
Robust Computing for Machine Learning-Based
Systems

Muhammad Abdullah Hanif, Faiq Khalid, Rachmad Vidya Wicaksana Putra,
Mohammad Taghi Teimoori, Florian Kriebel, Jeff (Jun) Zhang, Kang Liu, Semeen
Rehman, Theocharis Theocharides, Alessandro Artusi, Siddharth Garg,
Muhammad Shafique

Abstract The drive for automation and constant monitoring has led to rapid devel-
opment in the field of Machine Learning (ML). The high accuracy offered by the
state-of-the-artMLalgorithms likeDeepNeuralNetworks (DNNs) has paved theway
for these algorithms to being used even in the emerging safety-critical applications,

Muhammad Abdullah Hanif
Technische Universität Wien (TU Wien), Austria, e-mail: muhammad.hanif@tuwien.ac.at

Faiq Khalid
Technische Universität Wien (TU Wien), Austria, e-mail: faiq.khalid@tuwien.ac.at

Rachmad Vidya Wicaksana Putra
Technische Universität Wien (TU Wien), Austria, e-mail: rachmad.putra@tuwien.ac.at

Mohammad Taghi Teimoori
Technische Universität Wien (TU Wien), Austria, e-mail: m.t.teimoori@gmail.com

Florian Kriebel
Technische Universität Wien (TU Wien), Austria, e-mail: florian.kriebel@tuwien.ac.at

Jeff (Jun) Zhang
New York University, New York, U.S.A, e-mail: jeffjunzhang@nyu.edu

Kang Liu
New York University, New York, U.S.A, e-mail: kang.liu@nyu.edu

Semeen Rehman
Technische Universität Wien (TU Wien), Austria, e-mail: semeen.rehman@tuwien.ac.at

Theocharis Theocharides
University of Cyprus, Nicosia, Cyprus, e-mail: ttheocharides@ucy.ac.cy

Alessandro Artusi
University of Cyprus, Nicosia, Cyprus;
MRG DeepCamera RISE Ltd, Cyprus, e-mail: artusialessandro4@gmail.com

Siddharth Garg,
New York University, New York, U.S.A, e-mail: sg175@nyu.edu

Muhammad Shafique
Technische Universität Wien (TU Wien), Austria, e-mail: muhammad.shafique@tuwien.ac.at

1

2 M. A. Hanif et al.

e.g., autonomous driving and smart healthcare. However, these applications require
assurance about the functionality of the underlying systems/algorithms. Therefore,
the robustness of these ML algorithms to different reliability and security threats
has to be thoroughly studied and mechanisms/methodologies have to be designed
which result in increased inherent resilience of these ML algorithms. Since tradi-
tional reliability measures like spatial and temporal redundancy are costly, they may
not be feasible for DNN-based ML systems which are already super compute and
memory intensive. Hence, new robustness methods for ML systems are required.
Towards this, in this chapter, we present our analyses illustrating the impact of dif-
ferent reliability and security vulnerabilities on the accuracy of DNNs. We also
discuss techniques that can be employed to design ML algorithms such that they are
inherently resilient to reliability and security threats. Towards the end, the chapter
provides open research challenges and further research opportunities.

1 Introduction

Machine learning (ML) has emerged as the principal tool for performing complex
tasks which are impractical (if not impossible) to code by humans. ML techniques
providemachines the capability to learn fromexperience and thereby learn to perform
complex tasks without much (if any) human intervention. Over the past decades,
many ML algorithms have been proposed. However, Deep Learning (DL), using
DeepNeural Networks (DNNs), has shown state-of-the-art accuracy, even surpassing
human-level accuracy in some cases, for many applications [31]. These applications
include, but are not limited to, object detection and localization, speech recognition,
language translation, and video processing [31].

The state-of-the-art performance of the DL-based methods has also led to the
use of DNNs in complex safety-critical applications, for example, autonomous driv-
ing [12] and smart healtcare [11]. DNNs are intrinsically computationally intensive
and also require high memory resources [53]. Current research mainly focuses on
the development of less computationally intensive and resource efficient DNNs that
can offer high accuracy, and energy and performance efficient DNN accelerators for
ML-based applications [53, 24, 30, 35, 37, 1, 19, 40, 44]. However, when consid-
ered for safety-critical applications, the robustness of these DNN-based systems to
different reliability and security vulnerabilities also becomes one of the foremost
objectives. An overview of different types of vulnerabilities in ML-based systems is
shown in Fig. 1, which are discussed from the architectural- and application-layer
perspective in this chapter. Fig. 2 shows the abstraction layers in the context of the
SPP 1500 covered in this chapter.

Reliability Threats: In hardware design, reliability is the ability of the hardware
to perform as intended for a specified duration, i.e., the lifetime of the hardware. There
are a number of hardware related vulnerabilities that can disrupt the functionality of
a digital system in its lifetime.

Robust Computing for Machine Learning-Based Systems 3

P-type MOSFET

DrainSource

p+ p+

n – substrate

Gate

Oxide Layer

Vg= – Vdd

Si HT
R

A
P OH+

NBTI

Aging

HCID

Process Variations Soft Errors

n+ n+

P-Well

P-Substrate

Isolation

Gate

+-
+-

+-
+- +-

+- +- +-

+-

+-
Depletion
Region

High-Energy Particle
(Neutron or Proton)

Side Channel Attacks

1 0 1 1 0

Processing
Computations

M
e
m

o
ry

Power Supply

Machine Learning-based SystemHardware Trojans

Structural Attacks Training/Inference Attacks

+

Inference

S
o

ft
w

a
re

-L
e

v
e

l

V
u

ln
e

ra
b

ili
ti
e

s

H
a

rd
w

a
re

-L
e

v
e

l
V

u
ln

e
ra

b
ili

ti
e

s

Input
Adversarial

Noise
Detected

Class
Input

Deterministic

Noise
Projected

to Class

Training

Trigger

Neuron

Trigger

Neuron

Fig. 1 Overview of different reliability and security vulnerabilities to machine learning-based
systems. (Picture sources: [49, 47])

app
lic
ati
on

SW
/O
S

arc
hit
ect
ure

cir
cui
t/g
ate

ph
ysi
cs

application

SW/OS

architecture

circuit/gate

physics

Fig. 2 Main abstraction layers of embedded systems and this chapter’s major (green, solid) contri-
butions.

