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Abstract We consider deformations in R? of an infinite linear chain of atoms
where each atom interacts with all others through a two-body potential. We
compute the effect of an external force applied to the chain. At equilibrium,
the positions of the particles satisfy an Euler-Lagrange equation. For large
classes of potentials, we prove that every solution is well approximated by
the solution of a continuous model when applied forces and displacements of
the atoms are small. We establish an error estimate between the discrete and
the continuous solution based on a Harnack lemma of independent interest.
Finally we apply our results to some Lennard-Jones potentials.
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1 Introduction

In this paper, we are interested in the elastic behavior of a chain of atoms
with two-body interactions. We consider in R® and more generally in R9,
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d > 1, deformations of an infinite chain of atoms which are initially aligned
with constant inter-atomic spacing. It is naturally expected that for smooth
microscopic deformations, the macroscopic effective behaviour of this long
chain of atoms is well described by a suitable one-dimensional nonlinear elas-
ticity model. On the contrary, when the microscopic forces are large enough,
another regime can appear. It is known as the “fracture regime” (see for
instance [32]).

The Cauchy-Born rule states that, when submitted to a small strain, the
positions of the atoms follow the displacement of the material at macroscopic
level. Our main result, see Theorem 1, is that the Cauchy-Born rule applies,
up to a small error that we estimate in terms of the two-body potential of
interaction.

From a mathematical point of view, the key tool is an estimate of Harnack
type, which constitutes our second main result. This estimate is of its own
interest for the understanding of thermodynamical limits, which correspond
here to the case when the number of atoms in the chain per unit length tends
to infinity.

1.1 Setting of the problem

Denote by Vy the two-body potential as a function of the distance between
the atoms, and define

V(L) = Vo(|L|) for every L € RY.
For any vector L € R%, we define the energy per atom of the perfect lattice

{k L}kez by

W(L) =Wy(|L|) where Wo(r)= > Vo(lk|r).
keN\{0}

By perfect lattice, we mean a lattice for which, for some L* € R, Xp=kL*
for any k € Z. Since it is one-dimensional, we shall also call it a perfect chain
of atoms. We assume that the two-body potential Vj decays sufficiently fast
to zero at infinity in order that the series converges.

The macroscopic description

Let us now consider a map @ : R — R? satisfying the following macroscopic
“linear + periodic” condition

D(x+k)=b(x)+ kL’ foranyk€Z, v €R, (1.1)

for some given vector Lo € R?. This periodicity condition provides us with
some suitable compactness properties, which simplify the presentation and
the proof of the results. We are interested in the following macroscopic equa-
tion of the equilibrium of the material in nonlinear elasticity

(VW(@))' =f onR, (1.2)



for some force f: R — R which is 1-periodic,
flx+k)=f(z) foranyke€Z, x €R,
and satisfies the compatibility assumption

fdx=0.
R/Z

The microscopic description

The heuristic idea is that the sequence (@(k 5))k€Z is a good approximation
of the positions X of the atoms of the chain, with interdistances of the order
of &, small. After the rescaling

1
X =-X;,
€
the positions of the atoms of the chain are described by the map

X:7Z — RY
k— X5.

We introduce the formal, infinite energy

E(X):% Y VG- X) X (1.3)

J k€, jer
ik
where each f;, € R? represents the force acting on the atom at position Xj.
Although the energy is not well-defined, the Euler—Lagrange equation makes

sense under suitable assumptions on the two-body potential V' and on the
lattice X. We get

fi+ Y. VV(X;—Xx)=0 foralljez. (1.4)
kEZ\{j}

We now consider any integer N large enough, assume that ¢ = 1/N,, and re-
quire that the positions of the atoms satisfy the following microscopic “linear
+ periodic” condition

Xiin.j=Xpg + N jL® foranyj, k€ Z. (1.5)
We shall assume that the force acting on the k™ atom is given by

e(k+3%)
fe = / f(x)dx foranyk e Z, (1.6)
s(k-1)
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which satisfies in particular the microscopic periodicity condition

Joen.j = fr foranyj, ke Z



and the compatibility condition

Remark that because of the periodicity conditions, one can easily define an
energy per period, summing in (1.3) only for k = 1,..., N. and still with
j € Z. This energy would be finite, but, at formal level, give rise to the same
Euler-Lagrange equations.

Our goal is to give an error estimate between the interdistance of the
atoms X1 — X, corresponding to (1.4)-(1.5) and the macroscopic deforma-
tion @' (k €) of the continuous solution to the equations of nonlinear elasticity,
(1.1)-(1.2). To this end we need some regularity and decay properties of the
potentials.

Assumption (A1)
Wy € C3(0,4+00), Vo€ C2NW22(0,400),

and for some p > 1, we assume that

sup 17 |Vo(r) + 7 (Vg ()] + 72 V()] +7* [V (1) < oc.

r>1

1.2 Invertibility assumptions
Invertibility assumption at macroscopic level

First we assume that there exists L* € R with L* # 0, such that
0w .
AU:WJ(L*) foranyz,j:1,2,...d

satisfies the following non-degeneracy assumption.
Assumption (A2)
The matrix A = (A;;) Is invertible.

