxonomic assignation problems and 

complicating the identification of the virus/viroid (Thekke-Veetil et al., 2018). The real dataset is composed of 

mixed infections of grapevine red blotch virus (GRBV), grapevine rupestris stem pitting-associated virus 

(GRSPaV), hop stunt viroid (HSVd) and grapevine yellow speckle viroid 1 (GSYVd1) on grapevine (Reynard et 

al., 2018). Artificial reads of grapevine yellow speckle viroid 2 (GYSVd2) isolate DQ377131 have been added to 

the dataset. This reference shows a pairwise nucleotide identity of 73.9% with the consensus sequence of the 

naturally present GYSVd1, a portion of the two genomes being very similar while the other part show more 

variability. 

 

- Dataset 5: The challenge addressed is the detection of a recombinant strain and one of its parents in mixed 

infection. HTS samples can be infected by genetically close parental and recombinant strains. During the 

assembly process, it can sometimes be challenging to assemble and detect recombinant genomes while 
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avoiding to create artificial ones, in particular when using short-sequence reads (Martin et al., 2011). The real 

dataset contains reads of two potato virus Y (PVY) isolates belonging to different strains (an isolate belonging 

to the NTN recombinant strain and the N605 isolate belonging to the N strain). Artificial reads to a further two 

isolates have been added, the parental isolate AY884983 (N strain), and isolate EF026076, a recombinant 

between isolates belonging to the N and O strains (Hu et al., 2009). Both isolates show an overall pairwise 

nucleotide identity of 88.2% but the 5’ part of their genomes (first ~2,000 nucleotides) are almost identical. 

 

- Dataset 6: The challenge addressed is the detection of a new PVY strain that does not exist in the database, 

within a dataset already involving other PVY strains. Novel viruses can be detected by homology searches with 

databases. Nevertheless, viral sequences that are too divergent from known viruses might not be detected by 

this such searches. Other approaches like homology-independent algorithms may be needed to fully 

characterize such new viruses (Wu et al., 2015). The real dataset is the same as dataset 5. It has been spiked 

with artificial reads from the FJ214726 PVY isolate, which was selected because it is among the most divergent 

PVY isolates available in GenBank (maximum 84% nucleotide identity with any other available PVY isolate). The 

amino acid sequence of the polyprotein of FJ214726 was obtained and then reverse translated into a 

nucleotide sequence using the online EMBOSS Backtranseq tool (Madeira et al., 2019). Thanks to the 

degeneracy of the genetic code, the nucleotide sequence thus obtained was different from the original 

FJ214726 sequence. Non-synonymous substitutions were further manually added to the new artificial 

sequence, increasing divergence from any known PVY isolate. The final artificial sequence shows only 71.8% 

nucleotide identity and 98.9% amino acid identity with FJ214726 and was used to generate the artificial reads 

finally added to the dataset. The artificial genomic sequence is available in the GitLab repository for 

comparison purposes. 

 

- Dataset 7: The challenge addressed is the detection of both a defective and a normal length variant from the 

same sample. Related viral variants infecting a sample and showing similar genome portions can be particularly 

difficult to distinguish. The real dataset is composed of two variants of tomato spotted wilt virus (TSWV) from 

tobacco. The genome of TSWV consists of 3 negative single-stranded RNA segments named S, M and L. The 

variants diverge only for the L genomic segment, one being full length (8,913 bp) and the other being a shorter 

defective form (2,612 bp) missing the genomic region from genome position 760 to 7,060 bp. The real dataset 

shows already a challenging composition, and has therefore not been spiked with artificial viruses. 

 

- Dataset 8: The challenge addressed is the detection of a low concentration persistent virus. The real dataset 

is composed of Pelargonium flower break virus (PFBV) and Chenopodium quinoa mitovirus 1 (CqMV1), a virus 

from Chenopodium which is localized in mitochondria and presents only one ORF that encodes the RNA-

dependent RNA polymerase (Nerva et al., 2019). The cryptic virus CqMV1 represents a low proportion of reads 

(around 0.5%). The real dataset shows already a challenging composition, and has therefore not been spiked 

with artificial viruses. 