1. Soft Errors are transient faults caused by high energy particle strikes. These faults
surface at hardware-layer as bit-flips and can propagate to the application-layer
resulting in incorrect output.

2. Aging is the gradual degradation of the hardware due to different physical phe-
nomena like Hot carrier Injection (HCI), Negative-Bias Temperature Instability
(NBTI), and Electromigration (EM). It leads to timing errors and eventually can
also lead to permanent faults [56].

3. Process variations are the imperfections caused by the variations in the fabrica-
tion process of the chips. This can lead to variations in the timing and leakage
power characteristics within a chip as well as across different chips [45].

4 M. A. Hanif et al.

Apart from the above-listed vulnerabilities, environmental conditions can also
affect the reliability of a system. Such factors include temperature, altitude, high
electric fields, etc.

A number of techniques have been proposed for improving the resilience of the
systems against the reliability threats. However, most of these mitigation techniques
are based on redundancy, for example, DMR: dual modular redundancy [58] and
TMR: triple modular redundancy [36]. The redundancy based approaches, although
considered to be very effective for other application domains [20], are highly in-
efficient for DNN-based systems because of the compute intensive nature of the
DNNs [48], and may incur significant area, power/energy, and performance over-
heads. Hence, a completely new set of resource-efficient reliability mechanisms is
required for robust machine learning systems. A list of techniques proposed for
improving the reliability of DNN-based systems, which are later discussed in the
following sections of the chapter, are mentioned in Fig. 3.

Security Threats: In system design, security is defined as the property of a system
to ensure the confidentiality, integrity and availability of the hardware and the data
while performing the assigned tasks. There are several security vulnerabilities that
can be exploited to perform security attacks.

1. Data Manipulation: The input data or data during inter/intra-communication
modules of the system can be manipulated to perform several security attacks. For
Example, in DNNs, the training dataset and the inference data can be manipulated
to perform misclassification or confidence reduction attacks [18, 25, 26, 27, 51,
42].

2. Denial-of-Service:A tiny piece of code/hardware or flooding the communication
channels can be used to trigger the malfunctioning or failure of the system. For
example, in DNNs, adding an extra neuron/set of neurons [18] or introducing the
kill switch in DNN-based hardware can lead to system failure or malfunctioning,
i.e., misclassification.

3. Data/IP Stealing: The side-channel information (in hardware, power, timing, and
loopholes or behavior leaking properties of the algorithms) can be exploited to
steal the confidential information. For example, inDNNs, the gradient information
can be used to steal trained model [60, 57, 50]

Several countermeasures have been developed to address these threats, but most of
these defenses are either based on obfuscation or run-time monitoring [23, 4]. These
techniques are very effective for traditional systems, however, DNN-based systems
require different approaches because of their unique security vulnerabilities, i.e.,
training/inference datamanipulation. Someof the techniques proposed for addressing
the security of DNN-based systems are listed in Fig. 3 and are later discussed in the
chapter.

In the following sections, we discuss:

1. A brief overview of DNNs and the hardware accelerators used for efficiently
processing these networks.

2. In Section 3, we present ourmethodology for building reliable systems and discuss
techniques for mitigating permanent and timing errors.

Robust Computing for Machine Learning-Based Systems 5

Robust Deep
Learning

Reliability Security

• Gradient Sign-based Adversarial Attacks [28,25,43]
• Optimization-based Adversarial attacks [6,54]
• Backdooring Attacks [15]

• Pruning-based Defenses [15]
• Preprocessing-based Defenses [26,27,3,55]
• GAN-based Defenses [52,9,63,67]

• Methodology for Building Resilient Hardware [18]
• Error-Resilience Analysis [18,17]
• Fault-Aware Pruning (FAP) [66]
• Fault-Aware Pruning + Training (FAP+T) [66]
• Timing Error-Drop (TE-Drop) [64]
• Static Voltage Underscaling (ThVolt-Static) [64]
• Per-layer Voltage Underscaling (ThVolt-Dynamic) [64]

Fig. 3 Overview of the works discussed in this chapter for addressing reliability and security
vulnerabilities of deep learning-based systems.

3. The security vulnerabilities in different types of DNNs are discussed in Section 4.
4. Open challenges and further research opportunities for building robust systems

for ML-based safety-critical applications

2 Preliminaries

2.1 Deep Neural Networks

A neural network can be described as a network of interconnected neurons. Neurons
are the fundamental computational units in a neural network where each neuron
performs a weighted sum of inputs (dot-product operation), using the inputs and the
weights associated with each input connection of the neuron. Each output is then
(optionally) passed through an activation function which introduces non-linearity
and thereby allows the network to learn complex classification boundaries. In neural
networks, neurons are arranged in the form of layers. There are several types of
NNs, for instance, Convolutional Neural Networks (CNNs), Recurrent Neural Net-
works (RNNs), and Multi-Layer Perceptrons (MLPs) [31]. Although the techniques
discussed in the following sections are not limited to a specific type of NNs, in this
chapter, we mainly focus on feed-forward neural networks (i.e., CNNs and MLPs)
because of their widespread use in many artificial intelligence applications.

AnMLP is a type of NNwhich is composed of multiple fully-connected layers. In
a fully-connected layer, each neuron is connected to all the neurons in the neighboring
layers. An example illustration of a three layer MLP is shown in Fig. 4a.

A CNN is type of DNN, which is composed of several convolutional layers and
the fully-connected layers. An example illustration of a convolutional layer is shown
in Fig. 4b. The layer is composed of multiple filters which are convolved with the
input feature maps to generate the output feature maps. The depth of the filters and
the input feature maps is the same. Each filter results in one output feature map
and, therefore, the number of output feature maps is equal to the number of filters
in a convolutional layer. These input and output feature maps are also referred to as
activation maps. A detailed description of CNNs can be found in [53].