Let us remark that by construction we have for the potential Wy:
W(L) = Wy(|L|) for any L € R%.

In particular, this implies that for d > 2

L* L WI(L*) L~ I
A=W!"(|L* ZON= Vo1d — =
UL D T © T T T 7 © )

while for d = 1, we only have

A=W (IL7)).



Invertibility assumption at microscopic level

To establish the stability of the lattice generated by the vector L*, we consider
the formal Hessian of the energy, which for X; = k£ L* is defined by

E'(X*)- (YY) =Y Y- (BxY);,

iE€EZL
with
> Hp ifl=0,
(BY);:=Y Bi;-Y; where B, ={ *"\{0) (1.7)
It —Hy 140,
and
H} = D*V(kL"). (1.8)

By construction, we see that the perfect chains, that is Y = (Yj)rez with
Y =Y, for any k € Z, are in the kernel of B, which is natural because of the
invariance under translations of the problem. Let us call Fy the energy F in
the special case of zero forces, fi = 0 for any k € Z, and set

(Bx), = Y VX, - X).
keZ\{j}

Let X* = (kL*)rez be a perfect lattice. We see that for any M € R4*4,
the lattice (Id+t M) X * is also a perfect lattice, and then satisfies the equation
of equilibrium (1.4) with zero forces:

E\{((Id+tM)X*) =0.

Here by M X*, we denote the lattice made of the points kML*, k € Z.
Differentiating the equation with respect to ¢t at ¢ = 0, we get

E(X™) - (MX) =0,

which gives
Bx(MX*)=0.

We shall assume that the kernel of B is generated by the image of X* by all
translations and linear transforms based as above on a matrix in R? x R,
More precisely, we make the following invertibility/stability—type assump-
tion:



Assumption (A3)

For B defined in (1.7)-(1.8) by the perfect lattice X * = (kL*)rez, there exists
a positive constant C' such that

(|Yk+1+Yk,1—2Yk|gc and B*Y:O)
= Y =MX*+b forsome M e R4 peR?.

If there was another element Y™ of this type in the kernel of B, this would
mean that there is a deformation of the crystal (different from the above
transforms) which does not change the energy up to the second order. In other
words, the crystal would then have a possible instability in the direction Y *.
The true instability property (or possibly the stability) of the crystal should
then be studied by the mean of an analysis of the higher order terms in the
expansion of the energy.

1.3 Main results

For a given crystal lattice X, we can define its local distance to the perfect
lattice X}, = kL* by

Dy(X, L") := sup [Xpie — X —e L[,
e€Q

where for n € N'\ {0} we set the box
Qn:={e€Z : le|]<n}.

Theorem 1 (Discrete—continuous error estimate)
Assume that (A1)-(A2)-(A3) hold and that f is bounded, periodic. Then
there exists €9 > 0, such that, if

sup |[f(z)| <eg, |L°—L*|<ep, supDp(X,L*)<eg, (1.9)
x€eR keZ

then there exists a continuous solution @ of (1.1)-(1.2) with fR\Zf dr =0,

and there ezists a constant Cy > 0 such that we have the following error
estimate for any discrete solution X of (1.4)-(1.5)-(1.6)

|Xk+1—Xk—¢/(k€)|§00€% VEG(O,EO).

Hence, when considering small perturbations of a stable perfect lattice, the
deformed lattice still satisfies the Cauchy-Born rule with a good approxima-
tion (see for instance [36,16] for interesting related works). Remark that the
second inequality of (1.9) follows from the last one and from the periodicity
condition (1.5).

The proof of Theorem 1 is based on a new “Harnack-type” estimate, see
Theorem 2, which is the core of our method. It would be natural and very
interesting to generalize this result for m-dimensional lattices, with m > 1,
under appropriate assumptions on the two-body potential, but this is still an
open question.



Remark 1 With our method, it is also possible to get estimates in the case
of potentials with exponential decay at infinity, with a sharp estimate of the
error.

Remark 2 In Theorem 1, we do not assume the uniqueness of the solution X
0 (1.4)-(1.5)-(1.6), but only its existence.

1.4 A brief review of the literature

Related to our study is the fundamental question of the periodic or non—
periodic nature of an array of atoms interacting through two-body interac-
tions, when minimizing its energy. In dimension 1, this question has been
addressed in [17] for Lennard-Jones potentials. It has been proved that the
ground state is unique and approaches uniform spacing in the thermodynam-
ical limit. This has also been done in one dimension for other potentials in
[23,25] and generalized to two dimensions for very special potentials in [18,
22], and in [30] for general potentials including Lennard-Jones potentials. See
the review paper [24]. In [33-35], the authors show that the periodic configu-
ration has the minimal energy per particle for some potentials which are more
general than the Lennard-Jones potential; they actually give a necessary con-
dition on the Fourier transform of the potential so that the property is true,
and some counter—examples for particular potentials when the condition is
not satisfied.

