
Semiconductor Device Simulation Using
DEVSIM

Juan E. Sanchez

Abstract DEVSIM is a technology computer aided design (TCAD) simulation soft-

ware. It is released under an open source license. The software solves user defined

partial differential equations (PDEs) on 1D, 2D, and 3D meshes. It is implemented

in C++ using custom code and a collection of open source libraries. The Python

scripting interface enables users to setup and control their simulations.

In this chapter, we present an overview of the tool. This is followed with a bipolar

junction transistor (BJT) design and characterization example. A collection of open

source tools were used to create a simulation mesh, and visualize results

Key words: BJT, DEVSIM, Open Source, Python, Semiconductor, Simulation,

TCAD

1 Introduction

DEVSIM is a simulation software for technology computer aided design (TCAD) [13].

The software uses a generalized partial differential equation (PDE) approach to solv-

ing the semiconductor device equations [2, 1].

DEVSIM and the examples in this chapter are available from http://www.

devsim.org. The source code is available under the terms of the Apache

License, Version 2.0 [16]. The examples for this chapter are also released

with this license. Contributions to this project are welcome in the form of bug

reporting, documentation, modeling, and feature implementation.

Juan E. Sanchez

DEVSIM LLC, PO Box 50096, Austin, TX 78763 e-mail: juan.sanchez@devsim.com

1

2 Juan E. Sanchez

From the Python [3] scripting interface, users input symbolic expressions for the

device physics equations being solved. The SYMDIFF [4] symbolic differentiation

software parses expressions and creates derivatives for the equations. The advan-

tages of this system are:

• Model equations and derivatives are created symbolically and may be examined

and optimized.

• New models are implemented without requiring advanced knowledge of C++.

• The scripting interface provides a wide array of open source and proprietary

Python modules for performing analyses.

A key advantage of open source software is that the program code, data, and

scripts to generate results can be disseminated in their entirety. Other members of

the TCAD community are then able to replicate results, and extend the research.

DEVSIM leverages open source libraries for numerics, data structures, and other

infrastructure [13]. The availability of these libraries under open source license has

significantly decreased the development time and production costs of this software.

DEVSIM generates open data formats which can then be read into other software

for analysis, visualization, and publication of simulation results. Open source tools

used to generate, visualize, and document the simulation results for this chapter are

listed in Table 1.

Table 1: Open source tools used in this chapter.

Name Description Website Licensea

Gmsh Mesh Generator http://geuz.org/gmsh GPL

LATEX Document Preparation System http://latex-project.org LPPL

matplotlib Python 2D Plotting Library http://matplotlib.org matplotlib

NumPy Python Scientific Computing http://numpy.org BSD

Python Scripting Language http://python.org PSF

VisIt Visualization Tool http://visit.llnl.gov BSD

Xfig Interactive Figure Generation http://www.xfig.org MIT

a License information is available from http://www.opensource.org. Visit the official

websites for specific license text.

In Sect. 2, an overview of DEVSIM is presented. In Sect. 3, semiconductor

physics for bipolar junction transistor (BJT) simulation is presented. Sect. 4 presents

the creation of a BJT structure and its meshing refinement. Simulation results are

also presented. Sect. 5 provides the conclusion and discussion of future work.

In the following sections, several script examples for DEVSIM are presented. A

basic knowledge of the Python scripting language is required to understand them.

Documentation and tutorials for this language may be found in [3]. DEVSIM com-

mands are documented in [13]. Additional commands are helper functions intro-

duced through Python modules written specifically for the examples in this chapter.

Semiconductor Device Simulation Using DEVSIM 3

2 DEVSIM Overview

2.1 Models

DEVSIM uses the finite volume method for assembling the PDEs on the simulation

mesh [24]. it solves equations of the form:

∂X

∂ t
+∇ ·Y+Z = 0 (1)

Internally, it transforms the PDEs into an integral form.

∫
∂X

∂ t
∂ r+

∫
Y ·∂ s+

∫
Z∂ r = 0 (2)

where equations involving the divergence operator are converted into surface inte-

grals, scalar components are integrated over the device volume.

In Fig. 1, 2D mesh elements are depicted. Models integrated over the volume

of each triangle vertex are referred to as node models. The shaded area around the

center node is referred to as the node volume, and it is used for volume integration.