6 M. A. Hanif et al.

wij

Input layer

Hidden layer H1

Hidden layer H2

Output layer

i

j

k

l

wjk

wkl

𝑦𝑗 = 𝑓(𝑧𝑗)

𝑧𝑗 = 𝑤𝑖𝑗𝑥𝑖

𝑖 𝜀 𝐼𝑛𝑝𝑢𝑡

𝑦𝑘 = 𝑓(𝑧𝑘)

𝑧𝑘 = 𝑤𝑗𝑘𝑥𝑗

𝑗 𝜀 H1

𝑦𝑙 = 𝑓(𝑧𝑙)

𝑧𝑙 = 𝑤𝑘𝑙𝑥𝑘

𝑘 𝜀 H2

(a) Multi-Layer Perceptron (b) Convolutional Layer

…

Input feature maps
Output feature maps

Filters

Fig. 4 (a) An example MLP network. (b) Convolutional layer.

2.2 Hardware Accelerators for Deep Neural Networks

To enable the use of DNNs in energy-/power-constraint scenarios as well as in
high performance applications, several different hardware architectures for DNN
acceleration have been proposed. While all the accelerators provide some unique
features and support some specific dataflows in a more efficient manner, systolic
array-based designs are considered among the promising ones [61, 24, 19, 37].

A systolic array is a homogeneous network of processing elements (PEs), which
are tightly coupled together. Each PE in the network receives data from its near-
est neighbors, perform some function, and passes on the result and data to the
neighboring PE/s. The systolic array-based architectures alleviate the memory bot-
tleneck issue by locally reusing the data, without the need of expensive memory
read and write operations. Moreover, the systolic arrays are intrinsically efficient at
performing matrix multiplications, which is the core operation of neural networks.
Therefore, many accelerators use these arrays at their core for accelerating the neural
networks [61, 24, 19, 37]. The Tensor Processing Unit (TPU), a DNN accelerator
that is currently in use in the datacenters of Google, is a systolic array-based archi-
tecture that uses an array of 256 × 256 multiply-and-accumulate (MAC) units. The
TPU provides 15 × −30× faster execution, and 30 × −80× more efficient (in terms
of performance/Watt) performance than the K80 GPU and the Haswell CPU [24].

Fig. 5 illustrates a design overview of an exemplar DNN accelerator which is
based on the TPU architecture. The design is used as the basic architecture in the
following section. The architecture is composed of a systolic array of MAC units,
similar to that in the TPU. Prior to the computations, the weights are pre-loaded
in the PEs from the weight memory in a manner that the weights from the same
filter/neuron are loaded in the same column of the array. During processing, the
weights are held stationary inside the PEs and the activations are streamed in from

Robust Computing for Machine Learning-Based Systems 7

a11a12…

a21

…

…

…

… … …

PE PE PE

PE PE PE

PE PE PE

…

× +

a
8

w
8

PE

24

24

A
cc

u
m

u
la

to
rs

16

…

psum

a

psum

+

…

+

…

+

…

Systolic Array

LEGEND:

PE : Processing Element
a : Activation
w : Weight
psum : Partial sum

psum psum

A
ct

iv
at

io
n

 M
em

o
ry

Weight Memory

Partial
sums

Activations

a22

a13a14

a23

Clock
cycles

a24

Fig. 5 A systolic array-based DNN accelerator architecture (adapted from [64])

the activation memory. At each clock cycle, the activations are passed-on from left
to right while the partial sums are moved downstream. The activations across rows
are aligned such that the activations corresponding to a particular output reaches a
particular PE at the same instance when its partial sum reaches that PE. In case, the
size of a filter/neuron is larger than the number of rows in the array, each output
computation related to the filter/neuron is divided into multiple portions and the
accumulators at the bottom are used for temporarily holding the partial sums while
rest of the corresponding partial sums are computed by the array. A more detailed
explanation of the architecture can be found in [64].

3 Reliable Deep Learning

In this section, we present our methodology for building reliable hardware for DNN-
based applications. We also highlight a few case studies, targeting different types
of reliability threats, for building reliable yet efficient hardware for DNN-based
applications.

3.1 Our Methodology for Designing Reliable DNN Systems

Fig. 6 presents our design flow for developing reliable hardware for DNN-based
applications [18]. The methodology is composed of two parts: (1) Design-time
steps; and (2) Run-time steps.

8 M. A. Hanif et al.

Deep Neural Networks (DNNs)

DNN 1 DNN n...

Resilience Evaluation

of Parts of the DNNs

as well as the Whole

Resilience- and Fault-

Aware DNN Mapping

DNN Accelerator

Adaptive Voltage

and Frequency

Control

Online Error

Monitoring

Post-fabrication

Testing for Identifying

Faults

Design Constraints (Area, Energy, Power,

Latency, Throughput, Accuracy, etc.)

Error Resilient

Accelerator

Design

Permanent Fault

Mitigation Circuitry

Timing Error

Detection and

Mitigation Circuitry

Reliability-

Aware Synthesis

InputsRun-time stepsDesign-time steps

Fig. 6 Our methodology for designing reliable hardware for DNN-based applications (adapted
from [18])

The design-time steps focus on proposing a hardware architecture which is ca-
pable of mitigating different types of reliability faults that arise due to process
variations and aging, as well as aggressive voltage scaling (i.e., permanent faults and
timing errors). Provided a set of design constraints, representative DNNmodels, and
resilience of the DNNs to different types of reliability threats and errors, a baseline
hardware architecture is designed. We then reinforce it with different architectural
enhancements for mitigating permanent faults (see Section 3.3) and handling tim-
ing errors (see Section 3.4). The architectural enhancements are performed in a
manner that they do not significantly affect the resource efficiency of the baseline
architecture. Once the architecture is finalized, the hardware is synthesized using
reliability-aware synthesis techniques, for example, by using standard cells to selec-
tively harden vulnerable nodes in the hardware [34], to harden the more vulnerable
parts of the hardware design.

The run-time steps focus on proposingmapping policies for mapping DNN com-
putations to the synthesized hardware. The mapping policies are decided based on
the fault maps generated using post-fabrication and testing, and the error resilience
of the DNNs. Techniques like error injection can be used for this resilience analy-
sis [46, 17]. Fault-aware training of DNNs can also be used for designing/modifying
network architecture/parameters (see Section 3.3). Moreover, adaptive voltage scal-
ing can be employed for trading off reliability with energy efficiency based on the
error-resilience of the DNNs. If required, software-level redundancy can also be
employed to further improve the reliability by performing the computations related
to critical neurons/filters multiple times.

3.2 Resilience of DNNs to Reliability Threats

Neural Networks are assumed to be inherently error resilient [13]. However, different
types of errors can have different impact on the output of aDNN.This section presents
the accuracy analysis of DNNs in the presence of different types of reliability faults.