In [1,31], continuum mechanics models are derived for systems with two—
body potentials, assuming that the macroscopic displacement is equal to the
microscopic one, that is when the Cauchy-Born rule applies. In [5], similar
results are obtained up to higher order correction terms (and for other molec-
ular models as well). Also see [15]. The problem of identifying the macroscopic
equivalent of a microscopic state, and the conditions which allow to do that,
are very close to the spirit of the Quasi-Continum Method (QCM), as pre-
sented in [26-29]. A particular model with first nearest neighbors interactions
is for instance studied in [3,4]. Also see [2,11,12,19] for studies on the dynam-
ics. In a stronger regularity framework, E and Ming have recently shown in
[13] that there is a unique local minimizer which satisfies the Cauchy-Born
rule using energy estimates. See references therein for a list of papers in
this direction and especially [14]. Results based on I'-convergence have been
achieved in [8,9]. For works in the regime of fracture (where the Cauchy-Born
rule fails), we refer the reader for instance to [32,7,10].

In the present paper, we prove that the Cauchy-Born rule applies and give
a uniform error estimate, hence proving that the macroscopic displacement
is equal to the microscopic one up to first order.

1.5 Organization of the paper

In Section 2, we prove a key “Harnack-type” estimate. Section 3 is indepen-
dent of the rest of the paper and devoted to an extended “Harnack—type”
estimate which gives a boundary layer estimate. In Section 4, we prove our
main result, Theorem 1. In Section 5, we show some general properties of



the potentials, which will be used in Section 6 to state some sufficient condi-
tions such that the microscopic invertibility Assumption (A3) is satisfied by
Lennard—Jones potentials, for a chain of atoms under compression.

2 A “Harnack-type” estimate

We shall say that a subset K C Z of indices is a box, or a discrete interval,
if and only if it is the intersection of Z with an interval. For such a box K,
let us define the semi-norm (inspired by [20,21], also see [6])

Nk (X) = inf Dy(X,L).
K (X) sup inf, KX, L)

For a given p € R\ {0}, let us set
K, =K+Q,,

where @, := {e € Z, such that |e| < p}. Then we have the following gener-
alization of Harnack—type estimates to discrete equations.

Theorem 2 (“Harnack-type” estimate)
Under Assumptions (A1)-(A3), there exists o > 0, pn € (0,1), Cq, C2 >0
such that, for every solution X of (1.4) satisfying

sup Dy (X, L*) < o (2.1)
kEZ

and for any box K C Z, we have

Nk (X) < pNk,(X)+Cr sup [fi] (2.2)
kEK,
with o
p— 2 2.3
P ) (2.3)

Remark 3 In Theorem 2, we do not assume that (fx)rez is uniformly boun-
ded. Indeed in the proof of the Theorem, we only use the fact that f is finite
for each k € Z.

Remark 4 Intuitively, the Euler-Lagrange equation satisfied by X in case
fr =0 for any k € Z can be thought of as an equation of the type
%X
ox?
More generally, if we take k € Z™ with m > 1, the equation for X becomes
a system, which is similar to

=0 foranyxzeR. (2.4)

AX =0 foranyx e R™.

The set of harmonic polynomial solutions is much larger than the set of
solutions of Equation (2.4). This is one of the difficulties that one would
have to tackle for extending the results of this paper to dimensions m > 1.



By applying Theorem 2 with K = 7Z, we get the following result.

Corollary 1 (Liouville result)
Under Assumptions (A1)-(A3), there exists 09 > 0 such that, if X = (Xy)kez
is a solution of (1.4) with zero forces, i.e., f, =0 for any k € Z, and satisfies

sup Dy (X, L*) < éo,
kEZ

then there exists L € R such that
Xy =Xo+kL foranykeZ.

Proof of Theorem 2.

Let us assume that the estimate is false. By taking appropriate sequences
and passing to the limit, we are going to find a non perfect lattice Y such
that B Y = 0, a contradiction with (A3).

Step 1: Construction of sequences

Theorem 2 claims the existence of dg > 0, € (0,1),Cy,C2 > 0 such that
for every X satisfying (2.1) and for any box K, then (2.2) holds with the
definition (2.3) of p and for (fx)rez related to X by equation (1.4).

Assume by contradiction that the statement of Theorem 2 is false. This
means that for every 6o > 0, € (0,1),C1,Cs > 0, there exists X satis-
fying (1.4) with forces (fi)rez and (2.1), and there exists a box K such
that (2.2) is false with the definition (2.3) of p. Because we can choose dg > 0,

€ (0,1), C1, Cy > 0 as we want, we can take sequences (08 )nen, (L™)neN,
(CT)nen, (CF)nen, such that

65 — 0,

pr—1,

C{L ) Cg — 400,
and assume the existence of corresponding sequences (X")nen, (K™)nen,
(pn)nENa (fn)neN such that

sup Dy (X", L*) < 55 — 0,
kEZ

(o) = o
Kn (Xn) 7 (2.5)

Nign(X™) > "N, (X™) + CF sup |f],
kEK™,

X" satisfies (1.4) with forces f™.

Then we set
e = NKH(X”) s
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which goes to zero because Ngn(X™) < sup Dy (X", L*) < §y — 0.
keZ

When K" is bounded, we can define k” € K™ and L™ € R such that

NKn (X’ﬂ) = Lln]Rg Dkn(.Xn7L) = Dkn (_Xn,Ln) . (2.6)
cR4

If K™ is unbounded, it may happen that the infimum is not reached. In that
case we can choose an approximate minimizer k™ and some associated L™
such that we still have infjcga Dgn (X™, L) = Dga (X™, L™) and moreover

NKn (Xn) - infLeRd Dkn (Xn, L) _
En

0.