 

- Dataset 9:  The challenge addressed is the detection of all the genomic segments of a virus with each segment 

having a different concentration. The real dataset is composed of Pistacia emaravirus B (PiVB), a newly 
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discovered Emaravirus from the pistachio tree (Buzkan et al., 2019). The viral genome is composed of seven 

distinct negative-sense, single-stranded RNAs, showing different frequencies in the dataset. The real dataset 

shows already a challenging composition, and has therefore not been spiked with artificial viruses. 

 

- Dataset 10: The challenge addressed is the detection of a new viral strain that does not exist in the database, 

thus adding a ’virus’ that is not already present in the dataset (in contrast to the challenge addressed in dataset 

6). The real dataset is composed of plum bark necrosis stem pitting-associated virus (PBNSPaV) from Prunus. 

A new artificial isolate of plum pox virus (PPV) has been created as described above for the creation of the 

artificial PVY isolate in dataset 6. The new artificial PPV strain has finally been added to the dataset, and its 

sequence has been made available as well to be able to compare resulting assemblies with it. 

 

- Datasets 11 to 18 can be used to test the ability to reconstruct haplotypes from mixed infections of virus 

isolates belonging to the same virus species. They are completely artificial datasets and their composition is 

summarized in Table 1. 

 

The VIROMOCK challenge 

The goal of all these reference datasets is to allow to perform an objective comparison of bioinformatics 

pipelines used to detect and analyse viruses. At first, researchers can use these datasets to check whether their 

current pipelines are behaving as expected, and how modifying some parameters can affect their pipeline 

performance depending on the challenge investigated. Second, it can be interesting for researchers to 

compare their results with those of other labs/pipelines. Third, using the datasets in different pipelines will 

assess their potential value as benchmarking datasets. For this purpose, we propose to organize a “VIROMOCK 

challenge”. It is envisioned as a dynamic challenge to attract the community of bioinformatics and plant 

virologists to engage in evaluating their pipelines and at the same time evaluating the usefulness and 

robustness of the proposed benchmarking datasets. In the frame of this challenge, researchers are encouraged 

to provide feedback on the results they obtained for each dataset they analyse and on the difficulties they may 

have encountered. This can simply be done by completing a Google spreadsheet added to each dataset page 

of the GitLab repository. Then, the results will be compiled for each dataset, helping to identify which pipelines 

perform best in approximating the real composition of the datasets and providing an idea about the robustness 

of the parameters used. If researchers agree, the compiled results will be open access on the GitLab repository 

for each dataset, allowing an easy and objective comparison of the results.  
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Table 1. Characteristics of each dataset 

Dataset 
Dataset 

type 
Plant species 

Virus/Viroids 
already 
present1 

Modification 

Reads (bp) 
and Illumina 
sequencing 

platform 

Total number of 
reads2 

Challenge Dryad DOI Dryad URL 

1 
Semi-

artificial 
Citrus 

CTV, CVEV, 
CEVd, CVd-III, 

HSVd 

Addition of CTV  
(3 strains, 97,258 

reads) 

2 x 150 
 

HiSeq 

21,703,434 (R1) 
21,703,434 (R2) 

Different viral 
concentration  
(CTV strains) 

10.5061/d
ryad.crjdfn

32c 

https://datadryad.org/stash
/share/-

7HhHMNTIrd6dH8CptzxdbY
USKEfrssdrJSGnwj3ikg 

2 
Semi-

artificial 
Citrus 

CTV, CVEV, 
CEVd, CVd-III, 

HSVd 

Addition of CTV 
(5 haplotypes of 1 

strain, 204,312 
reads) 

2 x 150 
 

HiSeq 

21,756,961 (R1) 
21,756,961 (R2) 