The lines from the center node to other nodes are referred to as edges. Models inte-

grated over the edges of triangles are referred to as edge models. The flux through

the edge are integrated with respect to the perpendicular bisectors (dashed lines)

crossing each triangle edge. Element edge models are like edge models, but account

for variables at nodes off of the edge.

There are a default set of models created in each region upon initialization of

a device, and are typically based on the geometrical attributes of the simulation

mesh. Models required for describing the device behavior are created using the

SYMDIFF [13, 14] expression parser.

2.1.1 Node models

Node models may be specified in terms of other node models, and parameters on

the device. The simplest model is the node solution, and it represents the solution

variables being solved for. In addition to the built-in models, models are defined

using symbolic expressions. Fig. 2 shows an implementation of the Shockley Read

Hall recombination [21] model.

The first model specified, USRH, is the recombination model, and it is created

with the CreateNodeModel command. The derivatives with respect to electrons

and holes are USRH:Electrons and USRH:Holes, respectively, and are created

with the CreateNodeModelDerivative command. In this particular example

NIE is the intrinsic carrier density, and Electrons and Holes have already been

declared as solution variables. The remaining variables in the equation are parame-

ters which may be specified on the region or the whole device.

4 Juan E. Sanchez

2.1.2 Edge models

Edge models may be specified in terms of other edge models, mathematical func-

tions, and parameters on the device. In addition, edge models may reference node

models calculated on the ends of the edge. As depicted in Fig. 3, edge models are

with respect to the two nodes on the edge, n0 and n1.

To calculate the electric field and the displacement field on the mesh edges, the

implementation in Fig. 4 may be used. The edge average model command for

creates gradient models along a mesh edge.Potential@n0 and Potential@n1

are the Potential node values on the nodes on the ends of the edge. We assume

the convention that the flux flows from n0 to n1.

2.1.3 Element edge models

Element edge models are used when the edge quantitites cannot be specified en-

tirely in terms of the quantities on both nodes of the edge, such as when the carrier

mobility is dependent on the normal electric field. In 2D, element edge models are

evaluated on each triangle edge. In 3D, element edge models are evaluated on each

tetrahedron edge. As depicted in Fig. 6, edge models are with respect to the three

nodes on each triangle edge and are denoted as en0, en1, and en2. Derivatives are

with respect to each node on the triangle. There is a value per triangle edge, which

are averaged onto the edge using the weighting scheme in [19].

The element from edge model is used to to average an edge model onto an

element edge model. This is used to calculate vector components and the magnitude

of the electric field on the elements and is demonstrated in Fig. 5.

These fields will be used for the mesh refinement steps in the BJT example pre-

sented in a later section. Element edge models are also useful for visualization of

fields on the mesh and element edge quantities are averaged onto the center of the

element when written to the Tecplot [5] or VTK [6] formats.

2.1.4 Model derivatives

To converge upon a solution, derivatives are required with respect to each of the

solution variables on the regions of the device. Accurate derivatives are also required

to perform a small-signal AC analysis. DEVSIM will use the derivatives when they

are provided. For a model model, the derivatives with respect to solution variable

variable are presented in Table 2. To improve efficiency of model evaluation, the

software caches common subexpressions across all models. To prevent calculation

errors, it detects models which refer to themselves through their dependencies. In

addition, it will also report floating point errors if they occur when evaluating the

model.

Semiconductor Device Simulation Using DEVSIM 5

Table 2: Required derivatives for equation assembly. model is the name of the

model being evaluated, and variable is one of the solution variables being solved

at each node.

Model Type Derivatives Required

Node Model model:variable

Edge Model model:variable@n0

model:variable@n1

Element Edge Model model:variable@en0

model:variable@en1

model:variable@en2

model:variable@en3 (3D)

2.1.5 Contact and Interface Models

Similar to the bulk simulation case, contact and interface boundary conditions take

advantage of the symbolic expression parser. More detail is available in the man-

ual [13] and in examples in the next section.

2.2 Solvers

DEVSIM has the following simulation capabilities:

• DC

• Small-signal AC

• Impedance field method (Noise Simulation)

• Transient

The tool currently uses Newton’s method [24] for solving DC and transient. Su-

perLU [12] is used for direct factorization and solution of the simulation matrices.

The equation command is used to specify the bulk equations, and the simula-

tion variable associated with it. In addition, boundary conditions are specified using

the contact equation and interface equation commands for boundary

conditions at contacts and interfaces between materials, respectively.

