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Abstract: This article develops the design, installation, exploitation, and final utilization of intelligent
techniques, hardware, and software for understanding mobility in a modern city. We focus on a
smart-campus initiative in the University of Malaga as the scenario for building this cyber–physical
system at a low cost, and then present the details of a new proposed evolutionary algorithm used
for better training machine-learning techniques: BiPred. We model and solve the task of reducing
the size of the dataset used for learning about campus mobility. Our conclusions show an important
reduction of the required data to learn mobility patterns by more than 90%, while improving (at the
same time) the precision of the predictions of theapplied machine-learning method (up to 15%). All
this was done along with the construction of a real system in a city, which hopefully resulted in a
very comprehensive work in smart cities using sensors.

Keywords: smart mobility; road-traffic prediction; dataset reduction; evolutionary algorithms;
machine learning

1. Introduction

From the very first concepts of a city, thousands of years ago, it was clear that mobility inside the
city and between cities would be the main domain of development. Today, with most of the world
population living in cities (and more to migrate there in the next 50 years) transportation of goods,
citizen mobility, and new models of road traffic are continuously appearing. Indeed, the speed at which
new challenges in mobility in cities is larger than the services given by city councils and collaborating
companies. With the new concept of smart cities [1–6], countless new problems have been appearing
in mobility [7–9], including: parking, optimized routes, car sharing, smart systems in buses, private
models of mobility, signaling, lane decisions, social implications of mobility, energy consumption, and
environmental implications.

The need for information to take decisions based on the gathered data is today a prominent
problem. Even very basic data on mobility are missed most of the time: number of cars per street,
origin/destination (OD) matrices, pedestrian behavior, or vehicle types. All are hardly found together,
and, indeed, they are very important indicators of the status of the city. Considering that key
performance indicators (KPIs) like those are a basic first step to progress toward a smarter city,
we can conclude that we are all in trouble. We need initiatives to create real systems to measure KPIs
and communicate them to a server for an intelligent decision making. There are some initiatives to
advance this knowledge of city traffic roads, at least to gather a minimum set of open data that allow
stakeholders to create so-called vertical services. Traditional measurement hardware [10] is expensive,
hard to install, and scarcely available, so it has been replaced with new technologies like sensors,
cameras, and floating cars [11]. In this context, new services for the mobility department and for
citizens appear every year based in the intelligent management of the sensed information [12,13].
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In this context, smart mobility based on smart traffic-management systems is a key aspect in the
development of smart cities. Intelligent systems able to detect, predict, and efficiently manage different
road-traffic situations would endow city officials with powerful tools for a number of new services,
such as the reduction of travel time and greenhouse-gas emissions. These systems are all based on
accurate traffic monitoring as the first step (as well as historical data) to later allow needed services to
be built on top.

As mentioned above, existing traffic-monitoring systems utilize expensive and road-intrusive
devices, e.g., loop detectors. Thus, it is paramount to find new ways of having real data from the
city at a low cost and in a nonintrusive manner. The present technology allows to obtain very
precise road-traffic density measures (e.g., the number and type of vehicles). However, it is unable
to individually identify vehicles, and, therefore, cannot obtain information about road-traffic flows
(e.g., OD matrices). In fact, technologies based on video license-plate recognition are also used for this
purpose. However, this technology presents several drawbacks, the main ones being the high costs of
installation and management, and too-high variable accuracy that depends on external situations, such
as meteorology. So, an important research question is whether there is any low-cost option to loop
sensors and cameras. The constraints to answer this question are important too: low cost, providing
rich information, respecting anonymity, and capable of scaling.

Some researchers have proposed systems based on detecting Bluetooth (BT) signals and
identifying vehicles and pedestrians by the hardware Media Access Control (MAC) addresses of
their devices [14]. This low-cost alternative is experiencing fast development, since it is very cheap
and easy to maintain. However, its accuracy depends on the market penetration of the target BT
devices (with present low detection rates between 5% and 12%) [15]. Instead, some recent studies have
considered Wi-Fi (IEEE 802.11 wireless-based) signals to track pedestrians to overcome the inaccuracy
of BT-based sensors because Wi-Fi is very frequently used by citizens [16]. In addition, an increasing
number of car manufacturers include wireless access points as part of the standard equipment of
their cars.

In this work, we briefly discuss the building and installation of the cyber–physical system that we
developed at the campus of the University of Malaga. As a note on the actual goal of this article, the
prediction of traffic flow is the first base step for a further service for smart mobility (based on using
intelligent systems). We propose the detection of vehicles by capturing the wave signals generated
by the smart devices that are located inside them, e.g., on-board units or drivers’ smart devices (e.g.,
smartphones and tablets).

In short, the proposed cyber–physical system captures information from wireless devices (BT
and Wi-Fi) and road-traffic noise. The combined use of the two wireless technologies allows a greater
collection of MAC addresses. We gathered (and transmitted to a central server facility) these data
for weeks for this article, then made a basic filtering-and-go for its use in this work to better know
our streets. We provide a new technique based on coupling an evolutionary algorithm (EA) [17] and
machine learning (ML) techniques, that can predict traffic density, while reducing the amount of data
required to generate the prediction. This mixture of theory and real practice can be useful for many
researchers. In this case, we apply a polynomial regression model as the base ML method, but nothing
prevents the extension to other ML methods. Our results indicate that the technique has a very good
quality of prediction, based in a bi-level design of algorithms: a structured hierarchical way of using
techniques with expected good results.