Mutation present in 
different 

frequencies (CTV 
haplotypes) 

10.5061/d
ryad.ns1rn

8pq9 

https://datadryad.org/stash
/share/BizfeTxta38F511-
Ybk9BhJGCYdMYfuwX0-

wt15IRhA 

3 
Semi-

artificial 
Grapevine 

GRSPaV, 
GLRaV2, 

GRVFV, HSVd, 
GYSVd1 

Removing of 
31,729 real viral 

reads of GRSPaV, 
GLRaV2 and 

GRVFV 

2 x 150 
 

HiSeq 

24,526,416 (R1) 
24,526,416 (R2) 

Different viral 
concentration (at 
the species level)  
+ Non complete 

virus genome 
coverage (GRSPaV, 

GLRaV2 and GRVFV) 

10.5061/d
ryad.zs7h4

4j6d 

https://datadryad.org/stash
/share/ivZTmYW5eZyIZizXT
Uia5fpcSFmx0xEdJNqkVPEb

SGo 

4 
Semi-

artificial 
Grapevine 

GRBV, GRSPaV, 
HSVd, GYSVd1 

Addition of 
GYSVd2 (1 strain, 

2,306 reads) 

2 x 75 
 

HiSeq 

10,054,658 (R1) 
10,054,658 (R2) 

Viroids with very 
similar sequence 

(GYSVd1 and 
GYSVd2) 

10.5061/d
ryad.jsxks

n06w 

https://datadryad.org/stash
/share/BPTIBtceLQGaTuz_ll
6X8vHUCNSvJYw2_RAQgQ7

ZLrY 

5 
Semi-

artificial 
Potato PVY 

Addition of PVY (2 
strains,  

149,816 reads) 

1 x 50 
 

HiSeq 
31,277,475 

Mix of recombinant 
and parental viral 

PVY strains 

10.5061/d
ryad.xgxd2

54dw 

https://datadryad.org/stash
/share/r8Iscjfe4WM6F-

64YJfmK2bzksE1SQ7UrUwK
hLfIhdo 

6 
Semi-

artificial 
Potato PVY 

Addition of PVY 
(1 strain,  
199,668 
reads) 

