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Abstract—We explore the use of sensitivity analysis for technology
computer-aided design (TCAD) optimization. By directly coupling device
response to model parameters, our approach may be used to generate
derivatives for gradient-based optimization. An example is presented
for inverse modeling of a doping profile. We compare the number of
simulations required, and accuracy, to a design of experiments (DOE)
based optimization.

I. I NTRODUCTION

To perform device optimization, a number of simulations areper-
formed over a parameter space. When optimizing many parameters,
a large number of simulations may be required to find the optimal
parameter set. When derivatives with respect to the parameters are
available, it is possible to reduce the number of simulations, since
gradient methods offer better convergence in many circumstances [1].

TCAD sensitivity analysis couples the output response of de-
vices with respect to fluctuations in the partial differential equa-
tions (PDE’s) [2]. We extend this analysis by calculating the deriva-
tives of the PDE’s with respect to model parameters. Using the chain
rule, we then compute the derivative of the output response of the
device with respect to the parameters to optimize.

II. T HEORY

We cast the problem of optimizing device parameters as a nonlinear
least squares problem, using the objective function
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where we haveM results to optimize,Ci is the ith goal andfi (β)
is the result using parameter setβ.

The parameters are varied over their allowed range untilS (β) is
minimized. Using the Gauss-Newton method [3], it is possible to find
the parameter update using

δβ = −H
−1

J
T r (2)

where

Ji,j = ∂fi (β)/∂βj (3)

H ≈ J
T
J (4)

are referred to as the Jacobian and Hessian, respectively.1

In device simulation, the simulation matrix,A, is used to converge
upon the dc solution. Each entry of this matrix is

Ai,j = ∂gi/∂xj (5)

wheregi is a PDE being solved, andxj is a solution variable.
If the simulation goal may be described in terms ofxk, we may find

the sensitivity to perturbations in the PDE’s [4]. This is bysolving

A
T yk = ek (6)

1While this method was chosen for its relative simplicity, more robust
gradient-based optimization methods may be employed usingthe same
Jacobian we describe here.

whereek is a zero vector with a one in the row corresponding toxk,
andyk is the vector relating a change inxk to the residual in each
PDE on the device.

The Jacobian entries are found from

Jk,j = yT
k ∂g/∂βj (7)

where∂g/∂βj is a vector composed of the derivative of each PDE
with respect to parameterβj .

III. E XAMPLE

To demonstrate the approach, we optimize the doping profile for a
1 µm diode. Simulations are performed in DEVSIM using the drift-
diffusion equations and the Shockley Read Hall (SRH) recombination
model [5].

The donor doping profile for the diode is

N+

D (x) = 0.5 · 10N0 erfc [(x − x0)/s0] (8)

and the acceptor doping profile isN−

A = 1015 cm−3.
In this example, we optimizeN0, s0, x0 ∈ β. Using the values in

Tbl. I, the bias is varied from0 to 0.9 V. At each bias, a dc simulation
is performed to calculate the current,I (β). The sensitivity ofI (β)
to fluctuations in the Poisson equation,yϕ

k , is solved using Eq. 6.
The derivative of the Poisson equation with respect toN0 is then

∂gϕ (x)/∂N0 = q log (10) N+

D (x) (9)

whereq is the electron charge. The derivatives with respect tos0 and
x0 are calculated in a similar fashion. The derivatives ofN+

D with
respect toβ are shown in Fig. 1.

The spatially dependentyϕ
k , and the derivatives ofI (β), are shown

in Fig. 2 for a bias of0.6 V. At each bias point, these derivatives
are integrated over the device volume to calculate the parameter
sensitivities shown in Fig. 3.

Using the parameters in Tbl. II as starting values, an optimization
was performed with the goal being to matchI (β) simulated in Fig. 3.
Since the residuals varied exponentially with bias, the current and its
derivatives were scaled logarithmically so that

fi (β) = log (Ii (β)) (10)

∂fi (β)/∂βj = 1/Ii (β) · ∂Ii (β)/∂βj (11)

Fig. 4 shows the convergence behavior using the constraintsin Tbl. II.
For this set of starting values, the optimization convergedto an
acceptable level within15 simulations. In general, the convergence
behavior depends on the starting values, and the constraints put on
the simulation.

For comparison, a15 run latin hypercube DOE was designed using
the JMP statistical software [6] and the constraints in Tbl.II. A
Gaussian process model, using the cubic correlation function, was
fit to S (β). It was minimized with a solution ofN0 = 18.02, s0 =
0.0195 µm andx0 = 0.207 µm. In this case,S (β) = 2.716 ·10−3 .
In contrast, the same sum of squares was achieved within7 runs
using our approach.



IV. CONCLUSION

In this paper, we presented a method for simulating derivatives for
use in optimization. Sensitivities to model parameters arefound by
coupling sensitivity analysis with analytic derivatives of the device
PDE’s.

The gradient information provided by our approach may be
more accurate, and require fewer simulations, than finite difference
approximations. Also, while our example was for doping profile
parameters, we believe this approach is more generally applicable
to other parameters in device PDE’s. This is the subject of further
investigation.
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TABLE I
OPTIMIZATION PARAMETERS

Parameter Value
N0 18
s0 0.02 µm
x0 0.2 µm

TABLE II
STARTING PARAMETERS AND THEIR BOUND CONSTRAINTS

Parameter Value min. max.
N0 17 17 19
s0 0.01 µm 0.01 0.05
x0 0.5 µm 0.1 0.5
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Fig. 1. The donor doping profile,N+

D (x), and∂N+

D/N0 (log scale). Also,
∂N+

D
/s0 and∂N+

D
/x0 (linear scale).
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Fig. 2. Spatially dependent derivatives ofI (β) with respect to parameters.
The dotted line isyϕ

k . All lines shown in arbitrary units.
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Fig. 3. I (β), ∂I (β) /∂N0, ∂I (β) /∂s0 and∂I (β) /∂x0 versus bias.
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Fig. 4. Plot ofS (β) versus iteration number (log scale). The parameters
are shown on a linear scale with arbitrary units.