Therefore, the main contributions of this article are:

• introducing the cyber-physical system installed in the campus of University of Malaga to capture
road-traffic information;

• defining the optimization problem of finding a data subset able to accurately describe the
knowledge of the whole road-traffic dataset, when it is applied over a given ML method
(polynomial fitting in this case);
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• and proposing the BiPred approach based on coupling an EA and an ML method, which has been
able to reduce the required data to learn mobility patterns in more than 90%, while improving the
precision of the predictions up to 15%.

This paper is organized as follows. The next section outlines the related work, since we go for
hardware realizations plus data management and intelligent algorithms, we make a short discussion
of the most important topics. Section 3 introduces the cyber-physical system allowing us to gather
the real data used in this work. Section 4 formally defines the problem addressed in this article.
Section 5 presents our proposed Bilevel Predictor (BiPred) algorithm based on coupling EAs and ML.
Section 6 shows the carried-out experiments and discusses their encouraging numerical performance.
Finally, Section 7 outlines our conclusions and new (more sensible) lines of research after this work.

2. Related Work

Since the more innovative part and the focus of the paper (the BiPred algorithm) is a new
hybrid-form EA and ML for prediction, we review these domains here. Many works have been carried
out with the aim of predicting future events from a set of historical data. The use of time series is
maybe the most popular way to carry out analysis of historical data for prediction, so let us start there.

Time series have been widely used in analysis and prediction tasks in many real-world
applications, e.g., to analyze economic cycles [18], to determine the relationship between the weather
(temperature) and population mortality [19] or air pollution, the weather, and violent crimes [20].
Other authors have applied time series to study data that came from artificial satellites [21]. In our
study, we focus on the prediction of road-traffic data to provide future smart-mobility services.

As the amount and complexity of the data has grown, new methodologies for efficient data
management are mandatory. Accurate and unbiased estimations of the time-series data produced by
modern applications cannot always be achieved using well-known linear techniques, and, thus, the
estimation process requires more advanced time-series prediction algorithms.

In recent years, different techniques of Artificial Intelligence (AI), such as neural networks (NN),
support vector machines (SVM), pattern recognition (PR), and adhoc heuristics have been used for the
analysis of time series and the prediction of events. The NN approaches to time-series prediction have
been widely used [4,22].

An NN approach was used to find the appropriate sample rate and window size [23]. The authors
used a heuristic method for finding the appropriate sampling rate and embedding dimension to decide
the window size. Connor et al. proposed a robust learning algorithm and applied it to recurrent NNs
(RNNs) [24]. This algorithm is based on filtering out layers (noise) from the data and then estimating
parameters from the filtered data. To show the need for robust RNNs, the authors compared the
predictive ability of least squares-estimated RNNs on synthetic data and on the Puget Power Electric
Demand time series.

Another tool that has been successfully used in recent years to improve and expand the field of
prediction is SVM [25–27]. In the cited works, the capacity of SVM to operate with noisy data was
clearly shown, hence the importance of this technique for real predictions.

The use of PR is then paramount, and is addressed in many cases by using time series [28,29].
Time-series clustering has been shown effective for various domains, but it needs a deep extension of
concepts if we want to deal with clustering in non-Euclidean spaces. Specifically, a cluster prototype
needs to be calculated. In Reference [29], authors defined an optimal prototype as an optimization
problem, and proposed a local-search algorithm. The authors experimentally compared different
time-series clustering methods, and found that the proposed prototype with accumulative clustering
(by K-Means) provided the best clustering accuracy. Additionally, a method for clustering time series
exists based on their structural features, as proposed in Reference [30]. Unlike other approaches, this
method does not cluster point values using a distance metric, but rather it clusters data based on global
features extracted from the time series themselves.
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After reviewing all these previous works, the conclusion about the state of the art is that techniques
are very varied if we want an accurate and efficient treatment of the sensed data, with a clear presence
of ML in all of it. It is also well-known that, in ML, the quality and amount of the available data
influences the final results. In our case, the quality of the prediction for a complex system, like vehicles
moving in city. At a higher level, these related works told us that there is a niche for new improvements
in smart mobility.

EAs have been seen as a tool to address ML by a number of authors for the last three decades [31].
Specifically, genetic algorithms (GA) have been successfully used to define a number of different types
of genetic-based machine-learning systems, e.g., GA-based pattern recognition [32] or neuroevolution
(i.e., GA-based NN) [33,34]. However, we go for a proposal that applies EAs to enhance an
ML prediction method by reducing the data required to create a predictor (more efficient and
accurate learning).

Focusing on the use of EAs to improve ML methods, several authors have faced the feature
selection problem [35]. An early approach applied a GA to identify and select the best subset of
features to be used by a rule induction system [36]. The same authors compared their GA-based
approach with a greedy-like search method (specifically designed to address this feature selection
problem) [37]. They concluded that the GA was able to provide more competitive results since the
greedy-like search had a tendency to get trapped on local minima.

Recently, Amira Sayed et al. evaluated a GA-based feature-selection method for anomaly
detection. The authors used several feature-selection techniques, e.g., principal-component analysis
(PCA), sequential floating, and correlation-based feature selection [38]. Automatic Feature Subset
Selection using GA (AFSGA) was introduced to automatically identify the required features to compute
representative clusters, while reducing the computational cost of the used clustering method [39].
A GA was also applied to find a subset of features to solve the problem of face recognition and a
generic model for 3D facial expressions [40]. The results showed that this approach provides good
results in addressing face modeling.