Robust Computing for Machine Learning-Based Systems 9

3.2.1 Resilience of DNNs to Permanent Faults

This section highlights the resilience of DNNs to permanent faults by empirically
analyzing the effects of stuck-at permanent faults in the TPU-based accelerator
(presented in FIg. 5) on the classification accuracy of different DNNs. The datasets
(i.e., MNIST and TIMIT) the corresponding network architectures used for this
analysis are listed in Table 1. To study the resilience, the TPU with a systolic
array of 256 × 256 MAC units is synthesized using 45nm OSU PDK to generate a
gate-level netlist and then stuck-at faults are inserted at internal nodes in the netlist.
For this analysis, faults only in the data-path were considered as the faults in the
memory components can be mitigated using Error Correction Codes (ECC) and
faults in control-path can lead to undesirable results.

Table 1 Datasets and the corresponding 8-bit DNNs used for evaluation (adapted from [64])
Dataset Network Architecture Accuracy(%)
MNIST [32] Fully-Connected (L1-L4): 784×256×256×256×10 98.15
TIMIT [5] Fully-Connected (L1-L4): 1845×2000×2000×2000×183 73.91

ImageNet [8]
Convolutional (L1-L2): (224, 224, 3)×(27,27,64)×(13,13,192)
Convolutional (L3-L5): (13, 13, 384)×(13, 13, 256)×(6,6,256)

Fully-Connected (L6-L8): 4096×4096×1000

76.33
(Top-5)

Fig. 7(a) shows the impact of using a faulty TPU for two different classification
tasks, i.e., image classification using the MNIST dataset and speech recognition
using the TIMIT dataset. It can be seen in the figure that the classification accuracy
of both the tasks decreases significantly with the increase in the number of faulty
PEs in the hardware. For example, the classification accuracy for the TIMIT dataset
drops from 74.13% to 39.69% when only four (out of 256 × 256) MAC units are
faulty and is almost 0% when the number of faulty MACs increases to 16 or more.

The reason for the significant drop in accuracy can be understood by comparing
the golden (fault-free) output of the neurons of a particular layer with the outputs
computed by the faulty TPU. Fig. 7(b) shows that the computed output of the final
layer of network used for TIMIT dataset in most of the cases has higher activation
value as compared to the expected. This is mainly because of the fact that stuck-at
faults, in some of the cases, affect the higher order bits of the MACs output. This
highlights the need for permanent fault mitigation in the hardware to increase the
yield as hardware with permanent faults cannot be used for ML-based applications,
specifically for the safety-critical applications.

3.2.2 Resilience of DNNs to Timing Faults

Timing failures in high performance nanometer technology-based digital circuits are
a major reliability concern and are caused by various mechanism, e.g., power supply
disturbance, crosstalk, process variations, as well as aging. Moreover, the operating

10 M. A. Hanif et al.

Fig. 7 Impact of Stuck-at-Faults in the Baseline TPU-based Architecture on DNN Applications
(Adapted from [66])

conditions, which play a vital role in defining the performance and energy-efficiency
of the hardware, also have a significant impact on the frequency of the timing
errors. Although it is assumed that the critical paths, which are more vulnerable
to timing errors, are rarely exercised, the timing errors can significantly affect the
functionality of an application. Here, we highlight this for DNN-based applications
by analyzing the energy-quality trade-off achieved using voltage underscaling. We
show the analysis for twowidely accepted types of timing errormitigation techniques:
(i) timing error detection and recovery (TED) [10]; and (ii) timing error propagation
(TEP) [62, 2]. The TED makes use of additional components (e.g., using Razor flip-
flops [10]) for detecting timing errors, and recovers by reliably re-executing the
function in case of errors. On the other hand, TEP allows errors to propagate through
to the application layer in the hope that the application is error resilient.

For this analysis, the TPU-based hardware architecture discussed in Section 2.2 is
considered. The architecture is assumed to be composed of a 256× 256 MAC array.
The terms Local Timing Error and Global Timing Error are used to characterize the
resilience. The local timing error is used to denote the error in a singleMACunit. The
global timing error defines the error in the complete systolic array. Fig. 8(b) shows the
impact on the classification accuracy for theMNIST dataset with voltage underscaling
when the timing errors are allowed to propagate through to the application-layer. It
can be seen from the figure that that as soon as the timing errors start occurring,
i.e., below the voltage underscaling ratio of r = 0.9 (as shown in Fig. 8(b)), the
classification accuracy of the DNN for TEP drops sharply.

As mentioned above, the TED-based approaches work on the principle of error
detection and recovery. The recovery phase in TED defines its limitation for huge
systolic array-based systems as, for synchronization of the data flow, the complete
systolic array has to be stalled to recover the error in a single PE. This limitation
of the TED based approach can be highlighted using Fig. 8(a) which shows the
impact of voltage underscaling on the overall energy consumption of the TPU-based

Robust Computing for Machine Learning-Based Systems 11

Fig. 8 (a) Timing error probabilities versus voltage underscaling ratio, and the corresponding
energy cost for global TED. (b) DNN accuracy on the MNIST versus voltage underscaling for TEP.
(Adapted from [64])

hardware architecture for generating accurate outputs. It can be noted from the figure
that the overall energy consumption for a recovery based technique starts increasing
as soon as errors start appearing, which is the case for even the most naive type of
error recovery mechanism, i.e., single cycle recovery.

3.2.3 Resilience of DNNs to Memory Faults

To illustrate the importance of memory faults, we presented an analysis in [18] where
we injected random faults at bit-level in the weight memory (i.e., the memory storing
the network parameters) and studied the impact of those faults on the accuracy of a
DNN. The analysis concluded that, for the higher significance bits of the weights, the
accuracy of the DNNs drop sharply with the increase in error rate. We also studied
the impact of different types of bit-flips, i.e., from 0 to 1 bit-flips and from 1 to 0
bit-flips, and found that the 0 to 1 bit-flips result in erroneous output while the 1 to 0
bit-flips do not impact the accuracy much. This is inline with the concept of dropout
[21] and dropconnect [59] in the sense that in case of 1 to 0 bit-flips the erroneous
output is leaned towards 0 value, whereas in case of 0 to 1 bit-flips the error can
increase significantly if the bit-flip occurs in any of the higher significance bits.
This analysis was performed on the AlexNet network using the ImageNet dataset.
Similar, fault injection methods, e.g., [17] and [46], can also be used for analyzing
the resilience of DNNs, as a whole as well as of individual layers/neurons of the
networks.