1 x 50 
 

HiSeq 
31,327,327 New PVY strain 

10.5061/d
ryad.tx95x

69vw 

https://datadryad.org/stash
/share/K2HpS0AS6Y-

9Ss7GAf7eVKnv2EPq_Q4oJY
Zr8hKQmxM 

https://datadryad.org/stash/share/-7HhHMNTIrd6dH8CptzxdbYUSKEfrssdrJSGnwj3ikg
https://datadryad.org/stash/share/-7HhHMNTIrd6dH8CptzxdbYUSKEfrssdrJSGnwj3ikg
https://datadryad.org/stash/share/-7HhHMNTIrd6dH8CptzxdbYUSKEfrssdrJSGnwj3ikg
https://datadryad.org/stash/share/-7HhHMNTIrd6dH8CptzxdbYUSKEfrssdrJSGnwj3ikg
https://datadryad.org/stash/share/BizfeTxta38F511-Ybk9BhJGCYdMYfuwX0-wt15IRhA
https://datadryad.org/stash/share/BizfeTxta38F511-Ybk9BhJGCYdMYfuwX0-wt15IRhA
https://datadryad.org/stash/share/BizfeTxta38F511-Ybk9BhJGCYdMYfuwX0-wt15IRhA
https://datadryad.org/stash/share/BizfeTxta38F511-Ybk9BhJGCYdMYfuwX0-wt15IRhA
https://datadryad.org/stash/share/ivZTmYW5eZyIZizXTUia5fpcSFmx0xEdJNqkVPEbSGo
https://datadryad.org/stash/share/ivZTmYW5eZyIZizXTUia5fpcSFmx0xEdJNqkVPEbSGo
https://datadryad.org/stash/share/ivZTmYW5eZyIZizXTUia5fpcSFmx0xEdJNqkVPEbSGo
https://datadryad.org/stash/share/ivZTmYW5eZyIZizXTUia5fpcSFmx0xEdJNqkVPEbSGo
https://datadryad.org/stash/share/BPTIBtceLQGaTuz_ll6X8vHUCNSvJYw2_RAQgQ7ZLrY
https://datadryad.org/stash/share/BPTIBtceLQGaTuz_ll6X8vHUCNSvJYw2_RAQgQ7ZLrY
https://datadryad.org/stash/share/BPTIBtceLQGaTuz_ll6X8vHUCNSvJYw2_RAQgQ7ZLrY
https://datadryad.org/stash/share/BPTIBtceLQGaTuz_ll6X8vHUCNSvJYw2_RAQgQ7ZLrY
https://datadryad.org/stash/share/r8Iscjfe4WM6F-64YJfmK2bzksE1SQ7UrUwKhLfIhdo
https://datadryad.org/stash/share/r8Iscjfe4WM6F-64YJfmK2bzksE1SQ7UrUwKhLfIhdo
https://datadryad.org/stash/share/r8Iscjfe4WM6F-64YJfmK2bzksE1SQ7UrUwKhLfIhdo
https://datadryad.org/stash/share/r8Iscjfe4WM6F-64YJfmK2bzksE1SQ7UrUwKhLfIhdo
https://datadryad.org/stash/share/K2HpS0AS6Y-9Ss7GAf7eVKnv2EPq_Q4oJYZr8hKQmxM
https://datadryad.org/stash/share/K2HpS0AS6Y-9Ss7GAf7eVKnv2EPq_Q4oJYZr8hKQmxM
https://datadryad.org/stash/share/K2HpS0AS6Y-9Ss7GAf7eVKnv2EPq_Q4oJYZr8hKQmxM
https://datadryad.org/stash/share/K2HpS0AS6Y-9Ss7GAf7eVKnv2EPq_Q4oJYZr8hKQmxM


 

PEER COMMUNITY IN GENOMICS 10 

7 Real Tobacco TSWV - 
2 x 301 

 
MiSeq 

1,904,369 (R1) 
1,904,369 (R2) 

Complete genome + 
defective form of 

TSWV 

10.5061/d
ryad.c2fqz

615w 

https://datadryad.org/stash
/share/-

KzxnCi6oNAPkxMrSc3Yw1M
ZN9cRZTQzdXPoeU317XQ 

8 Real Chenopodium 
PFBV + 

mitovirus 
- 

2 x 301 
 

MiSeq 

65,177 (R1) 
65,177 (R2) 

Cryptic mitovirus 
virus + low 
mitovirus 

concentration 

10.5061/d
ryad.wpzg

msbjj 

https://datadryad.org/stash
/share/YjRgAl9YKUMUmjlv3

DG4PDEfiEK-
DH_QbXkRu9Cdqqk 

9 Real Pistachio PiVB - 

2 x 151 (R1) 
2 x 84 (R2) 

 
NextSeq 

 

5,259,903 (R1) 
5,259,903 (R2) 

Concentration of 
different PiVB 

genomic segments 

10.5061/d
ryad.p5hq

bzkmx 

https://datadryad.org/stash
/share/aw9JwkKUL9IoOi77I
qNGAMWhkqjbbtSNwybqev

_P968 

10 
Semi-

artificial 
Prunus PBNSPaV 

Addition of PPV 
(1 strain, 6,002 

reads) 

1 x 75 
 

NextSep 
24,573,681 

New PBNSPaV 
strain 

10.5061/d
ryad.rr4xg

xd6n 

https://datadryad.org/stash
/share/ZeELHCq3iclbamcM2
S8y3kUgQdfrzuKzadRVOP7X

E_I 

11 Artificial - PepMV - 2 x 150 
48,578 (R1) 
48,578 (R2) 

Haplotype 
reconstruction of 6 

PepMV isolates 

10.5061/d
ryad.866t1

g1nx 

https://datadryad.org/stash
/share/nDw4EZdQ2uI5b5qU

-KMN1x-
HyZqUsHReQpVEw7jkoUM 

12 Artificial - 
Cassava 

mosaic virus 
- 2 x 150 

48,222 (R1) 
48,222 (R2) 