On the one hand, these previous studies principally focus on feature selection, i.e., selecting the
minimum subset of variables that allow to represent all data in a unique way. On the other hand, in
the present article, we deal with the problem of selecting the minimum subset of data (road-traffic
measures registered by our sensors) that will characterize a time series with the same trend as the
original dataset. Therefore, an important difference with feature selection lies in the fact that we want
to find a subset of data of which the mathematical distribution is similar to the distribution of the
original dataset (without losing generality). As shown in this paper, the model obtained from the
selected subset of road-traffic measures can predict road-traffic behavior based on the number of cars
registered by the sensors.

3. Building a Cyber–Physical System

The goal of this article is to propose a new algorithm for the intelligent analysis of data coming
from vehicles in city streets. However, we have many added values to this analysis, because we have
built the whole system and exploited it, and this is related and of interest to other researchers who
want to examine real situations, from the lab to the streets, at a low cost. Thus, we take some time in
this section to introduce the Internet of Things (IoT) system that we have developed, which is used
to capture the data used by the intelligent BiPred algorithm. An early version of this system was
previously introduced in Reference [41].

This paper describes an initial step of our work to make our university campus a Smart Campus.
Before retrieving the very first data, we had to build and operate what is called a cyber–physical
system. In such a system, we deal with specialized hardware and software to enable the monitoring of
streets and elaborate a set of files full of numerical data that we can trust to finally start addressing our
true goal.
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Though the system itself is not our target, the effort in building and using it do have implications
on the amount of data and their quality. This is the first article in a family of articles that foster low-cost
technology, light IoT devices, and managing software. We want to show the research community in
smart cities and intelligent systems that there is huge potential to be exploited in the coming years at
a reasonable cost, with no need for companies or interactions with city managers, simply because a
university campus is a microcosm of a city where we can make our real tests.

Our cyber–physical system has several components:

• A set of IoT devices (sensors), to detect Wi-Fi and Bluetooth signals and to measure environmental
noise directly from the streets of the city in the campus. We also built the sensors (even if we
usually perform research in algorithms) just to prove that this can be done at a low cost, and to
have final total control on the data being produced.

• A wireless communication system spanning our (large) campus, to connect IoT devices with a
central server where the info is gathered and stored.

• A server interacting with the sensors, where specialized software is used to produce useful
knowledge from the raw data collected by the sensors.

In future works, we plan to fully describe this system, which will need a few separate papers
focused in computer and software engineering, and other multidisciplinary domains. In this paper,
we just wanted to point out the existence of the system to better explain the domain in which we
are moving; quite different from downloading a benchmark problem from a website in a one-minute
operation. Even if open data start to be available on the Internet, we are still in a very initial phase of
developments in smart systems.

All this is mentioned to support our claim of realism in the data that we are managing and in
the aim of making predictions: the system producing the data is real and is operating right now, the
information is real from the vehicles, and the benefits of predictions are real for the city. Even if we go
here for an algorithm and its evaluation, we believe in the power of added values in research since
they inspire and guide other researchers.

First, we describe the IoT devices used to collect the data that we later used in our experiments,
and second, we defined how they integrate into the global cyber–physical system in terms of
communications and utilization.

3.1. Sensor Description

In order to overcome the high cost and limitations of traditional traffic data-collection methods,
the presented sensor utilizes broadly used low-cost technologies. Figure 1a shows the block diagram
of the designed sensor. As can be seen, the sensor is composed of three wireless interfaces: two for
wireless-network connections (Wi-Fi 1 and Wi-Fi 2) and one for Bluetooth, then a Real-Time Clock
(RTC) and a noise–sound meter.
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Figure 1. Different elements and views of the road-sensor system [41].
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These devices constitute the core of the system since they are responsible for the measurement of
the data captured by the sensor and later processed. All these devices are controlled by a Raspberry Pi 3
(Raspberry Pi 3 specs. https://www.raspberrypi.org/products/raspberry-pi-3-model-b/) small
computer, which is responsible for filtering and temporarily storing the data generated. In summary,
the sensor constantly collects raw data coming from Wi-Fi 2, Bluetooth, and the sound meter by
storing locally.

To carry out the monitoring of road traffic, we used the architecture shown in Figure 1b. A set
of sensors (at least two) is needed to collect the road-traffic data and flows of vehicles. Periodically
(by using the Wi-Fi 1 interface), such data are transferred through the Internet to the server, which is
located in a data center, where it is aggregated and analyzed.

In order to carry out the transfer of data between the sensors and the data center, a software
client/server architecture was designed (see Figure 1c); this one implements a web service that
establishes the protocols for the correct exchange of data.

3.2. Sensor Operation

The developed sensor retrieves three types of data: noise level, and MAC addresses of the nearby
Bluetooth and Wi-Fi devices.

The first type of data is obtained by using a sound meter, model GM1356, YH-THINKING
part number BCBI10216, which measures the level of noise twice per second. The noise sensor
communicates with the central processing unit by using a USB connection. Readings are stored in a
database on the server. In order to make a noise map, the equivalent sound is calculated. Equivalent
sound pressure level, i.e., Leq expresses the mean of the energy sound perceived by an individual
(measured in decibels (dB) in an interval of time [42]). Thus, Leq represents the level of pressure that
would have been produced by a constant noise with the same energy as the noise actually perceived
during the same time interval.