12 M. A. Hanif et al.

PE PE PE

… …

PE PE PE

…

PE PE PE

A
ct

iv
a

ti
o

n
s

…

…

…Systolic
Array

…

PE

psum

110

PE

…

PE

PE

psum psum psumpsum

PE

PE

PE

PE

psum

010

psum

Partial Sum (psum)

PE PE PE…PE PE

Faulty PE

Fig. 9 Systolic array-based architecture for permanent fault mitigation (adapted from [66])

3.3 Permanent Fault Mitigation

To mitigate permanent faults in the computing units of the hardware, two different
methods have been proposed: 1) Fault-Aware Pruning (FAP); and 2) Fault-Aware
Pruning + Training (FAP+T).

The Fault-Aware Pruning (FAP) works on the principle of pruning the weights
(i.e., setting them to zero) that have to be mapped on faulty MAC units. The principle
is inline with the concepts of dropout [21] and dropconnect [59] which are commonly
used for regularization and avoiding over-fitting. For this work, the TPU architecture
shown in Fig. 5 with static mapping policy is assumed. The static mapping policy
means that each weight is mapped to a specific PE while multiple weights can be
mapped to the same. Moreover, it is also assumed that post-fabrication tests are
performed on each TPU chip to extract the fault map which indicates the faulty PEs.

Fig. 9 shows an implementation that can be used to realize the concept where a
bypass path is provided for each MAC unit [66]. The bypass path enables to skip
the contribution of a specific partial sum in case the specific PE is faulty, which is
equivalent to setting the weight to zero. The area overhead of the modified design is
only around 9% [66].

The Fault-Aware Pruning + Training (FAP+T) technique starts with the FAP
approach, however, it additionally retrains the unpruned weights while forcing the
pruned weights to zero to optimize the network parameters. One drawback of this
approach is that the fault map of each chip can be different which means that a
network has to be retained for each chip based on its own fault map.

Fig. 10 shows the impact on the classification accuracy versus the percentage of
faulty MAC units for three different classification problems mentioned in Table 1.
The results show that both the techniques show significant resilience to the permanent
faults. Moreover, the FAP+T technique outperforms FAP because of the involved
optimization of the network parameters and allows the DNN-based system to run
with negligible accuracy loss even when 50% of its MAC units are faulty. However,
in cases where FAP+T is impractical FAP can also provide reasonable accuracy,
specifically in cases where the number of faulty units is less.

Robust Computing for Machine Learning-Based Systems 13

Fig. 10 Classification accuracy versus Percentage of Faulty MACs using FAP and FAP+T for the
networks used corresponding to (a) MNIST and TIMIT; and (b) AlexNet datasets (adapted from
[66])

3.4 Timing Fault Mitigation

As mentioned in Section 3.2.2, the conventional TED approaches have significant
overheads when used for DNN accelerators. Here, we discuss the new architec-
tural innovations proposed in Thundervolt [64] for mitigating timing errors in DNN
accelerators in a performance efficient manner.

3.4.1 TE-Drop

Thundervolt [64] proposed a novel technique to deal with timing errors in a systolic
array-based DNN accelerator, i.e., TE-Drop. TE-Drop utilizes the Razor flip-flops to
detect timing errors, however, does not re-execute erroneous MAC operations. Simi-
lar to the FAP techniques, TE-Drop also works on the principle that the contribution
of each individual MAC output to the output of a neuron in DNNs is small. Hence,
a few MAC operations can be ignored without significantly affecting the overall
accuracy of the network. In case of a timing error, TE-Drop allows the MAC unit to
sample the correctly computed output to an alternate register operating on a delayed
clock. The succeeding PE is then bypassed and the correctly computed output is
provided instead. The architectural modifications required to realize the concept are
shown in Figure 11.

Figure 11 illustrates the functionality of the TE-Drop with the help of a timing
diagram. Here, it is assumed that the shadow clock is delayed by 50% of the clock
period. It is assumed that the clock frequency is defined such that the error signal
and correct partial sum from the erroneous MAC become available after this much
duration. Note that the error signal is obtained by OR-ing the bitwise XOR of all the
individual Razor flip-flop at the output of the MAC unit.

14 M. A. Hanif et al.

PE

PE

CLK
D D’

CLK CLK+Δ

CLK+Δ

Q1

Q2

Error

CLK+Δ

CLK

Q1

D

D’

Error

Q2

3’h000 3’hFFF

3’h000

3’hFFF

3’hFFF

Timing Diagram

Fig. 11 A block-level diagram illustrating the architectural modifications for TE-Drop and the
impact of timing errors on the computation of a neuron (adapted from [64])

Fig. 12 Timing error probabilities for each layer of the networks used corresponding to (a) MNIST,
(b) TIMIT, and (c) ImageNet datasets (adapted from [64])

3.4.2 Per-layer Voltage Underscaling

In most of the accelerators, it is assumed that the layers of a DNN are executed in
a serial fashion (i.e., one after the other), where processing of each layer can take
thousands of clock cycles, depending on the size of the layer. Figure 12 shows the
timing error rate versus voltage underscaling ratio plots for each individual layer of
three DNN architectures mentioned in Table 1. It can be seen from the figures that
the error rate varies significantly across layers. Based on this observation, a per-layer
voltage underscaling scheme was proposed in Thundervolt [64] that distributes the
total timing error budget equally among the layers of a network to ensure that the
more sensitive layers should not consume a significant part of the budget and limits
the achievable efficiency gains.

Figure 13 compares two versions of Thundervolt:

1. ThVolt-Static where each voltage underscaling ratio is kept the same throughout
a DNN execution.

2. ThVolt-Dynamic that utilizes per-layer voltage underscaling based on the sensi-
tivity of each layer.

For the baseline, the results of the TEP scheme are also shown. The plot for ThVolt-
Static is obtained by sweeping voltage underscaling ratios, and that of ThVolt-

Robust Computing for Machine Learning-Based Systems 15

Fig. 13 Accuracy versus energy tradeoff using Thundervolt [64] on Validation Data (adapted from
[64])

Dynamic is obtained by sweeping the total timing error budget. The figures show
that for each case Thundervolt outperforms TEP scheme, and for complex tasks (e.g.,
image classification on the ImageNet dataset) the ThVolt-Dynamic outperforms the
ThVolt-Static approach.