Haplotype 
reconstruction of 4 

Cassava mosaic 
virus isolates 

10.5061/d
ryad.ns1rn

8pqb 

https://datadryad.org/stash
/share/gRUEa7B9Q-

qBcw8Z8AQ47GiyxuPBrCbW
yE-AwJ-07oE 

13 Artificial - BSV - 2 x 150 
47,240 (R1) 
47,240 (R2) 

Haplotype 
reconstruction of 6 

BSV isolates 

10.5061/d
ryad.573n

5tb59 

https://datadryad.org/stash
/share/VtNlbJxVjOq8ygr-

00YrtkRtePICf1Uva2SFlrYM2
B4 

14 Artificial - PVY - 2 x 150 
52,333 (R1) 
52,333 (R2) 

Haplotype 
reconstruction of 5 

PVY isolates 

10.5061/d
ryad.pc86

6t1m5 

https://datadryad.org/stash
/share/nuuZz374Hie15x4hX
sOnFXQCp5e9wWTVOXdrbV

SBeZg 

https://datadryad.org/stash/share/-KzxnCi6oNAPkxMrSc3Yw1MZN9cRZTQzdXPoeU317XQ
https://datadryad.org/stash/share/-KzxnCi6oNAPkxMrSc3Yw1MZN9cRZTQzdXPoeU317XQ
https://datadryad.org/stash/share/-KzxnCi6oNAPkxMrSc3Yw1MZN9cRZTQzdXPoeU317XQ
https://datadryad.org/stash/share/-KzxnCi6oNAPkxMrSc3Yw1MZN9cRZTQzdXPoeU317XQ
https://datadryad.org/stash/share/YjRgAl9YKUMUmjlv3DG4PDEfiEK-DH_QbXkRu9Cdqqk
https://datadryad.org/stash/share/YjRgAl9YKUMUmjlv3DG4PDEfiEK-DH_QbXkRu9Cdqqk
https://datadryad.org/stash/share/YjRgAl9YKUMUmjlv3DG4PDEfiEK-DH_QbXkRu9Cdqqk
https://datadryad.org/stash/share/YjRgAl9YKUMUmjlv3DG4PDEfiEK-DH_QbXkRu9Cdqqk
https://datadryad.org/stash/share/aw9JwkKUL9IoOi77IqNGAMWhkqjbbtSNwybqev_P968
https://datadryad.org/stash/share/aw9JwkKUL9IoOi77IqNGAMWhkqjbbtSNwybqev_P968
https://datadryad.org/stash/share/aw9JwkKUL9IoOi77IqNGAMWhkqjbbtSNwybqev_P968
https://datadryad.org/stash/share/aw9JwkKUL9IoOi77IqNGAMWhkqjbbtSNwybqev_P968
https://datadryad.org/stash/share/ZeELHCq3iclbamcM2S8y3kUgQdfrzuKzadRVOP7XE_I
https://datadryad.org/stash/share/ZeELHCq3iclbamcM2S8y3kUgQdfrzuKzadRVOP7XE_I
https://datadryad.org/stash/share/ZeELHCq3iclbamcM2S8y3kUgQdfrzuKzadRVOP7XE_I
https://datadryad.org/stash/share/ZeELHCq3iclbamcM2S8y3kUgQdfrzuKzadRVOP7XE_I
https://datadryad.org/stash/share/nDw4EZdQ2uI5b5qU-KMN1x-HyZqUsHReQpVEw7jkoUM
https://datadryad.org/stash/share/nDw4EZdQ2uI5b5qU-KMN1x-HyZqUsHReQpVEw7jkoUM
https://datadryad.org/stash/share/nDw4EZdQ2uI5b5qU-KMN1x-HyZqUsHReQpVEw7jkoUM
https://datadryad.org/stash/share/nDw4EZdQ2uI5b5qU-KMN1x-HyZqUsHReQpVEw7jkoUM
https://datadryad.org/stash/share/gRUEa7B9Q-qBcw8Z8AQ47GiyxuPBrCbWyE-AwJ-07oE
https://datadryad.org/stash/share/gRUEa7B9Q-qBcw8Z8AQ47GiyxuPBrCbWyE-AwJ-07oE
https://datadryad.org/stash/share/gRUEa7B9Q-qBcw8Z8AQ47GiyxuPBrCbWyE-AwJ-07oE
https://datadryad.org/stash/share/gRUEa7B9Q-qBcw8Z8AQ47GiyxuPBrCbWyE-AwJ-07oE
https://datadryad.org/stash/share/VtNlbJxVjOq8ygr-00YrtkRtePICf1Uva2SFlrYM2B4
https://datadryad.org/stash/share/VtNlbJxVjOq8ygr-00YrtkRtePICf1Uva2SFlrYM2B4
https://datadryad.org/stash/share/VtNlbJxVjOq8ygr-00YrtkRtePICf1Uva2SFlrYM2B4
https://datadryad.org/stash/share/VtNlbJxVjOq8ygr-00YrtkRtePICf1Uva2SFlrYM2B4
https://datadryad.org/stash/share/nuuZz374Hie15x4hXsOnFXQCp5e9wWTVOXdrbVSBeZg
https://datadryad.org/stash/share/nuuZz374Hie15x4hXsOnFXQCp5e9wWTVOXdrbVSBeZg
https://datadryad.org/stash/share/nuuZz374Hie15x4hXsOnFXQCp5e9wWTVOXdrbVSBeZg
https://datadryad.org/stash/share/nuuZz374Hie15x4hXsOnFXQCp5e9wWTVOXdrbVSBeZg
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15 Artificial - EMDV - 2 x 150 
48,504 (R1) 
48,504 (R2) 