The proof can be easily adapted in that case. To simplify the presentation
we will only do the proof when (2.6) holds.

There exists e € Q1\ {0} = {£1} such that
X P — X — €L =™
On the other hand we have
X o — Xpo — € L*] <37,
from which we get

IL" — L*| < ™ + o7 (2.7)

Let us define
Xpn e — Xjon — kL™

L —
Y]i} = on

and observe that, with e = +1,

" |Ykn+e =Y —el|= |Xl?"+k+e = Xpngp — elLl,

1
Dk(yn, L) = 5‘_'”' Dk+kn (Xn, L) .

Hence we obtain

1
— > sup inf Dg(Y",L)>1= inf Do(Y",L) and Yy =0.
u" kEKT,—kn LER LeR4
(2.8)
We will get some a priori bounds on the Y. To this end, we first need to
control the variations of the lattice spacing.
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Step 2: Control on the variations of the lattice spacing
We choose fz € R? such that for k € K. — k™ we have

Jnf Dy(Y", L) = Dy(Y", Ty)

In particular, we can take fg = 0. By definition of fz, we deduce that

Vi =Y —Ly| < Dp(Y™, Ly) and [V{'=Y7 +Lg | < Dipa (Y7, Lyy)
Therefore, if k,k+1 € K. — k", we get

2

u

and then, if k, k" € K} — k™, we deduce the following estimate

—n  =n k—Fk

n

Ty — ZZ+1| < Dy(Y",Iy) + D,Hl(Y"’ZZH) <

Similarly, from the fact that

N n n —-—Nn n e 1
max (|Ykrf+1 =V = Ll [V =Y+ Lk|) < Dp(Y™, L) < o (2.10)
we deduce that
n n n 2 n n
Vi + Y, =2y < n for every k € K, — k™. (2.11)

Step 3: Quadratic bound on Y,

Assume that k& € K. — k" and let us assume to simplify that & > 0 (the
other case k < 0 is similar). Then we have
n n N U, 1
Vi, =Y —L;|<D;(Y" L;) < o

Using the fact that fg =0, we get

k—1
wi=| S -v -5 -G -1

j=0
k—1
< {Dj(Y",LJ)Jr L) - I, }
7=0
k—1
<—+—=> ]
L
k2

IN
|
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and from Q,» C K. — k™, we deduce that

k2
|V < n for allk € Qpn . (2.12)

Step 4: Passing to the limit and getting a contradiction

Let us define
Jingn
Then g} satisfies

1
lgn] < o 0 asn — +oo (2.13)
1

because of (2.5). From (1.4) we deduce for all j € Z

g+ > VV((—k) LM+ (Y] —Y) =0,

keZ\{7}
ie.,
1
g+ Y [ @ -y B —o, (2.14)
kez\{5} *°
with

m () =DV ((j — k)L™ +te™(Y) = Y)).

Up to extraction of convergent subsequences, by (2.6), (2.12) and (2.13), we
can assume that

n o0
Y —Y>,

n

9k

— 0,

L™ — L*,

B (t) — By = D*V(L*(j — k)) = H}_,.

J

Passing to the limit in (2.8) and (2.11), we get in particular

inf Do(Y>°,L) =1 2.15
inf, Do(Y™, L) (215)

and
[Yir, + Y2, —2Y°| <2 forevery k € Z. (2.16)

We now want to pass to the limit in (2.14). To this end, we will estimate for
any fixed j € Q,n /o separately

s;= > [ aropr -y B

ke(+Qum s2)\ {3} 7 °
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and
1

F' = Z dt (Y' =Yy") - Bjj.(t)
REZN(G+Qpn /2) 7
with S for the “short” distance contribution and F' for the “far” away con-

tribution.
For the short distances contribution, using (2.9)—(2.10), we get

Y/ =Y < Cs(1+|j—k|*) forevery k € j+ Qpnjo (2.17)
with some constant C5 = C3(j) > 0. For the far away contribution, we have

Vi =Yl == | Xin 1 = Xingw — L"(G = k)| < Ca o (2.18)

for some constant Cy > 0, where we have used the fact that

sup Di(X",L*) <6 with ¢f small enough. (2.19)
kEZ

We claim that there exists a constant C5 > 0 such that for n large enough,
we have

Cs
(1+[j —klr+2

This will be proven in Step 5. On the one hand, from (2.20), (2.17) and the
dominated convergence theorem, we deduce that

|BI(1)] < for all j, k € Z. (2.20)

Sy — 8% = (B®-Y™);.

On the other hand, from (2.20), (2.18) and
e (pM)P = CF — 400, (2.21)

we deduce that there exists a constant Cg > 0 such that

|F!| < Ce % )
877,

_— = “n —
oy G
Therefore, we can pass to the limit in (2.14), and get that S7° = 0 for

any j € Z, i.e.,
B®xY>* =0.