Bluetooth networks (commonly referred to as piconets) use a master/slave model to control when
and where devices can send data; thus, to detect a Bluetooth device, the sensor must be continually
open and in discovering mode. Any device with Bluetooth enabled is continually sending data packets
on the search for other Bluetooth devices. These data packets are also read by our sensor to obtain
the MAC addresses in order to identify the devices. This information, together with the exact time,
is stored in the server for further analysis. Finally, it is important to note that the effective range of a
Bluetooth link varies due to propagation conditions, material coverage, production sample variations,
antenna configurations and battery conditions. In our initial tests, it has been determined that the
range of coverage of our sensor for detection of Bluetooth devices is around ten meters.

Wi-Fi technology is used to detect additional devices even when they have no Bluetooth enabled.
Wi-Fi devices that implement the 802.11 protocol constantly transmit beacons that include their MAC
address as well as other important information. The Wi-Fi interface of the sensor is operating in
promiscuous mode to intercept all the beacons in the air transmitted by other Wi-Fi devices. Once a
beacon is captured by the Wi-Fi interface, the MAC address and signal strength are extracted and stored.
As the signal strength generated by Wi-Fi devices is higher than that of the Bluetooth, the Wi-Fi effective
range of coverage is longer. For this reason, the sensor detects Wi-Fi devices at longer distances.

The combination of these three types of data (sound noise, Bluetooth, and Wi-Fi devices) allows
us to provide a global knowledge of the status of road traffic: we sense data, convert it into aggregated
information and then build knowledge out of it. In simple words, the current number of the devices
detected by a giving sensor is a measurement of road-traffic density. The accuracy of this metric can be
improved by using the noise level returned by this sensor.

Indeed, road-traffic flows can be inferred by determining the trajectories of the devices followed
throughout our sensor network in a given time window. Evaluating MAC addresses allows a fine
evaluation of the flows since they contain the type of device (e.g., cellphone, wearable, vehicle, etc.).

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/


Sensors 2018, 18, 4123 7 of 20

Moreover, further analysis of this information can be carried out to get the most used roads, the faster
routes, the most noisy places, etc.

4. Traffic-Monitoring System Design Optimization

The main purpose of developing the proposed system is to allow city managers to evaluate the
current traffic situation and to predict road traffic. This type of prediction assistance in decision making
improves the use of road-traffic resources in order to, among others, reduce the number of traffic jams
during rush hours and avoid dangerous situations.

The type of prediction proposed here presents several challenges. One of the most salient is
the accurate treatment of the large amount of data collected by the sensor system to generate useful
knowledge, since most of ML methods would suffer from overfitting issues. Therefore, it is important
to find the most efficient way to analyze the generated data with the aim of avoiding these issues
without losing precision in the generated knowledge or prediction.

Out of all the different ML techniques, we have selected one with low computational complexity:
polynomial fitting (PF) or regression predictor [43]. PF consists of finding a polynomial function that
has the best fit to a series of data points (i.e., data distribution). In this case, our data distribution
is defined by the number of vehicles (number of different MAC addresses), which represents the
road-traffic density captured in a given period of time. This polynomial is used to characterize and
later predict road traffic in the location of the city where the sensor is installed.

The main idea behind BiPred is to find a subset of the sensed data to apply a ML method (PF in
our case), which could be used to accurately describe the knowledge of the whole dataset regarding
road traffic, while avoiding, or at least limiting, the negative impact of overfitting.

The selection of such an optimal subset of data, which in fact are sensed data during some specifics
periods of time during the day, would also improve the efficiency of the process of retrieving the
sensed data and predicting. This is mainly because future iterations over the ML method (PF) to
improve predictions would use just the data sensed during these specific period of times and not
the whole dataset. In turn, the sensors would be configured to more efficiently use computation and
communication resources during such periods of time in order to ensure accurate measurements.

Therefore, BiPred presents a two-level predictor: first, it applies an intelligent and automatic
method based on coupling an EA and ML to select the best subset of data, that is, the smaller one that
allows to obtain an efficient and accurate predictor. Figure 2 summarizes the methodology applied to
obtain efficient predictions by using BiPred.

Figure 2. BiPred methodology.

The search of the best subset of all the sensed data during a day is not easy since there is an
unaffordable number of possible combinations that should be analyzed, depending on how the sensed
data are grouped or split up. If all the sensed data are grouped in data blocks that combine the
data sensed during m min, the number of possible subsets of data (NPS) is computed according to
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Equation (1). Thus, if we group the data in blocks of five minutes, there are 2288 possible combinations
to be analyzed.

NPS = 2ss, where ss =
24 h× 60 min/h

m
(1)

With such a huge number of possible solutions (subsets of data), exact and enumerative methods
are not applicable for solving the underlying search and optimization problem of finding the best
configuration because they require critically long execution times to perform the search, and because
we are far from having a traditional analytical model. In this context, EAs are a promising approach to
find accurate subsets of the sensed data to apply ML in reasonable execution times [17].

5. Evolutionary Algorithm for Efficient Prediction

In this section, we describe the evolutionary method used to address BiPred in order to build
a bilevel predictor for road traffic in the streets.

5.1. Evolutionary Algorithms

EAs are nondeterministic methods that mimic the Darwinian evolutionary process of species in
nature to address search, optimization, and other similar problems [44,45]. In the last three decades,
EAs have been successfully applied for addressing hard-to-solve problems underlying many real and
complex applications.

Algorithm 1 describes the generic schema of an EA. Basically, it iteratively applies stochastic
operators on a set of solutions (individuals) that belong to a solution set named population (P) in order
to improve their quality according to the objective of the problem, which is measured according to a
given fitness value. Each iteration is called generation.

Algorithm 1 Generic schema for an evolutionary algorithm (EA).