3 BJT Physics

In this section, the semiconductor equations for BJT simulation are discussed. The

device physical equations are set up using the Python scripts. For the purposes of

this chapter, the following assumptions are made.

• Boltzmann statistics

6 Juan E. Sanchez

• Silicon structure without band gap narrowing

• Drift-diffusion with constant temperature

• Doping dependent mobility with velocity saturation

• Ohmic contacts

3.1 Potential Only

The potential only simulation is used to identify regions for meshing refinement

(Sect. 4.1). It also provides the initial guess for drift-diffusion in Sect. 3.2. Fig. 7

shows the implementation for the Poisson equation. In addition, ohmic boundary

conditions are enforced at the contacts as shown in Fig. 8.

3.2 Drift Diffusion

For drift-diffusion simulation, the electron and hole continuity equations are solved

in addition to the potential equation. The Scharfetter-Gummel [23] approach is used

to model to discretize the electron and hole current density equations. The low-field

current density is first calculated once with the Arora mobility model [8].

Velocity saturation is modeled with the Caughey-Thomas model [10] with pa-

rameters from [9]. Using the code in Fig. 9, velocity saturation is applied when the

electric field and low-field current density are in the same direction. The velocity

saturation limited mobility is then used to calculate the current density used in the

simulation.

4 BJT Simulation

In this section, we present the meshing and simulation of a bipolar junction transis-

tor (BJT).

4.1 Meshing and Mesh Refinement

DEVSIM solves equations on 1D, 2D, and 3D meshes and has support for gener-

ating 1D and 2D meshes. The software supports the import of meshes from both

Gmsh [18], and the Genius Device Simulator [11]. For the example in this chapter,

Gmsh is used to construct a mesh suitable for 2D drift-diffusion simulation.

The initial mesh was created from a .geo file containing the outline of the device

and is shown in Fig. 10. Creating a mesh file in Gmsh is often an iterative process

Semiconductor Device Simulation Using DEVSIM 7

between using a text editor and its graphical interface. Points outline a rectangular

box outlining the device and contact placement. Physical groups are specified in the

file to specify the device and contact locations. This file was input into Gmsh to

create an initial mesh.

The doping profile for this example is specified in DEVSIM using the code in

Fig. 11. Since we are specifying analytic doping profiles, it is difficult to identify

areas for refinement before simulation on a coarse mesh has been performed.

The initial mesh is read into DEVSIM and a potential-only equilibrium simu-

lation is performed. Using the Emag model (see Fig. 5) and the SurfaceArea

model (built-in model) as refinement criteria, a background mesh is created which

identifies areas where there are high electric fields and where there are contacts

present. The background mesh specifies smaller mesh spacing in critical areas.

The procedure is:

1. Generate coarse mesh in Gmsh.

2. Load mesh into DEVSIM and simulate on analytic doping profile to generate

background mesh.

3. Generate refined mesh in Gmsh after merging original mesh specification and the

background mesh.

4. Load refined mesh into DEVSIM and simulate on analytic doping profile to gen-

erate background mesh.

5. Repeat steps 3–4 until mesh has suitable number of elements.

The goal is to have a mesh with sufficient simulation accuracy without having so

many elements that it negatively impacts the computation time. A mesh convergence

study [22] should be performed to ensure that these goals are simultaneously met.

Fig. 12 shows the simulation mesh before and after refinement based on the mag-

nitude of the electric field. The initial mesh has 2975 nodes and the final mesh has

14773 nodes. It should be noted that the meshing algorithms in Gmsh are not nec-

essarily deterministic and the actual number of nodes in the resulting mesh depend

on the algorithms used and many other factors.

4.2 Simulation Results

In this section, DC and small-signal AC simulations are performed on the BJT tran-

sistor example. These types of simulations may be used to extract a compact model

for the device [17]. The role of TCAD is to give access to compact models early in

the device development process [7, 15]. In addition, TCAD simulation of useful for

understanding device operation and model verification during the compact model

development process [20, 25, 27].

The DC characterisitics were simulated in DEVSIM by ramping the bias on the

BJT device. By keeping Vbc = 0.0 and sweeping Vbe negative, the data for the Gum-

mel plot in Fig. 13 was simulated.

8 Juan E. Sanchez

For the data in Fig. 14, Vbe was first ramped to 0.7 V. The data for Ic versus Vce

was then simulated.