4 Secure Deep Learning

In this section, we present different security attacks on DNNs and potential counter-
measures.

4.1 Security Attacks on DNNs

Several security attacks have been proposed by exploiting the security vulnerabil-
ities, especially data dependency and unpredicted behavior of intermediate layers
of DNN-algorithms during training as well as inference. However, adversarial and
backdooring attacks are some of the most effective and popular attacks for DNNs,
therefore, in the subsections, we analyze the state-of-the-art adversarial attacks and
proposed backdoor attacks.

4.1.1 Adversarial Perturbation Attacks

It can be defined as the crafted imperceptible noise to perform targeted or untargeted
misclassification in a DNN-based system. In these attacks, an attacker’s objective
can be summarized as follows: given an image x with a classification label y =
classifier(x), where classifier is the function of the neural network. The attacker aims
to find an image x ′ whose classification label is y′, such that y′ = classifier(x ′) , y,
and ‖x ′ − x‖ ≤ δ, where δ is an upper bound of the distortion from x to x ′. For
example, some input adversarial attacks are shown in Fig. 14.

Several attacks have proposed to exploit the adversarial vulnerabilities in DNN-
based systems. However, based on the attack methodology, these attacks can broadly
be categorized into Gradient Sign Methods and Optimization -based approaches.

16 M. A. Hanif et al.

horse airplane automobile bird cat

deer dog fog ship truck

Fig. 14 Clean and adversarial images with different prediction labels, where the clean image of a
horse and its adversarial images remain extremely similar, however, their prediction labels are quite
distinct and each targets a totally different class.

1. Gradient Sign Methods: These attacks exploit the derivatives and backpropa-
gation algorithm to generate the attack images with imperceptible crafted noise.
The main goal of these attacks is to minimize the prediction probability of the
true label so as to mislead the network to output a different label (can be targeted
or untargetd) other than the ground truth. Some of the most commonly proposed
attacks are Fast Gradient Sign (FGS), Iterative Fast Gradient Sign (IFGS) and
Jacobian-based saliency map attack (JSMA) methods [43]. Based on the similar
principle, there are following attacks which do not require training data and also
have less convergence time (in terms of queries):

• TrISec: This attack exploits the backpropagartion algorithm to identify the
small change (attack noise) in input pixels with respect to misclassifcation at
the output, while ensuring the imperceptibility [28].

• RED-Attack: Most of the state-of-the-art attacks required large number of
queries to generate an imperceptible attack. However, in resource efficient sys-
tems, these attack may fail, therefore, we proposed methodology that generates
an attack image with imperceptible noise for very less number of queries [25].

2. Optimization-based Approaches: Unlike the gradient-based approaches, these
attacks redefine the loss function (i.e., the cost function used for optimization) by
adding extra constraints with respect to targeted or untargeted misclassification,
and then propose different optimization algorithms to generate adversarial images.
For example, Limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [54] and
Carlini & Wagner (CW) [6] attacks use the box-constrained L-BFGS algorithm
with single and multi-objective optimization, respectively.

A recently proposed novel type of neural networks which is considered to be superior
because of its robustness to afine-transformations but are in emerging phase, i.e.,
spiking neural network, Capsule Networks, but these networks are still vulnerable
to adversarial attacks [39, 38].

Robust Computing for Machine Learning-Based Systems 17

4.1.2 Backdoor Attacks

Due to expensive and computationally intensive training, the training (or fine-tuning)
of DNNs is usually outsourced which opens the new frontiers of security threats,
e.g., backdoored neural networks (BadNets [15]). These threats arise due to the
involvement of untrusted third party service provider that can insert backdoors by
training the ML on compromised training data, by inserting the additional neurons
or by altering the DNN structure. The untrusted third party also ensures the required
accuracy of the backdoored model on most validation and testing inputs, but cause
targeted misclassification or confidence reduction based on backdoor trigger. For
example, in case of autonomous driving use case, an attacker can introduce the
backdoor in a street sign detector while ensuring the required accuracy for classifying
street signs inmost of the cases, however, it can perform either targeted or un-targeted
misclsssifcation (classifies stop signs with a particular sticker as speed limit signs
or any other sign different from stop sign). This kind of misclassifcation can lead
to catastrophic effects, e.g., in case of misclassifcation of a stop sign, autonomous
vehicle does not stop at the intersection.

4.2 Defences against Security Attacks on DNNs

Several countermeasures have been proposed to defend against the adversarial at-
tacks, i.e., DNN masking, gradient masking, training for known adversarial attacks
and preprocessing of the CNN inputs [7]. For examples, Fig. 15 shows the low-pass
pre-processing filters that can nullify the adversarial attacks if they are not known to
the attacker [26, 27]. Therefore, based on this analysis, we have proposed to utilize
the pre-processing quantization to improve the perceptibility (decrease the attack
strength) of the attack noise [3]. Similarly, sobel-filers can also be used to decrease
the attack strength [55].

However, these defences are not applicable to backdoor-based attacks because the
backdoor attacks intrude the networks and are activated through a specific trigger.
Therefore, to address these attacks, we propose to use pruning as a natural defense
because it eliminates the neurons that are dormant on clean inputs, consequently
disabling backdoor behavior [15]. Although these defenses are effective, most of
them provide defense against known adversarial and backdoor attacks. Therefore,
one of the most important problems in designing secure machine learning systems, is
the ability to define threats, and model them sufficiently so that any learning system
can be trained to be able to identify such threats.

4.2.1 Generative Adversarial Networks

To address the above-mentioned challenge,GenerativeAdversarialNetworks (GANs)
have emerged as one of the prime solution because of their ability to generate the
model by learning tomimic actualmodels [14]. In particular, GANs is a framework to
estimate generative models where simultaneously two models are trained, generator

18 M. A. Hanif et al.

L-BFGS FGSM BIM

99.47%
Classify as Stop Sign

with Confidence
99.47% 99.47%

85.68%
Classify as Speed limit

60km/h with Confidence
75.68% 89.68%

72.74%
Classify as Stop Sign

with Confidence
78.45% 70.39%

78.64%
Classify as Speed limit

60km/h with Confidence
68.45% 85.64%

Classification of the Original

samples

Classification the perturbed

samples

Classification of the perturbed

samples after filtering

Classification of the perturbed

samples with filtering effects

Input Label = Stop

Output Label =

Speed Limit

(60km/h)

Buffer
Preprocessing

Noise filters

(a) Attack Model I: An attacker can directly perturb the

pre-processed data and does not have input of the pre-

processing noise filter.