Haplotype 
reconstruction of 3 

EMDV isolates 

10.5061/d
ryad.p2ngf

1vnq 

https://datadryad.org/stash
/share/8cHuECHdPWcz9Xi2
9xAkqM22gWvAnTSvmoOjV

p5XGrc 

16 Artificial - BPEV - 2 x 150 
49,980 (R1) 
49,980 (R2) 

Haplotype 
reconstruction of 4 

BPEV isolates 

10.5061/d
ryad.xpnvx

0kcn 

https://datadryad.org/stash
/share/UOv-

uqGtu7ckKQiztr-
CRUEzpa_cTJ6BaCYPMEFLU

7o 

17 Artificial - LChV1 - 2 x 150 
49,513 (R1) 
49,513 (R2) 

Haplotype 
reconstruction of 5 

LChV1 isolates 

10.5061/d
ryad.9p8cz

8wdh 

https://datadryad.org/stash
/share/1VnxLndGgensb0Uo
NU5aq2tOc26oLmWRE7rCh

gzgNcE 

18 Artificial - BYDV - 2 x 150 
46,917 (R1) 
46,917 (R2) 

Haplotype 
reconstruction of 6 

BYDV isolates 

10.5061/d
ryad.zkh1

8937t 

https://datadryad.org/stash
/share/campNN6N0iKlBWn

ntKUyj-
nt51gJId_I3qpcm9f9ses 

 