1: t← 0 {generation counter}
2: initialize(P(0))
3: while not stopcriterion do

4: evaluate(P(t))
5: parents← selection(P(t))
6: offspring← crossover(parents)
7: offspring←mutation(offspring)
8: P(t+1)← replacement(offspring, P(t))
9: t← t + 1

10: end while
11: return best solution ever found

Every individual in the population encodes a candidate solution for the problem. The initial
population is generated by a random method or by using a specific heuristic for the problem (line 2
in Algorithm 1). An evaluation function associates a fitness value to every individual, indicating its
suitability to the problem (line 4).

The search process is guided by a probabilistic technique of selecting the best individuals (parents
and generated offspring) according to their quality (line 5). Iteratively, solutions evolve by the
probabilistic application of variation operators (lines 6–7). Thus, new solutions are generated by using
the crossover operator that recombines parts from two individuals (parents) and the application
of random changes (mutations) in individuals. The stopping criterion usually involves a fixed
computational effort (number of generations, number of fitness evaluations, or execution time),
a quality threshold on the best fitness value, or the detection of a stagnation situation.

Specific policies are used to select the groups of individuals to recombine the selection method
and to determine which new individuals are inserted in the population in each new generation (the
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replacement criterion). Finally, the EA returns the best solution ever found in the iterative process,
taking into account the fitness function.

In this study, we apply a variant of EAs based on a GA [45] to devise our efficient predictor,
BiPred. In the following subsections, we describe the main components of this evolutionary method:
the solution encoding, the evolutionary operators, and the evaluation of the objective function.

5.2. Solution Encoding

In order to address BiPred, the whole sensed data is grouped in clusters of a given length of time
(in this study, we group the data in clusters of 5 min). Thus, BiPred decides which of these groups of
data are taken into account to generate the fitting polynomial to predict road traffic over the 24 h of
a day.

In the proposed BiPred, solutions are represented as vectors of binary values (bit strings), having
a size dependent on the length of the time used to group the sensed data. In this case, the length of the
solution vector is 288 (i.e., number of 5 min blocks in 24 h). The first position of the vector represents
the first 5 min of the day (from 0:00:00 h to 0:04:59 h), the second represents the data sensed from
0:05:00 h to 0:09:59 h), and so on. The last position of the solution represents the data obtained from
23:55:00 h to 23:59:59 h. Each position on the vector contains the information about whether such a
data block is considered (1), or not (0), to compute the fitting polynomial. Thus, BiPred searches for
the efficient solution (subset of data) over 2288 possible solutions.

Figure 3 shows an example of an individual in which the bits in positions 1, 3, 287, and 288 are
ones. Thus, this tentative solution (subset of data) includes the data sensed from 0:00:00 h to 0:04:59 h
(block 1), from 0:10:00 h to 0:14:59 h (block 3), and from 23:50:00 h to 23:59:59 h (blocks 287 and 288),
respectively.

1 1 1 10 ...

1 2 3 287 288...

Figure 3. Representation of an individual solution used by BiPred.

5.3. Evolutionary Operators

In the following, we describe the applied evolutionary operators to generate diversity during the
search: initialization, crossover, and mutation.

5.3.1. Initialization

In this study, the individuals of the initial population are randomly generated. Each bit that is
part of the bit strings that represent the solutions have the same probability to be initialized to one
or zero. This strategy allows the EA to start the evolutionary search from a subspace of solutions that
use about half of the sensed data to make efficient predictions.

5.3.2. Crossover

A specific crossover operator, 12-Hour Recombination (12 h), has been designed in order to
address BiPred. This operator is applied with a probability pC to recombine genetic information of
two parents in order to generate two new solutions or offspring. On the basis that solutions are made
by 24 blocks of 12 bits that represent the bit masks in each hour of the day (24 × 12 = 288), i.e., each
block of these 12 bits represents the data collected from XX:00:00 h to XX:59:59 h. The 12 h operator is
applied over two parents (P1 and P2) that exchange with each other 12 blocks of an hour to create the
offspring (O1 and O2). These 12 blocks are randomly chosen from each one of the 24 h.
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Figure 4 summarizes how this crossover operator is applied over two parents to obtain the two
offspring individuals. In this case, it is shown partially the individuals (just four blocks of data). The
two parents (P1 and P2) exchange three data blocks of an hour to generate the offspring (O1 and O2).

Figure 4. Crossover operation applied by the EA of BiPred.

5.3.3. Mutation

We have devised an adhoc operator in order to provide enough diversity to the search process,
avoiding our evolutionary approach to get stuck in a specific region of the search space. The mutation
operator probabilistically spreads 12 new data blocks through the solution or removes 12 data blocks
over the whole solution. Figure 5 shows an example of how this mutation operator is applied to
generate diversity. In this example, it adds 12 new blocks through the solution.

Figure 5. Mutation operation applied by the EA of BiPred.