Next, the small-signal behavior of the device was simulated. In DEVSIM, circuit

boundary conditions with voltage sources are used to apply a perturbation at the

base of the transistor, and the resulting current into the collector is simulated.

Fig. 15 shows |βac| versus f for different values of Vbe wihile Vbc = 0.0. The fT

for the transistor was calculated where the small-signal current gain was 1. Fig. 16

shows the resulting curves versus Ic.

5 Conclusion and Future Work

In this chapter, we presented an overview of the DEVSIM TCAD simulator. The

physics, structure, and simulation results for a BJT transistor were developed.

DEVSIM is under active development. Like many TCAD simulation programs,

there is ongoing work to be done in the development of new physical models. This

software offers a platform where much of this work can be done without requiring

implementation in a compiled languages, enabling rapid development. Additional

work in development of the solvers, and model evaluation will improve the effi-

ciency and types of analyses performed by the simulator.

This software uses a continuum approach, and would be well suited as part of a

hierarchical simulation methodology [26]. For TCAD simulation to be physical, it is

important that relevant phenomena is represented. For general simulation DEVSIM

need to account for effects such as [7]:

• Avalanche effect

• Hydrodynamic Equations

• Self heating

• Surface Mobility

It is anticipated that the appropriate models may implemented primarily using the

scripting approach used in Sect. 3, as well as additional C++ source code.

Semiconductor Device Simulation Using DEVSIM 9

NodeVolume

EdgeCouple

Fig. 1: Mesh elements in 2D.

USRH=’’’(Electrons*Holes - NIEˆ2)

/(taup*(Electrons + n1) + taun*(Holes + p1))’’’

Gn = "-q * USRH"

Gp = "+q * USRH"

CreateNodeModel(device, region, "USRH", USRH)

CreateNodeModel(device, region, "ElectronGeneration", Gn)

CreateNodeModel(device, region, "HoleGeneration", Gp)

for i in ("Electrons", "Holes", "T"):

if i in variables:

CreateNodeModelDerivative(device, region, "USRH", USRH, i)

CreateNodeModelDerivative(device, region,

"ElectronGeneration", Gn, i)

CreateNodeModelDerivative(device, region,

"HoleGeneration", Gp, i)

Fig. 2: Shockley Read Hall recombination model implementation.

10 Juan E. Sanchez

EdgeLength

EdgeCouple

n1n0

Fig. 3: Edge model constructs in 2D.

edge_average_model(device=device, region=region, node_model="Potential",

edge_model="EField", average_type="negative_gradient")

edge_average_model(device=device, region=region, node_model="Potential",

edge_model="EField", average_type="negative_gradient",

derivative="Potential")

CreateEdgeModel(device, region, "DField", "Permittivity * EField")

CreateEdgeModel(device, region,

"DField:Potential@n0", "Permittivity * EField:Potential@n0")

CreateEdgeModel(device, region,

"DField:Potential@n1", "Permittivity * EField:Potential@n1")

Fig. 4: Edge models for electric and displacement field.

element_from_edge_model(edge_model="EField",

device=device, region=region)

element_model(device=device, region=region,

name="Emag", equation="(EField_xˆ2 + EField_yˆ2)ˆ(0.5)")

Fig. 5: Element models for electric field components and magnitude.

Semiconductor Device Simulation Using DEVSIM 11

ElementNodeVolume

en1

en2

en0

EdgeLength

ElementEdgeCouple

Fig. 6: Element edge model constructs in 2D.

12 Juan E. Sanchez

def CreateSiliconPotentialOnly(device, region):

’’’

Creates the physical models for a Silicon region

for equilibrium simulation.

’’’

variables = ("Potential",)

CreateVT(device, region, variables)

CreateDensityOfStates(device, region, variables)

SetSiliconParameters(device, region)

require NetDoping

for i in (

("IntrinsicElectrons", "NIE*exp(Potential/V_t)"),

("IntrinsicHoles", "NIEˆ2/IntrinsicElectrons"),

("IntrinsicCharge",

"kahan3(IntrinsicHoles, -IntrinsicElectrons, NetDoping)"),

("PotentialIntrinsicCharge", "-q * IntrinsicCharge")

):

n = i[0]

e = i[1]

CreateNodeModel(device, region, n, e)

CreateNodeModelDerivative(device, region, n, e, ’Potential’)

CreateQuasiFermiLevels(device, region,

’IntrinsicElectrons’, ’IntrinsicHoles’, variables)

CreateEField(device, region)

CreateDField(device, region)

equation(device=device, region=region, name="PotentialEquation",

variable_name="Potential", node_model="PotentialIntrinsicCharge",

edge_model="DField", variable_update="log_damp")

Fig. 7: Bulk equation for potential only simulation.