Applying Assumption (A3) with estimate (2.16), we deduce that there ex-
ists L € R? such that

YV =Y + kL,

which gives a contradiction with (2.15).
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Step 5: Proof of (2.20)

We can write
() = DV (Z7(t) — Zg () with Z7(t) := (1 —t) kL™ + t X[ -
We observe that
Z3(t) = Zp(t) — (G — k) L’

Jj—1

=Q=t)[G— k)L = L)+t Y (Xfuyy — Xjyy — L7).
=k

Since t € [0, 1], from (2.7) and (2.19) we deduce that
|Z7(t) — Zy (8)] > 15 — k[(|L*] — (" + &)  for every j, k € Z.

Finally Assumption (Al) on the decay at infinity on the potential V' im-
plies (2.20). This ends the proof of Theorem 2. O

Remark 5 As can be checked from the proof, Theorem 2 is still true with p
chosen such that o
2

pP:iKp(X)'

The proof is similar to the one of Theorem 2, if p™ in (2.5) and relation (2.21)

are replaced respectively by

Cn
n\p _ 2
(0") Nics, (X7)

— 400

and
e" (p")P > p" C3 — +o0.

3 A boundary layer estimate

In this section, we will give a boundary layer estimate. To this end, one has to
consider continuous extensions of the discrete norms and the corresponding
Harnack—type estimate.

Let I be any interval and K = I NZ. Recall that for any j € N, we set

K;=K+Q; WitthZ{—j,—j+1, ,j} .
We extend the definitions given for integers to real numbers. Let
N17~(X) = (1 - a)NKk(X) + aNKk+1(X)
foranyr=k+a, ke N, a€0,1), and

[ fllzer,y = (1 —a) sup |f;| +a sup |fi].
JEK JEKk+1

Reciprocally, remark that if K = {k_,k;}, then it is natural to set I =
[k—, k4] and define
I :=[k_ —rky +7] (3.1)

As a consequence, we have the counterpart of Theorem 2 (same proof).
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Theorem 3 (Extended “Harnack—type” estimate)
Under Assumptions (A1)-(A3), there exists o > 0, pn € (0,1), Cq, C2 >0
such that for every solution X of (1.4) satisfying

sup Dy (X, L*) < éo,
kEZ

we have, for any interval I and any r € [0, +00),
N (X) < pNL (X)) + Cullfllee,y,)
with

C
I7‘+p ('X)
Remark 6 Theorem 3 is still true with the following choice of p:
== .
N, (X)

An interesting corollary of this extended estimate is the following bound-
ary layer estimate which gives a decay rate for the perturbation of a perfect
chain of atoms.

Corollary 2 (Discrete boundary layer estimate)
Under Assumptions (A1)-(A3), there exist constants o > 0 and Cy > 0,
such that, if X = (Xi)rez satisfies

sup Dy (X, L*) < o (3.3)
kEZ

and is a solution of (1.4) with forces satisfying
fk=0 foranyk eN,
then there exists L € R? and Cy = Co(u, Co,p) > 0 such that
Dip(X,I) < Cok~ ™Y for anyk € N.
Proof. For any k € N, let us define
Ny:={jeN: j>k}.
For any nonnegative real r = k + § with k € N, 8 € (0, 1], we have
Niroo)(X) = (1= B) Ny, (X) + BNx,.,, (X)),

where we use the fact that [r,+o00) = [k + 1,400)1-3. By definition, the

map r — MT7+W)(X ) is non—increasing. Consider the sequences (My)ien
and (ry)ken such that

Mo = Njg o0y (X) = Ny(X) and 70:=0,
Myyq1:=pu My and rgyq :=inf {r >0 : ./\N/'[T7+Oo)(X) < Mk+1}

with p € (0,1) defined in Theorem 3. We observe that /\N/[Tk7+oo)(X) = M.
We have nothing to prove if My = 0, so we shall assume that My > 0.
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Step 1: The sequences are well-defined for any k

We only have to show that
/\N/[T)JFOO)(X) —0 asr — +oo. (3.4)

If (3.4) was not true, then there would exist §; > 0 and a sequence of integers
k, — 400 such that

inf Dy, (X,L)>6 >0.
LeR4

Let us define X™ by X} := Xy4x, — Xk, . Because of (3.3), we can extract
a subsequence which converges to a limit X °° which satisfies (1.4) with zero

forces and

inf Do(XOO,L) >6,>0.
LeRd

Applying Corollary 1 to X°, we get a contradiction. This proves (3.4).

Step 2: We have /\N/[THFOO)(X) < % for some constant Cy = Cy(, Ca,p) > 0.