1 CTV: citrus tristeza virus, CVEV: citrus vein enation virus, CEVd: citrus exocortis viroid, CVd-III: citrus viroid III, HSVd: hop stunt viroid, GRSPaV: grapevine rupestris stem pitting-

associated virus, GLRaV2: grapevine leafroll-associated virus 2, GRVFV: grapevine rupestris vein feathering virus, GYSVd1: grapevine yellow speckle viroid 1, GRBV: grapevine red 

blotch virus, PVY: potato virus Y, TSWV: tomato spotted wilt virus, PFBV: Pelargonium flower break virus, PiVB: Pistacia emaravirus B, PBNSPaV: plum bark necrosis stem pitting-

associated virus, PepMV: pepino mosaic virus, BSV: banana streak virus, EMDV: eggplant mottled dwarf virus, BPE: bell pepper endornavirus, LChV1: little cherry virus 1, BYDV: barley 

yellow dwarf virus 
 
2 R1: Forward read, R2: Reverse read 

 

https://datadryad.org/stash/share/8cHuECHdPWcz9Xi29xAkqM22gWvAnTSvmoOjVp5XGrc
https://datadryad.org/stash/share/8cHuECHdPWcz9Xi29xAkqM22gWvAnTSvmoOjVp5XGrc
https://datadryad.org/stash/share/8cHuECHdPWcz9Xi29xAkqM22gWvAnTSvmoOjVp5XGrc
https://datadryad.org/stash/share/8cHuECHdPWcz9Xi29xAkqM22gWvAnTSvmoOjVp5XGrc
https://datadryad.org/stash/share/UOv-uqGtu7ckKQiztr-CRUEzpa_cTJ6BaCYPMEFLU7o
https://datadryad.org/stash/share/UOv-uqGtu7ckKQiztr-CRUEzpa_cTJ6BaCYPMEFLU7o
https://datadryad.org/stash/share/UOv-uqGtu7ckKQiztr-CRUEzpa_cTJ6BaCYPMEFLU7o
https://datadryad.org/stash/share/UOv-uqGtu7ckKQiztr-CRUEzpa_cTJ6BaCYPMEFLU7o
https://datadryad.org/stash/share/UOv-uqGtu7ckKQiztr-CRUEzpa_cTJ6BaCYPMEFLU7o
https://datadryad.org/stash/share/1VnxLndGgensb0UoNU5aq2tOc26oLmWRE7rChgzgNcE
https://datadryad.org/stash/share/1VnxLndGgensb0UoNU5aq2tOc26oLmWRE7rChgzgNcE
https://datadryad.org/stash/share/1VnxLndGgensb0UoNU5aq2tOc26oLmWRE7rChgzgNcE
https://datadryad.org/stash/share/1VnxLndGgensb0UoNU5aq2tOc26oLmWRE7rChgzgNcE
https://datadryad.org/stash/share/campNN6N0iKlBWnntKUyj-nt51gJId_I3qpcm9f9ses
https://datadryad.org/stash/share/campNN6N0iKlBWnntKUyj-nt51gJId_I3qpcm9f9ses
https://datadryad.org/stash/share/campNN6N0iKlBWnntKUyj-nt51gJId_I3qpcm9f9ses
https://datadryad.org/stash/share/campNN6N0iKlBWnntKUyj-nt51gJId_I3qpcm9f9ses
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Conclusion 

The two main bottlenecks slowing down the adoption of HTS in plant health diagnostics are (i) the lack of 

consensus on the standardization of the data analysis and (ii) the lack of expertise of some laboratories. Within 

the frame of PHBN project, we have generated semi-artificial, real and artificial reference datasets in order to 

help to overcome these bottlenecks. Firstly, the diversity of the challenges addressed by these datasets will 

allow to benchmark the bioinformatics pipelines used by different laboratories. Secondly, these datasets can 

also be viewed as open source training materials. They could be extremely valuable for laboratories with little 

experience, allowing them to improve their skills. Currently, there are many pipelines available, but many 

laboratories do not know where to start when it comes to the analysis of their HTS data in the context of virus 

detection. This represents a big challenge, especially in situations where HTS and data analysis are newly 

established or not part of the routine activities.  These datasets will help them to either validate their pipelines 

or choose the most suitable one for their analyses.  
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