Semiconductor Device Simulation Using DEVSIM 13

def CreateSiliconPotentialOnlyContact(device, region, contact,

is_circuit=False):

’’’

Creates the potential equation at the contact

if is_circuit is true, than use node given by

GetContactBiasName

’’’

if not InNodeModelList(device, region, "contactcharge_node"):

CreateNodeModel(device, region, "contactcharge_node", "q*IntrinsicCharge")

celec_model = \

"(1e-10 + 0.5*abs(NetDoping+(NetDopingˆ2 + 4 * NIEˆ2)ˆ(0.5)))"

chole_model = \

"(1e-10 + 0.5*abs(-NetDoping+(NetDopingˆ2 + 4 * NIEˆ2)ˆ(0.5)))"

contact_model = "Potential -{0} + ifelse(NetDoping > 0, \

-V_t*log({1}/NIE), \

V_t*log({2}/NIE))".format(GetContactBiasName(contact),

celec_model, chole_model)

contact_model_name = GetContactNodeModelName(contact)

CreateContactNodeModel(device, contact,

contact_model_name, contact_model)

CreateContactNodeModel(device, contact,

"{0}:{1}".format(contact_model_name,"Potential"), "1")

if is_circuit:

CreateContactNodeModel(device, contact,

"{0}:{1}".format(contact_model_name,GetContactBiasName(contact)), "-1")

if is_circuit:

contact_equation(device=device, contact=contact,

name="PotentialEquation", variable_name="Potential",

node_model=contact_model_name, edge_model="",

node_charge_model="contactcharge_node",

edge_charge_model="DField",

node_current_model="", edge_current_model="",

circuit_node=GetContactBiasName(contact))

else:

contact_equation(device=device, contact=contact,

name="PotentialEquation", variable_name="Potential",

node_model=contact_model_name, edge_model="",

node_charge_model="contactcharge_node", edge_charge_model="DField",

node_current_model="", edge_current_model="")

Fig. 8: Contact equation for potential only simulation.

14 Juan E. Sanchez

def CreateHFMobility(device, region, mu_n, mu_p, Jn, Jp):

’’’

Add T derivatives when debugged

use parameters to set model flags

Caughey Thomas

’’’

tdict = {

’Jn’ : Jn,

’mu_n’ : mu_n,

’Jp’ : Jp,

’mu_p’ : mu_p

}

tlist = (

("vsat_n", "VSATN0 * pow(T, VSATNE)" % tdict, (’T’)),

("beta_n", "BETAN0 * pow(T, BETANE)" % tdict, (’T’)),

("Epar_n",

"ifelse((%(Jn)s * EField) > 0, abs(EField), 1e-15)" \

% tdict, (’Potential’)),

("mu_n", "%(mu_n)s * pow(1 + pow((%(mu_n)s*Epar_n/vsat_n), beta_n), \

-1/beta_n)"

% tdict, (’Electrons’, ’Holes’, ’Potential’, ’T’)),

("vsat_p", "VSATP0 * pow(T, VSATPE)" % tdict, (’T’)),

("beta_p", "BETAP0 * pow(T, BETAPE)" % tdict, (’T’)),

("Epar_p",

"ifelse((%(Jp)s * EField) > 0, abs(EField), 1e-15)" \

% tdict, (’Potential’)),

("mu_p", "%(mu_p)s * pow(1 + pow(%(mu_p)s*Epar_p/vsat_p, beta_p), \

-1/beta_p)"

% tdict, (’Electrons’, ’Holes’, ’Potential’, ’T’)),

)

variable_list = (’Electrons’, ’Holes’, ’Potential’)

for (model, equation, variables) in tlist:

CreateEdgeModel(device, region, model, equation)

for v in variable_list:

if v in variables:

CreateEdgeModelDerivatives(device, region, model, equation, v)

This create derivatives automatically

CreateElectronCurrent(device, region, mu_n=’mu_n’,

Potential="Potential", sign=-1, ElectronCurrent="Jn", V_t="V_t_edge")

CreateHoleCurrent(device, region, mu_p=’mu_p’,

Potential="Potential", sign=-1, HoleCurrent="Jp", V_t="V_t_edge")

return {

’mu_n’ : ’mu_n’,

’mu_p’ : ’mu_p’,

’Jn’ : ’Jn’,

’Jp’ : ’Jp’,

}

Fig. 9: Current density calculation using high field mobility saturation.