We consider the extended “Harnack—type” estimate of Theorem 3 with the
choice (3.2). Let I, = [r,+00) and (1), = I,—, = [r — p,+00) with the
notation (3.1). With p = pi and r = . + pi, we have
Co
— < ith of = —=
Thtl — Tk S Pk W1 P M

By definition of M}, we have

1 1
CZ 3 k 02 » . -1
= —_— = _— th = r
Pk ( M, ) Y ( Mo) w1 Y=HM
and then

1op—1 1
Cy\ 7 X ~ ~ 1 Cy\ 7
0<r, < (—2> i< Con* with Cp = —— (—2) )

My ; v

so that
o \”
v 0
J\/'[rk,-l—oo)(X) =My = ,UJk My < My <_> .
Let us define the map h : [0, +00) — [0, 4+00) by

h(r) := Ny 400y (X) -

The function A is non-increasing and satisfies

4 ~ ~
h(ry) = p* My < =5 with =MyCP = —=—.
(rk) 1% 0SS ’I“:Z wit Cl 0 O (’Y — 1);0
If r € (rg, Tk41), then we have
h(rk+1) < l 01 02 Cl

12

h(r) < h(ry) = <
() S hlrw) = 2 < L <

This proves that J\N/'[T7+Oo)(X) < Cy/r? for any r > 0.
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Step 3: Conclusion

For each k € N, let us choose Lj, € R? such that

Dy(X, Ly) = Liélﬂgd Dy(X,L).

From Step 2, we have .
Cy
Dp(X, L) < Tk

As in Step 2 of the proof of Theorem 2, we have

C.
|Lit1 — Li| < Dp(X, L) + Dig1(X, Lpy1) < Qk—i-

Because p > 1, we see that the sequence (Ly)ren converges to some limit
L =limg_, 4o, Ly such that
1

L-Li<26) =

Jjzk

Using the fact that Dy(X, L) < Dy(X, Lg) + |L — Lg|, we get

_ - [ 3 1 - (3 11 Co
Di(X, L) < 2Cy —+‘Z — <202(ﬁ+(p_1)kp_1)§kp_l,

with Gy i=2C5 (3 + 711). O
4 Proof of Theorem 1

Step 1: A priori estimate

We apply the “Harnack—type” estimate of Theorem 2 with K = Z and get

C
Ng(X) < —sup|fi] < Cre (4.1)
1= kez

for some constant C7 > 0, where we have used the relation (1.6) and the L*>°
bound on the force f(z). Let us define

Ly == X1 — Xk .
There exists Iik € R? such that

max(|Xk+1 — X5 — .Z/k| , |Xk_1 — X+ Lk|) < Di(X, Lk) :Liélﬂngk(X’ L).

This implies that
|Lg+1 — Li| < 2Nz(X).
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As a consequence, for any p > 1 we have

sup Dp(X, Lo) < (14 2p) Nz(X),
keQ,

and for any k € Q,,
| Xk — Xo— kLol < p(142p) Nz(X).
Therefore, and more generally for any ¢ € Z, we get, for any p > 1,
| X — X — (k—j) Li| < Cgep? foranyj, kei+Q,, (4.2)

for some constant Cg > 0.

Step 2: The line tension formulation

Let us define the line tension of the chain by

Tpo= > VV(Xijy14j — Xiok).
j, k>0
Using the fact that VV(—L) = =VV(L), we can easily check that
Ti—Tia=- » VV(X;—Xz). (4.3)

kezZ\{i}

By (1.4), this means T; — T;_1 = f; and thus

Ti=To+Y f; Yi>1. (4.4)

j=1
Step 8: Error estimate on the line tension

As in Step 4 of the proof of Theorem 2, we can split the term T; in a “short
distance” contribution

Si = Z VV(Xit14j — Xick)
(4, k)eA,
with
Ap={(, k) eN* : k<pandj<p—1},
and a “far away” contribution
By = Z VV(Xiv145 — Xizk) -

(4, k)EN2\A,

We deduce from Assumption (A1) that there exists a positive constant Cy
such that
|Fi| < Cop~ @1, (4.5)
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and similarly

> VV((L4j+k)Li)| < Cop P (4.6)
(4, k)eEN2\A,

On the other hand, we have

Si — Z VV((1+j+k)Li)| < Cho Z | Xiv11j— Xiow—(1+7+k) Li],
(4, k)EA, (4, k)EA,

for some constant C1¢ which bounds the second derivatives of the potential
V(L) for |L| > |L*| — &o. Using (4.2), (4.3), (4.5) and (4.6), this implies that

Ti— > VV((1+j+k)L;)| <Cn (€p4+p_<p_1))

J, k=0
for some constant C1; > 0. With the choice € pP*3 = 1, which is optimal up
-1
to a numerical constant, the right hand side becomes 2 C1; e#75 and we get
T, — VW (L;)| < Cra e (4.7)

for some constant Cio > 0.
Step 4: Fxistence of the solution @

Let us recall the continuous Euler-Lagrange equation (1.2), namely
(VW(@)) =f onR. (4.8)

For a proof of the existence of such a solution @, we refer for instance the
reader to [13]. For the sake of completeness, we give a proof below.
Without loss of generality, we can moreover assume that

®(0)=0.
Then let us define
Vii={®e W (R;RY) : ®(x+1)—(z) =L and &(0) =0},

R/Z

Yy = {fGL“(R;Rd) Cfar)=f@) ad [ f= }

and consider the map

vV, — Vo
P s (VW(9))".

