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Abstract—Symbolic model evaluation is a powerful method for de-
veloping models for technology computer-aided design (TCAD) device
simulation. It gives users the ability to accurately describe physical
phenomena. Coupled with automatic creation of derivative expressions,
new models can be rapidly developed with performance rivaling source
code approaches. A new device simulation tool is presented with a drift-
diffusion example.

I. I NTRODUCTION

Reducing model development time is an important need for
TCAD [1]. It enables quicker adaptation to new modeling needs,
and improves TCAD’s relevance in the device development cycle.

Commercial vendors implement models in computer source code,
which is compiled into a machine readable format. While efficient, it
limits user configuration to a few parameters. In addition, new model
availability is based on the vendor’s schedule, and prioritized based
on their resources.

When given a means to create new models, users are required to
program in a computer language, like C++ [2], [3], and implement
model derivatives. They are often limited to specific models, such as
recombination terms in the device equations, and be aware ofmodel
dependencies assumed by the simulator [4].

Research tools, such as PROPHET [5] and FLOODS [6], allow
scripting of device equations in a human readable form. Differential
operators (e.g., gradients) offer a means of specifying fluxterms in
the device equations. The source code is available, and new code is
required for new operators.

In this paper, we discuss a new device simulator, DEVSIM, which
takes a model-based approach. All models are specified as symbolic
expressions evaluated each time the program starts. Modelsare
composed of other models and parameters. Dependencies between
models are automatically maintained. This hierarchical approach
provides a way to manage device model complexity.

Differential operators are not part of the language, as flux evalu-
ation is specified in terms of the models. Commands are embedded
in a scripting language, providing flexibility in the simulation [7].
Through the scripting interface, users may:

• modify the way existing models are implemented
• develop models which do not fit into standard formalisms [8]
• create models with arbitrary dependencies

II. OVERVIEW

A. Models

Device equations are specified in terms of node, edge and element
models in each device region.

1) Node Model:A node model is specified in terms of other node
models and parameters. It is evaluated at each node (i.e., vertex) in
the simulation mesh. Solution variables are a type of node model.

2) Edge Model:An edge model is specified on the edges connect-
ing pairs of nodes. The expressions are based on other edge models,
node models, and parameters.

3) Element Model:Element models allow evaluation of fields on
mesh elements. This allows calculation of quantities such as the
transverse electric field.

The node model specified for an equation is integrated over the
volume of each node in the device region. The flux of the edge
model is integrated over the surface area of each node. Contact and
interface equations are evaluated using a similar formalism.

B. User Specification

Model expressions are provided by the user and use standard rules
of algebraic notation. The derivatives of each model with respect to
each solution variable are also models. They may be automatically
generated, or specified manually.

For example, the edge model for electric field,E , is specified as

( ϕ@n0 - ϕ@n1) * EdgeInverseLength

whereϕ@n0andϕ@n1are the potentials at the first and second nodes
of the edge, andEdgeInverseLength is the inverse distance
between them. The simulator generates models forE : ϕ@n0 and
E : ϕ@n1, the derivatives ofE with respect toϕ at each node.

In contrast to automatic differentiation approaches [9], the user
is able to modify the derivative expressions. Special mathematical
functions are provided to evaluate flux, such as the Bernoulli function
for calculation of current densities [10].

Floating point exceptions are detected so that numerical issues
in new models may be debugged. Once debugged, the model may
become part of a library for future reuse.

C. Efficiency

We expect efficiency to rival simulators using a source code
approach. This is since the parse tree of the model expression is
generated once, and reused throughout the simulation. Models whose
dependencies have not changed between solver iterations are not
reevaluated. The symbolic engine simplifies the expressions for the
models, also improving computational efficiency.

Since the software is aware of model dependencies, user-model
convergence may be improved in comparison to environments where
specific dependencies are assumed [4].

III. E XAMPLE

A 2D MOSFET was simulated in DEVSIM. The Poisson and
carrier-continuity equations were specified through the scripting in-
terface. The Shockley Read Hall (SRH) recombination model [11]
was added into the simulation using the expression in Fig. 1.The
derivatives required for simulation were generated by the software.

The net doping profile is shown in Fig. 2 for a device with a
gate width of 0.5µm. The potential distribution forVgs = 2.0 and
Vds = 0.4 is shown in Fig. 3. The electron distribution is shown in
Fig. 4. The SRH recombination from the model expression in Fig. 1
is shown in Fig. 5.



IV. CONCLUSION

In this paper, a new TCAD device simulation approach is de-
scribed. Using a symbolic expression engine, the resultingtool is
more flexible than source code approaches, and requires lesstime
for new model development. By taking a hierarchical approach,
using standard rules of algebraic notation, and automatically tracking
dependencies, the complexity of new model development is reduced.
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-ElectronCharge * (Electrons * Holes-n_iˆ2)
/ ( τp* (Electrons+n1)+ τn* (Holes+p1))

Fig. 1. Expression used for SRH recombination. In the expression,
Electrons and Holes are the solution variables, and the other terms are
parameters.
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Fig. 2. Net Doping
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Fig. 3. Potential
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Fig. 4. Electron Density
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Fig. 5. SRH Recombination