5.4. Evaluation of the Objective Function

A fitness function is defined to evaluate the generated solutions and guide the search during the
evolutionary process carried out by BiPred. This function takes into account two different metrics:
Mean Squared Error (MSE) over all the sensed data, and the required size of the dataset used to
compute the polynomial fitting. The first metric is the MSE of the fitting polynomial computed with
the data represented (masked) by the current solution pol(s), when it is applied over all the sensed
data. The second metric is evaluated in terms of a ratio of the data used by the current solution, which
is the number of ones in the solution over the size of the bit string that represents a solution (size(s)).
Thus, fitness function f (s) is used to evaluate the solutions is computed according to Equation (2).
This fitness function defines a minimization problem (minimizing both the MSE and the size of the
used data).

f (s) = MSE(pol(s)) +
∑

i<size(s)
i=0 s(i)

size(s)
(2)

6. Experimental Analysis

This section describes the experimental evaluation of the proposed evolutionary approach to
address the BiPred. Experimental analysis was carried out in a Magni-Core cluster with 48 cores
at 2.2 GHz, with 48 GB RAM. In the following subsections, we describe the problem instances, EA
parameterization experiments, optimization numerical results, and the validation of the obtained
polynomials computed.
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6.1. Problem Instances

The BiPred problem was addressed over real-world instances. These proposed problem instances
are defined by using real-world data captured by one of the sensors devised by us that is located in the
campus of the University of Malaga.

Specifically, we defined the problem instances according to the collected data (road-traffic density
in terms of number of vehicles sensed in a given time) by a sensor located in the main front of the Laser
Laboratory of the University of Malaga. This building is placed in the middle of Jiménez Freud Street
(Málaga, Spain) (see Figure 6). This street is one of the main entrances to the university campus, it is
315 m long, and it has a three-lane road in which vehicles move with speeds between 30 and 50 km/h.
The road in this street has no traffic lights, but two crosswalks are located at the corners.

Figure 6. Location of the sensor (two circles) that captured the data used in this study.

The data were collected over 61 days, from May 1, 2018 to June 30, 2018. Figure 7 shows the
distributions of the sensed data during working days (from Monday to Friday) and weekends (Saturday
and Sunday). For ease of analysis, we have clustered the data in groups of data blocks of five minutes
each, and we have used the centroids for the computations.

As can be seen in Figure 7a,b, there is a clear difference between the distribution of the data of
working days and weekends. On the one hand, during working days, road-traffic density is higher
and it stays regular during working hours. On the other hand, on weekends, road-traffic density is
quite higher during night-time, because people usually go out at night, since they are free from work
the next day.
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(a) Working-day instances
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(b) Weekend instances

Figure 7. Clustered data regarding number of vehicles sensed every five minutes.

Thus, we have taken into account two different use cases or instances, working days and weekends,
in order to develop an accurate predictor. In this article, we applied BiPred to these two different
instances (working days and weekends).
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In order to validate the efficiency of BiPred, we defined the base polynomial that best fits the
distribution of all the data obtained by the sensor for both instances. Thus, we applied the PF method
but, as stated before, nothing prevents the use of the evolutionary methodology presented here to be
used with other ML methods.

As the accuracy (in terms of MSE) of this fitting method is highly dependent on the degree of
the used polynomial, we have selected the best-suited degree according to the elbow method [46].
Broadly speaking, the elbow method is a visual method to obtain the most promising value from a
line chart where a change in the slope looks like the elbow of an arm. Thus, this method looks at the
percentage of variance explained as a function of the degree of the polynomial. In our experiments, we
have evaluated polynomials with degrees from one to eight.

Figure 8 illustrates the results in terms of MSE when applying different degrees of the polynomial
fitting method to the whole dataset, and the elbow-method results. For the working-day instances, we
can see that the polynomial of the fifth degree is the best choice to be used in this predictor, according
to the elbow method. Regarding weekend instances, the elbow method states that the most competitive
result in terms of MSE is obtained by the polynomial of the sixth degree. The selected polynomials
obtained an MSE of 11.641 and 5.208 for the working-day and weekend instances, respectively. Figure 9
shows the data distributions and the selected base polynomials according to the elbow method for
both instances.

1 2 3 4 5 6 7 8

Degree of the polynomial

10.0

15.0

20.0

25.0

30.0

35.0

M
S
E

Elbow

(a) Working-day instances

1 2 3 4 5 6 7 8

Degree of the polynomial

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

M
S
E

Elbow

(b) Weekend instances

Figure 8. Polynomial fitting results (Mean Squared Error, MSE) by using different polynomial degrees.
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(a) Working-day instances (polynomial of degree five).
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(b) Weekend instances (polynomial of degree six).

Figure 9. Data distributions and selected polynomials.
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6.2. EA Parameter Settings

In order to find the best values for the EA parameters, a set of experiments have been carried out.
For crossover pC and mutation pM probabilities to use, we considered the same, following four tentative
values: 0.2, 0.4, 0.6, and 0.8. Therefore, we evaluated 16 (4 × 4 = 16) different parameterizations.

As BiPred uses a nondeterministic EA, we ran each algorithm 30 times for each problem instance.
Tables 1 and 2 summarize the results in terms of the final fitness computed for each configuration and
for working-day and weekend instances, respectively. These tables show average, standard deviation,
minimum, median, and maximum fitness values for the 30 independent runs.