Let us remark that ¥ is C'. Moreover, because of Assumption (A2), we
know that A = D2W (L*) is invertible, and then D?W (L?) is also invertible
for [L° — L*| < ¢ with &g small enough. It is easy to check that DW¥(®y)
is invertible for @g(x) = z L°. From the Inverse Function Theorem, we de-
duce that there exists €9 small enough such that for any f € Vs satisfying
| fllLoe(r) < €0, there exists a unique solution ¢ € Vi solution of (4.8), with &
in a neighborhood of @ in V.
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Step 5: Conclusion

From (4.8), we see that there exists a constant o9 € R? such that

VW (@ (2)) = o0 + / " 1) dy

From (1.6), (4.4) and (4.7), we deduce that

(i+35)e
T0+/ f( ) VW( ) < (2 EPJF'*. (49)

2

Let us introduce an approximation of @ by setting
Q:)I(CC) = (1 - t) Ll + tL»L'Jrl

with t = (x —ie)/e if ie <z < (i 4+ 1)e. Recall that |L;y; — L;| < 2C7¢
by (4.1). Now, using the L° bound on the force f, we deduce from (4.9) that

}20 L VW(P (z)) — VW(qﬁ'(x))} < Opyeh (4.10)

with Xy = Ty — 0¢. On the other hand, because of the N.-periodicity of the
L;, we have

/01 &'(z) de = ¢ Z (Li + % (Lit1 — Ll))

where we have used the fact that L; = X;41 — X; and (1.5). By (1.1), we

have therefore ) .
/ & () do = / &' (z) dx . (4.11)
0 0

Our goal is to use (4.11) to control Xy in (4.10). To this end, we consider the
Taylor expansion

VW(9') = VW (&) + D*W(P') - (&' — &) + O(|®' — &'|?).

Taking into account the invertibility of D?(®'), which follows from Assump-
tion (A2) and the construction of Step 4, we deduce that

¥ (x) ~ @' (2) — (D*(@'(2)))

-1

(20)’ < Cuyerm + O(|4~5/(9€) - '(2)?)
(4.12)
and, as a consequence,

& () — &' (x) — (D>(L°)

<cl5(*+||¢’ |3y + Dol 16 = Lol owy) -



21

Now integrating on the interval (0,1) and using (4.11), we get that
—1 ;1 ~
}(DQ(LO)) (Zo)} <Cis (€5+3 + 12"~ 45/”%00(11@) + [ Zo| (|4 — LOHL&(R))
and then
L—l ~
|Xo| < Ci6 (EP i 4]0 QSIH%DO(R)) :

Hence (4.12) implies
14— &'l @) < Crr et

where we have used the fact that ||&' — @'|| oo (r) is small because ¢’ and @
are both close to L. For any i € Z, we have

|Li — &' (ie)| < Crpers

which gives the result with L; = X;;; — X;. This ends the proof of the
Theorem. [l

Remark 7 With suitable assumptions, we could also consider the equilibrium
of a ring with a large number of atoms instead of a chain of aligned atoms
with “linear + periodic” conditions.

5 Further general results on the potentials

Inspired by the line tension argument of Step 2 of the proof of Theorem 1,
let us state first a general result.

Proposition 1 (Sufficient conditions for Assumption (A3))
Let

Pj:=Y kD*V((k+|j])L*).
E>1

If we decompose Pj into le and sz such that
L* Lx L* L*
Pj=Pl— ® — + P? <1d——®—)
oL L Y (L= L]

and if
P} <0 foranyj € Z\{0} and ZPJ»I >0,
jEL
2 ~ 2
—P; <0 foranyj € Z\{0} and Z—Pj >0,
JEL

then Assumption (A3) is satisfied.



22

Proof.  For any Y satisfying |Yi41 + Yie—1 — 2Yi| < C, let us set
(PxL);=Y PijL; withL;=Y;11—Y;.
JEZ
With J; := P11 — P, we get
(P * L)i+1 — (P* L)z = Zji_j Lj = (J* L)i,
JEL
where

Jr=">Y m{D*V(m+[1+1])L*) = D*V((m+I]) L*)}

m>1

-y DV(hL") ifl>0,
h>1+1

> DV(hL*) ifl<-1.
h>[1+1]+1

Hence, with the notations introduced in (1.7)-(1.8) and using D2V (—h L*) =
D2V (h L*) for any h > 0, we get

(J*L)i=> Y (=Jij+Jijs1) ==Y ViBijy1=—(B*Y); 1 =0.
JEZ JEZ

Consequently, if we assume that BxY =0, then 0= (J* L); = (P*L);41 —
(P * L); means that

(PxL);=(PxL)y foranyi€Z,

and then Gy = Li+1 — Ly, satisfies

P+xG=0.
L* * L
We can project this equality along m or (m) , and get
1 1 : 1 L
P'xG =0 with Gk:m-Gk, (5.2)

L L L*\ "
P?xG?*=0 with G} = <Id——®—> -Gy € <—) .