Semiconductor Device Simulation Using DEVSIM 15

/* we are using cm with um scale length*/

/* don’t extend from boundary points */

Mesh.CharacteristicLengthExtendFromBoundary=0;

Mesh.Algorithm=5; /*Delaunay*/

Mesh.RandomFactor=1e-7; /*perturbation*/

sf = 1.0e-4;

Mesh.CharacteristicLengthMax = 2.5e-5; /*maximum characteristic length */

/* characterisitic lengths for meshing */

/* results in coarse mesh */

cl1 = 2.5e-5;

cl2 = 2.5e-5;

/* all in microns, final output in cm */

/* we are simulating the intrinsic device*/

device_depth = 5 * sf;

left_space = 5 * sf;

right_space = 5 * sf;

contact_space = 7.5 * sf;

base_contact_width = 5 * sf;

emitter_contact_width = 5 * sf;

device_width = (left_space + base_contact_width + contact_space

+ emitter_contact_width + right_space);

collector_contact_width = device_width;

xb1 = left_space;

xb2 = xb1 + base_contact_width;

xe1 = xb2 + contact_space;

xe2 = xe1 + emitter_contact_width;

/* positive y is in the depth direction */

/* base contact */

Point(1) = {0, 0, 0, cl1};

Point(2) = {xb1, 0, 0, cl2};

Point(3) = {xb2, 0, 0, cl2};

/* emitter contact */

Point(4) = {xe1, 0, 0, cl2};

Point(5) = {xe2, 0, 0, cl2};

Point(6) = {device_width, 0, 0, cl1};

/* collector/bottom */

Point(7) = {0, device_depth, 0, cl1};

Point(8) = {device_width, device_depth, 0, cl1};

Line(1) = {1, 2};

Line(2) = {2, 3};

Line(3) = {3, 4};

Line(4) = {4, 5};

Line(5) = {5, 6};

Line(6) = {6, 8};

Line(7) = {7, 8};

Line(8) = {7, 1};

Physical Line("base") = {2};

Physical Line("emitter") = {4};

Physical Line("collector") = {7};

Line Loop(12) = {7, -6, -5, -4, -3, -2, -1, -8};

Plane Surface(13) = {12};

Physical Surface("bjt") = {13};

Fig. 10: Gmsh file for the BJT.

16 Juan E. Sanchez

node_model(device=device, region=region, name="Acceptors", equation=’’’

base_doping

* erfc((y-base_depth)/base_vdiff)

* erfc(-(x + 0.5*base_width-base_center)/base_hdiff)

* erfc((x - 0.5*base_width-base_center)/base_hdiff)

’’’)

node_model(device=device, region=region, name="Donors", equation=’’’

emitter_doping

* erfc((y-emitter_depth)/emitter_vdiff)

* erfc(-(x + 0.5*emitter_width-emitter_center)/emitter_hdiff)

* erfc((x - 0.5*emitter_width-emitter_center)/emitter_hdiff)

+ collector_doping

+ sub_collector_doping

* erfc(-(y-sub_collector_depth)/sub_collector_vdiff)

* erfc(-(x + 0.5*sub_collector_width-sub_collector_center)

/sub_collector_hdiff)

* erfc((x - 0.5*sub_collector_width-sub_collector_center)

/sub_collector_hdiff)

’’’)

node_model(device=device, region=region,

name="NetDoping", equation="Donors-Acceptors;")

Fig. 11: Doping profile.

(a)

(b)

Fig. 12: Unrefined and refined meshes. Physical dimensions are in cm.

Semiconductor Device Simulation Using DEVSIM 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vbe (V)

100

101

102

103

104

β

Ic

Ib

10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102

A/
cm

Fig. 13: Gummel plot for Vbc = 0.0.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Vce (V)

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

I c
 (A

/c
m

)

Fig. 14: Ic versus Vce for Vbe = 0.7.

18 Juan E. Sanchez

103 104 105 106 107 108 109 1010 1011

f (Hz)

10-1

100

101

102

103

104

|β|

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 15: |βac| versus f for Vbc = 0.0.