Table 1. Parameterization results for working-day instances—final fitness values.

pC pM Average ± Stdev. Best (Minimum) Median Worst (Maximum)

0.2 0.2 11.191973 ± 0.015237 11.157625 11.190797 11.227597
0.2 0.4 11.181100 ± 0.014414 11.146663 11.182200 11.214257
0.2 0.6 11.183086 ± 0.017350 11.154759 11.176878 11.225440
0.2 0.8 11.177069 ± 0.014018 11.151867 11.178053 11.216309
0.4 0.2 11.191484 ± 0.016479 11.157764 11.189754 11.228747
0.4 0.4 11.179017 ± 0.013470 11.151626 11.178168 11.206704
0.4 0.6 11.174310 ± 0.012717 11.148484 11.174039 11.204799
0.4 0.8 11.173517 ± 0.016201 11.150723 11.170938 11.209305
0.6 0.2 11.194164 ± 0.015219 11.167866 11.190731 11.228337
0.6 0.4 11.183630 ± 0.012320 11.160233 11.183055 11.205162
0.6 0.6 11.173385 ± 0.010619 11.154660 11.171707 11.196588
0.6 0.8 11.173963 ± 0.013862 11.150161 11.174719 11.208556
0.8 0.2 11.194699 ± 0.014590 11.171123 11.192513 11.235516
0.8 0.4 11.177789 ± 0.009689 11.159919 11.178769 11.196324
0.8 0.6 11.169286 ± 0.012064 11.146485 11.170294 11.196625
0.8 0.8 11.174837 ± 0.011625 11.155679 11.172889 11.203807

Table 2. Parameterization results for weekend instances—final fitness values.

pC pM Average ± Stdev. Best (Minimum) Median Worst (Maximum)

0.2 0.2 4.421868 ± 0.018194 4.395552 4.416327 4.469087
0.2 0.4 4.413287 ± 0.013906 4.386546 4.411646 4.440232
0.2 0.6 4.413090 ± 0.012833 4.384903 4.411577 4.441905
0.2 0.8 4.410482 ± 0.018562 4.379673 4.405531 4.450899
0.4 0.2 4.421549 ± 0.011650 4.400080 4.421174 4.444894
0.4 0.4 4.417434 ± 0.016713 4.387659 4.414765 4.473782
0.4 0.6 4.408158 ± 0.014741 4.381670 4.409609 4.438559
0.4 0.8 4.407861 ± 0.013233 4.386163 4.404579 4.446310
0.6 0.2 4.419767 ± 0.012144 4.398379 4.418265 4.449240
0.6 0.4 4.412095 ± 0.012753 4.375144 4.414329 4.431851
0.6 0.6 4.405849 ± 0.011345 4.382822 4.406479 4.424693
0.6 0.8 4.403845 ± 0.011990 4.374438 4.404383 4.422966
0.8 0.2 4.416216 ± 0.009905 4.393292 4.416547 4.436500
0.8 0.4 4.411127 ± 0.009889 4.398651 4.408431 4.433397
0.8 0.6 4.401493 ± 0.008271 4.385474 4.400677 4.417022
0.8 0.8 4.404763 ± 0.013277 4.381001 4.402021 4.432461
0.8 0.8 4.404763 ± 0.013277 4.381001 4.402021 4.432461

For working-day instances, the best (lowest) results were obtained by the parameterizations of
the algorithm with the highest crossover probabilities (see Table 1). On the one hand, the configuration
that computed the lowest average, minimum, and median is the one with pC = 0.8 and pM = 0.6. On
the other hand, the configuration pC = 0.8 and pM = 0.2 obtained the worst fitness value (11.235,516).

The results in Table 2 show that, in general, the best performance is also obtained by the
configurations with pC = 0.8 for the the weekend instances. However, the best result (minimum)
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was computed by the pC = 0.6 and pM = 0.8 algorithm parameterization. The lowest average, median,
and maximum final fitness values were obtained by the configuration with pC = 0.8 and pM = 0.6.

We applied a statistical procedure [47] to select the best configuration. First, we applied the
Kolmogorov–Smirnov statistical test to evaluate whether the result distributions follow normal
distribution or not. As the experimental results did not follow normal distributions, we applied
Friedman Rank nonparametric tests to rank the configurations regarding the final fitness computed.

The bar diagrams in Figure 10 summarize the Friedman Rank test results. As expected, the best
parameterization of BiPred for both instances is the one with pC = 0.8 and pM = 0.6. The results were
obtained with p-values� 0.001 for both instances. Therefore, the significance of these results was
higher than 99%.

(a) Working days instance (b) Weekend instance

Figure 10. Friedman Rank test results for parameterization experiments.

6.3. Numerical Results

This subsection summarizes and analyzes the main results of the experimental evaluation of the
proposed BiPred algorithm applied over the two real-world instances defined here: working days
and weekends. The results shown are those corresponding to 100 independent runs performed on
each instance. According to the results of the previous subsection, the algorithm was set to perform
500 generations with a population of 20 individuals, pC = 0.8, and pM = 0.6.

Table 3 reports the final fitness values and the number of data blocks of the computed solutions
by our BiPred on both problem instances. It includes the average, standard deviation, best (minimum),
median, and worst (maximum) values computed over the 100 independent executions performed.

Table 3. Numerical results over 100 independent runs.

Average ± Stdev. Best (minimum) Median Worst (maximum)

Working days
Fitness 11.173597 ± 0.012356 11.145738 11.172169 11.207736
MSE 11.134800 ± 0.012313 11.086710 11.133376 11.168820

# data blocks 24.380000 ± 3.754411 17 24 35

Weekend
Fitness 4.403659 ± 0.009841 4.380879 4.402977 4.434717

MSE 4.388368 ± 0.009806 4.342684 4.387688 4.419318
# data blocks 19.440000 ± 2.677013 11 19 27

The results in Table 3 show that the proposed BiPred was able to significantly reduce the
needed number of blocks of data to compute accurate polynomials fitted to the whole dataset
(i.e., reduced MSE) for both instances. The best solutions found so far provided the lowest MSE
(11.09 and 4.34) and required the smallest amount of data blocks (17 and 11).