DNN

Integrated IP

Input Label = Stop

Output Label =

Speed Limit

(60km/h)

Buffer

Preprocessing

Noise filters

(b) Attack Model II: An attacker have access to the input of

the pre-processing noise filter.

DNN

Integrated IP

Fig. 15 Impact of the preprocessing filtering on the state-of-the-art adversarial attackswith different
attack models with and without the access of filters. (adapted from [26, 27])

(G) and discriminator (D) (see Figure 16). This is achieved through an adversarial
process where the twomodels are competing with each other for achieving two oppo-
site goals. Simply speaking, D is trying to distinguish real images from fake images
and G is trying to create images as close as possible to real images so as D will not
be able to distinguish them, as illustrated in Fig. 16. When dealing with inference

G D cost

∇𝜃𝑑
1

𝑚
σ𝑖=1
𝑚 log 𝐷 𝑥𝑖 + log 1 − 𝐷 𝐺 𝑧′

−∇𝜃𝑔
1

𝑚
σ𝑖=1
𝑚 log 1 − 𝐷 𝐺 𝑧′ 𝑜𝑟 ∇𝜃𝑑

1

𝑚
σ𝑖=1
𝑚 log 𝐷 𝑥𝑖

𝑥

𝑧

Fig. 16 GANs framework: An illustration of how G and D are trained, adapted from [22].

scenarios, the challenge is to provide a training set which includes attack-generated
data patterns labeled of course correctly as attacks. For example, an autonomous
system may rely on visual information to orient and steer itself, or to undertake
significant decisions. However, white or patterned noise can be maliciously inserted
into a camera feed, may fool the system, and thus results in potentially catastrophic
scenarios. The problemwithmodeling these types of attacks, is that the attackmodels
are hard to mathematically formulate, and thus hard, if not impossible, to replicate
and therefore, train the system to recognize them as attacks. Hence, GANs provide
us with this capability, as we can utilize the G model to generate-and-evaluate threat
models and train the D model to differentiate between what we consider an attack or
not. However, GAN-based threat comes with the following challenges [22, 41]:

Robust Computing for Machine Learning-Based Systems 19

1. Collapsing: In this caseG produces only a single sample or set of similar samples,
regardless the type of input given to it.

2. Convergence: Since G and D models are competing towards achieving two
opposite goals, this may make the model parameters to oscillate, destabilizing the
training process.

3. Gradient Vanish: If one of the two models becomes more powerful than the
other, the learning signal is becoming useless, making the system incapable to
learn.

4. Over-Fitting: This is typically due to the unbalance optimization of G and the D
models, e.g., if too much time is spent on minimizing G, then D will most likely
collapse to a few states.

5. Sensitive: It is characterized by being highly sensitive to the selection of the
hyperparameters, i.e., learning rate, momentum, etc.; making the training process
much more tedious.

4.2.2 Case study: Noisy visual data, and how GANs can be used to remove
noise and provide robustness

To illustrate how a GAN-based framework can be used to define threats and sub-
sequently to provide robustness in a DNN-based system, we use computer vision
as an example because security threats in computer vision applications may arise
from either physical attacks, cyber attacks or a combination of both. We use the
hazing in images to model such threats. To remove this threat, we use the GANs
because of their capability in preserving fine details in images and producing results
that look perceptually convincing [29]. The goal is to translate the input image with
haze, into a haze-free output image. In this case, the noise distribution z is the noisy
image, and it is given as input to the GANs, i.e., haze input image. Afterwards, a new
sample image F is generated by G. D will receive as input the generated image F
and the ground truth haze-free image, to be trained to distinguish between real and
artificially generated images (see Figure 17).

Generator (G) Discriminator (D)

GAN Model
Fine Tuning

Clear Image

F

Hazy Image (z)

GAN Clear Image

Fig. 17 Example of GANs used for removing haze noise from a single image. The haze image is
input to G that generate an output image F and D receives as input both the generated image F
and the free-haze image. Input images taken from [33].

20 M. A. Hanif et al.

This approach has recently been used for haze removal [52, 9, 63]. These methods
mainly differ from each other, based on the utilized deep-learning structure for G
and D, i.e., using three types of G to solve the optimization of the haze removal
problem [63], using the concept of cycle GAN introduced in [67]. Also they may
differ for the type of loss function used for the training process, where the overall
objective functions is constrained to preserve certain features or priors. However,
they provide a solution that, in most of the cases, is capable to improve the quality
performances of the state-of-the-art haze removal methods for single image, so as
making this quite a promising area.

5 Open Research Challenges

Machine learning has paved its way to a majority of the fields that involve data
processing. However, regardless of all the work which has been carried out in
interpreting the neural networks and making the ML-based systems reliable, there
are still quite some challenges which are to be addressed before ML algorithms
(specifically, DNNs) can be widely accepted for complex safety-critical applications.
Following is a list of few of the main challenges in this direction.

• Error-Resilience Evaluation Frameworks: One approach towards this for tim-
ing error estimation is proposed in [65]. However, more sophisticated frameworks
are required to study the impact of multiple types of reliability threats and their
interdependence in a time efficient manner.

• Methodologies for Designing Robust and Resource-Efficient DNNs: Retrain-
ing a DNN in the presence of reliability faults [16] can improve their resilience.
However, there is a need to investigate the types of DNN architectures which are
inherently resilient to most (if not all) of the reliability threats. Furthermore, there
is a need to investigate frameworks to develop robust ML systems by synergisti-
cally investigating reliability and security vulnerabilities.

• Reliable andResource-EfficientHardwareArchitectures:With all the security
and reliability challenges highlighted in the chapter, there is a dire need to re-
think the way current DNN hardware is designed, such that the vulnerabilities
that cannot be addressed at the software-level have to be addressed through a
robust DNN hardware.