: |L*| L] |L*|

Consider the maximum of (G})rez. If it is achieved at some k!, we get
from (5.2) that

PGu=— Y PG.,<-| > PG
kezZ\{0} kezZ\{0}
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Then (5.1) implies
sup G,lC <0.
kEZ

When the suppremum is reached at infinity, it is possible (up to translations
at infinity) to see that the result is still true. Similarly, we get that

inf G. >0,
keZ
and then
G'=0.
Now for any constant vector & € (L*)*, let us set G¢ = ¢ - G2. Then we have
P2+xG* =0,

which, as above, implies G* = 0. Because this is true for any ¢ € (L*)*, this
implies that
G?=0.
Finally this gives that G = 0 and then
Ly=1Ly foranyke€Z,

which proves that (Yj)rez is a perfect chain. ([l

From (1.8), we have

L* L VI(kL*) r+ I
Hy =V (kL 2 (1d — —
WU 1+ e 7% 1)

and by definition of P} and P? (see Proposition 1), we obtain

=S RV ((k+1j))r) and P3(r Zk Vi((k+ i r)

k>1 k>1 (k+1iDr

In Section 6 and under some assumptions on the potentials and on the range
of r, we will check that the operators P! and P? satisfy Assumption (5.1).

Lemma 1 With the notations of Proposition 1,
S Pl r)=W{(r) and r> P}r)=Wr).
JEZL JEZ

Proof. The result relies on the following computation.

P =) > RV ((k+1iDr)

JEZ JEZ k>1
=3 kV(kr)+2> > KV ((k+j)r)
E>1 §>1k>1

= SRV (hr) = WY ().
h>1

The result for P?(r) follows from a similar computation which gives

3P ZhQV@hr - ZhVO —%Wé(r).

JEZ h>1 rss



24

6 Applications to Lennard—Jones type potentials

Let us now consider potentials of Lennard—Jones type, i.e., for r > 0
Vo(r)=r"1—7r77 withl<p<ygq
and
Wo(r) =sqr 1 —s,r P with s;= Z |k]79 = C((q) < sp=C¢(p),
keN\{0}

where ¢ denotes the Rieman Zeta function. Then we define ry,75,71,72 > 0
such that

0=Vy(r1) = Vy'(ra) = Wy(T1) = Wy (T2)
and find

1

1
g\ "7 q(q+1))ﬁ
ryi= (= and rg:= | —/——= >y,
' (p) ’ <p(p+1) '

1 1
qa-p 1 q-p
Fl = (M> <7 and 72 = (M) S (7177‘2) .

Spp spp(p + 1)

\ \ 7?1 77|2|7“1 T2 T
T T

Fig. 1 Van der Waals forces: plot of Vo and Wy with p = 2.25 and ¢ = 3.5.
Condition (6.2) (see below) is satisfied since r2/2 =~ 0.923723 < 71 =~ 1.15726.

Lemma 2 (Sufficient conditions for Lennard-Jones type potentials)

i) The operator P*(r) satisfies Assumption (5.1) if r € (r2/2,T2), which is

possible if
1
S84\ 9" 1
— > —. 6.1
(5p> 2 (6.1

ii) The operator P?(r) satisfies Assumption (5.1) if r € (r1/2,71), which is
possible if (6.1) is satisfied.
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iii) PY(r) and P?(r) satisfy Assumption (5.1) simultaneously if r € (r2/2,71)

which is possible if
= N\
q—p a—p
(S—") > = (i> . (6.2)
Sp 2\p+1

Proof.  If r > ry/2, then P/(r) < 0 if j # 0. Similarly, if » > r,/2, then

P?(r) > 0if j # 0. The result follows from Lemma 1. O
q
5 s
Conditions (6.2) and
p=1 p < q are satisfied
4
3
2
1

0.5 1 1.5 2 2.5 3 3.5 4

Fig. 2 Van der Waals forces: regions for which Conditions (6.1) and (6.2) are
satisfied. The point Py := (2.25,3.5) corresponding to Fig. 1 is shown. In the gray

area, Condition (5.1) is satisfied by P'(r) and P*(r).

Conditions (6.1) and (6.2) could easily be improved, for instance by re-
fining the estimates for which le <0 and —Pj2 <0.

A straightforward consequence of Lemma 2 and Proposition 1 is the fol-
lowing result of stability under compression. This is the main result of this
section.

Corollary 3 (Sufficient conditions for Lennard-Jones type poten-
tials to have (A3)). If (6.2) is satisfied, then Assumption (A3) is satisfied
if |L*| € (r2/2,71). If moreover d = 1, then Assumption (A3) is granted by
assuming that |L*| € (r2/2,T2).

Remark 8 In dimension d > 2, intuitively we expect stability of the chain of
atoms when we pull the chain in the range where W/(r) > 0 and W{'(r) > 0.
Nevertheless, we were not able to prove it, because it is more difficult to check
Assumption (A3) in such a case (but this is true if d = 1 as a consequence
of point i) of Lemma 2) .

On the contrary, in the case of compression of a straight chain, i.e., with
W§(r) < 0 and Wg'(r) > 0, one atom may decrease the total energy by
moving far enough, perpendicularly to the chain. Indeed the system is unsta-
ble (both at the microscopic and at the macroscopic level). Corollary 3 and
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Theorem 1 show that the chain of atoms under compression is well approxi-
mated at the microscopic level, if a suitable force is applied at the microscopic
level to avoid the atoms to move too far perpendicularly to the chain, i.e., if
Dy (X, L*) < §p with dp small enough.
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