In order to provide better insight into the evolutionary process of BiPred, Figure 11a,b show the
evolution of the fitness value of the best solution found for the independent runs that computed the
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best, median, and worst solutions for working days and weekend instances, respectively. It can be
observed that BiPred is able to compute accurate solutions quickly, with good convergence. However,
we notice that for the last generations the algorithm performs differently in each of the instances.
On the one hand, in working-day instances, the best found solution was improved during the last
100 generations of the best run. On the other hand, in the weekend instances, the best computed
solution was not modified during the same last generations.
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Figure 11. Fitness evolution through the best, median, and worst independent run.

Figure 12 illustrates the evolution of the number of data blocks used by the best solution found
for the independent runs that computed the best, median, and worst solutions for both instances.
Thus, we can see that there are improvements in the fitness of the solutions with a larger number of
data blocks (see Figure 12). This is mainly due to our approach being able to improve the MSE by
redistributing the data blocks in such a way that reduces the fitness values even as the number of data
blocks increases.
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Figure 12. Evolution of the number of blocks through best, median, and worst independent run.

6.4. Results Validation

In order to validate the results, we compare the polynomials provided by the proposed BiPred
method against two different ones: first, the one computed taking into account the whole dataset, which
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is named base polynomial, and second, the one computed by applying the K-fold cross-validation
method [48–50].

Table 4 reports the improvements achieved by BiPred-computed polynomials over the base one
in terms of MSE and number of data blocks. The results clearly state that BiPred is able to improve the
prediction computed by taking into account all the sensed data in both scenarios studied here. As to
the analysis of working days, BiPred could reduce the MSE by up to 4.57% while reducing the required
data blocks by more than 94.09%. When analyzing the improvements in the weekend scenario, they
were even more competitive. The best solution reduced MSE by 16.15% while using less than 4% of
the sensed data. Thus, the numerical results demonstrate that accurate predictions may be carried out
by using a subset of fine-selected data.

Table 4. Numerical improvements over base polynomials.

Average Best (Minimum) Median Worst (Maximum)

Working days MSE 4.348429% 4.571501% 4.360652% 4.056177%
# data blocks 91.534722% 94.097222% 91.666667% 87.847222%

Weekend MSE 15.737932% 16.154674% 15.750990% 15.143659%
# data blocks 93.250001% 96.180556% 93.402778% 90.625000%

Figure 13 shows the sensed data, the best-found, and the base-fitting polynomials for both
instances. It is remarkable that there are no large differences between the best-fitting polynomials to
the base ones for situations with low road-traffic densities (from 0:00 h to 6:00 h).
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Figure 13. Best-found fitting polynomials.

Cross-validation is commonly used to compare and select a model for a given predictive modeling
problem. The goal of cross-validation is to estimate the expected level of fit of a model to a dataset that
is independent of the data that were used to train the model. In this case, we compared BiPred with a
nonexhaustive cross-validation method, i.e., K-fold cross-validation.

K-Fold provides train/test indices to split data in training and testing sets. It splits the dataset
into k consecutive folds (see Figure 14). For the evaluation of the algorithm proposed in this work, we
chose the K-Fold method with k = 4 as a cross-evaluation scheme. This method was chosen due it is
useful when the performance of the model shows significant variance based on the train–test split.
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Figure 14. K-fold cross-validation method (K = 4).

Table 5 presents the MSE obtained by the best polynomial found by BiPred and by the polynomial
computed by using K-fold cross-validation. The results in the table shows that our method provides
better fitted polynomials to the dataset since the MSE obtained by the proposed algorithm is lesser
than the one computed by K-fold.

Table 5. MSE comparison between polynomials computed by the BiPred and K-fold methods.

BiPred MSE K-Fold MSE

Working days 11.08 11.22
Weekend days 4.34 8.40

7. Conclusions and Future Work

In this article, we have shown an interesting contribution in the application of intelligent systems
(EAs and ML) for data analysis of vehicle flows in modern cities. The cyber–physical system capturing
these data was completely built by the authors of this work in an effort to show that there is a cheap
and sizeable way of having a positive impact on the quality of life of citizens.

The main goal of this paper was not the system itself, but the application of the proposed approach,
BiPred, in which an EA is coupled with an ML method to perform accurate and efficient predictions.
In this case, BiPred has been applied to predict road-traffic density in terms of the number of vehicles
during the day in real-world locations in the city of Málaga (Spain).

BiPred has shown good quality in numerical analyses so as to even allow the city council to make
informed decisions on mobility. The many difficulties in preparing data (because of missing values,
noisy information, etc.) and the intelligence needed in the techniques to evaluate the quality of a
solution for an EA (both in the algorithm’s design and its implementation) have been dealt with in this
paper so as to show readers a direction to follow in similar future works.

As for the numerical findings, we have been able to deal with different types of days (working days
and weekends); we reduced the required data to model the predictor by more than 90% , compared to
the whole dataset, and we improved the accuracy of the predictions by more than 4% and 15% during
working days and weekends, respectively.

Nowadays, we are working on extending the wireless sensor network with more sensors in order
to obtain information from other points of our city. We are also analyzing the use of other intelligent
systems and algorithms (multiobjective EAs, particle-swarm optimization, NNs, etc.) to address
three important challenges that arise from the use of our sensors to provide smart-mobility solutions:
first, obtaining road-traffic flows from thecaptured data (OD matrices); second, aggregating sensed
environmental noise to improve the knowledge of the current road-traffic status; and third, designing
the most efficient wireless sensor network by selecting the type and the location of the sensors.
Finally, we are also cleaning the data files and constructing a website to open up this work to the
research community.
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