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

Ic (A/cm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

f T
 (H

z)

1e9

Fig. 16: fT versus Ic for Vbc = 0.0.

Semiconductor Device Simulation Using DEVSIM 19

References

1. FLOOPS/FLOODS home page. URL http://www.flooxs.tec.ufl.edu

2. PROPHET. URL http://www-tcad.stanford.edu/˜prophet

3. Python. Available: http://www.python.org

4. SYMDIFF. Available: http://www.symdiff.org

5. Tecplot - CFD post processing to visualize simulation data. URL http://www.tecplot.

com

6. VTK the visualization toolkit. URL http://www.vtk.org

7. Armstrong, G., Maiti, C., of Engineering, I., Technology: TCAD for Si, SiGe and GaAs Inte-

grated Circuits. Institution of Engineering and Technology (2007)

8. Arora, N., Hauser, J.R., Roulston, D.: Electron and hole mobilities in silicon as a function of

concentration and temperature. IEEE Trans. Electron Devices 29(2), 292–295 (1982)

9. Canali, C., Majni, G., Minder, R., Ottaviani, G.: Electron and hole drift velocity measurements

in silicon and their empirical relation to electric field and temperature. IEEE Trans. Electron

Devices 22(11), 1045–1047 (1975)

10. Caughey, D., Thomas, R.: Carrier mobilities in silicon empirically related to doping and field.

Proc. IEEE 55(12), 2192–2193 (1967)

11. Cogenda: Genius Device Simulator. http://www.cogenda.com

12. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to

sparse partial pivoting. SIAM J. Matrix Analysis and Applications 20(3), 720–755 (1999)

13. DEVSIM LLC: DEVSIM User Guide. Available: http://www.devsim.org

14. DEVSIM LLC: SYMDIFF User Guide. Available: http://www.symdiff.org

15. Duane, M.: The role of TCAD in compact modeling. In: Technical Proceedings of the 2002

International Conference on Modeling and Simulation of Microsystems, pp. 719–721 (2002)

16. Apache Software Foundation: Apache License, Version 2.0. URL http://www.apache.

org/licenses/LICENSE-2.0.html

17. Getreu, I.: Modeling the Bipolar Transistor. Ian Getreu (2009). URL http://stores.

lulu.com/iangetreu

18. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with

built-in pre- and post-processing facilities. International Journal for Numerical Methods in

Engineering 79, 1309–1331 (2009)

19. Laux, S.E., Byrnes, R.G.: Semiconductor device simulation using generalized mobility mod-

els. IBM J. Res. Dev. 29(3), 289–301 (1985)

20. McAndrew, C.: Predictive technology characterization, missing links between TCAD and

compact modeling. In: IEEE SISPAD, pp. 12–17 (2000)

21. Muller, R.S., Kamins, T.I., Chan, M.: Device Electronics for Integrated Circuits, 3 edn. John

Wiley & Sons (2002)

22. Roache, P.J.: Fundamentals of Verification and Validation. Hermosa, NM (2009)

23. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon Read diode oscillator.

IEEE Trans. Electron Devices ED-16(1), 64–77 (1969)

24. Selberherr, S.: Analysis and simulation of semiconductor devices. Springer-Verlag, NY (1984)

25. Steigerwald, J., Humphries, P.: TCAD assisted reflection on parameter extraction for compact

modeling. In: Proc. IEEE BCTM, pp. 245–252 (2010)

26. Wu, J., Diaz, C.: Expanding role of predictive TCAD in advanced technology development.

In: IEEE SISPAD, pp. 167–171 (2013)

27. Yao, W., Gildenblat, G., McAndrew, C., Cassagnes, A.: SP-HV: a scalable surface-potential-

based compact model for LDMOS transistors. IEEE Trans. Electron Devices 59(3), 542–550

(2012)

Index

B

BJT 1, 2, 4–8, 15

C

C++ 1, 2, 8

D

DEVSIM 1–9, 11, 13, 15, 17, 19

Drift-Diffusion Model 6

G

Genius Device Simulator 6

Gmsh Finite Element Mesh Generator 2, 6,

7, 15

L

Latex Document Preparation System 2

M

matplotlib 2

N

NumPy 2

P

Python 1, 2, 5

S

SYMDIFF 2, 3

T

TCAD 1, 2, 7, 8

Tecplot 4

V

VisIt 2

VTK 4

X

Xfig 2

21