• Interpretability of Deep Neural Networks: Developing interpretable DNNs
is a challenge, however, it has to be addressed in order to better understand the
functionality of the DNNs. This will help us in improving the learning capabilities
of the DNNs, as well as in uncovering their true vulnerabilities and thereby will
help is developing more efficient and robust network architectures.

• Practicality of the Attacks: With the ongoing pace of the research in ML, new
methods and types of network architectures are surfacing, e.g., CapsuleNets. Also,
the focus of the community is shiftingmore towards semi-/un-supervised learning
methods as they overcome the need for large labeled datasets. Therefore, there is
a dire need to align the focus with the current trends in the ML community. Also,

Robust Computing for Machine Learning-Based Systems 21

the attacks should be designed considering the constraints of the real systems,
i.e., without making unrealistic assumptions about the number of queries and the
energy/power resources available to generate the attack. An early work in this
direction by our group can be found at [25].

Acknowledgements This work was supported in parts by the German Research Foundation (DFG)
as part of the priority program "Dependable Embedded Systems" (SPP 1500 – spp1500.itec.kit.edu)
and in parts by the National Science Foundation under Grant 1801495, as well as in parts by the
European Union′s Horizon 2020 research and innovation programme under grant agreement No
739578 complemented by the Government of the Republic of Cyprus through the Directorate
General for European Programmes, Coordination and Development.

References

1. Ahmad, H., Tanvir, M., Abdullah, M., Javed, M.U., Hafiz, R., Shafique, M.: Systimator: A
design space exploration methodology for systolic array based cnns acceleration on the fpga-
based edge nodes. arXiv preprint arXiv:1901.04986 (2018)

2. Nakhaee et al., F.: Lifetime improvement by exploiting aggressive voltage scaling during
runtime of error-resilient applications. Integration, the VLSI Journal (2017)

3. Ali, H., Tariq, H., Hanif, M.A., Khalid, F., Rehman, S., Ahmed, R., Shafique, M.: Qusecnets:
Quantization-based defense mechanism for securing deep neural network against adversarial
attacks. arXiv preprint arXiv:1811.01437 (2018)

4. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420 (2018)

5. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Z. Ghahramani,
M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds.) Advances in Neural In-
formation Processing Systems 27, pp. 2654–2662. Curran Associates, Inc. (2014). URL
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf

6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. arXiv preprint
arXiv:1608.04644 (2016)

7. Chakraborty,A., Alam,M.,Dey,V., Chattopadhyay,A.,Mukhopadhyay,D.:Adversarial attacks
and defences: A survey. arXiv preprint arXiv:1810.00069 (2018)

8. Deng, J., Dong, W., Socher, R., Li, L.: Imagenet: A large-scale hierarchical image database.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009).
DOI 10.1109/CVPR.2009.5206848

9. Engin, D., Genç, A., Ekenel, H.K.: Cycle-dehaze: Enhanced cyclegan for sin-
gle image dehazing. In: 2018 IEEE Conference on Computer Vision and
Pattern Recognition Workshops, CVPR Workshops 2018, Salt Lake City, UT,
USA, June 18-22, 2018, pp. 825–833 (2018). DOI 10.1109/CVPRW.2018.00127.
URL http://openaccess.thecvf.com/content_cvpr_2018_workshops/w13/html/Engin_Cycle-
Dehaze_Enhanced_CycleGAN_CVPR_2018_paper.html

10. Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N.S., Flautner, K.: Razor:
circuit-level correction of timing errors for low-power operation. IEEE Micro 24(6), 10–20
(2004)

11. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C.,
Corrado, G., Thrun, S., Dean, J.: A guide to deep learning in healthcare. Nature medicine
25(1), 24 (2019)

12. Fink, M., Liu, Y., Engstle, A., Schneider, S.A.: Deep learning-based multi-scale multi-object
detection and classification for autonomous driving. In: Fahrerassistenzsysteme 2018, pp.
233–242. Springer (2019)

22 M. A. Hanif et al.

13. Gebregiorgis, A., Kiamehr, S., Tahoori, M.B.: Error propagation aware timing relaxation for
approximate near threshold computing. In: Proceedings of the 54th Annual Design Automation
Conference 2017, p. 77. ACM (2017)

14. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Proceedings of
the 27th International Conference on Neural Information Processing Systems - Vol-
ume 2, NIPS’14, pp. 2672–2680. MIT Press, Cambridge, MA, USA (2014). URL
http://dl.acm.org/citation.cfm?id=2969033.2969125

15. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint arXiv:1708.06733 (2017)

16. Hacene, G.B., Leduc-Primeau, F., Soussia, A.B., Gripon, V., Gagnon, F.: Training modern
deep neural networks for memory-fault robustness

17. Hanif, M.A., Hafiz, R., Shafique, M.: Error resilience analysis for systematically employing
approximate computing in convolutional neural networks. In: 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 913–916. IEEE (2018)

18. Hanif, M.A., Khalid, F., Putra, R.V.W., Rehman, S., Shafique, M.: Robust machine learning
systems: Reliability and security for deep neural networks. In: 2018 IEEE 24th International
Symposium on On-Line Testing And Robust System Design (IOLTS), pp. 257–260. IEEE
(2018)

19. Hanif, M.A., Putra, R.V.W., Tanvir, M., Hafiz, R., Rehman, S., Shafique, M.: Mpna: A
massively-parallel neural array accelerator with dataflow optimization for convolutional neural
networks. arXiv preprint arXiv:1810.12910 (2018)

20. Henkel, J., Bauer, L., Dutt, N., Gupta, P., Nassif, S., Shafique, M., Tahoori, M., Wehn, N.:
Reliable on-chip systems in the nano-era: Lessons learnt and future trends. In: Proceedings of
the 50th Annual Design Automation Conference, p. 99. ACM (2013)

21. Hinton,G.E., Srivastava, N., Krizhevsky,A., Sutskever, I., Salakhutdinov, R.R.: Improving neu-
ral networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580
(2012)

22. Hui, J.: Gan why it is so hard to train generative adversarial networks! (2018)
23. Jia, J., Gong, N.Z.: Attriguard: A practical defense against attribute inference attacks via

adversarial machine learning. In: 27th {USENIX} Security Symposium ({USENIX} Security
18), pp. 513–529 (2018)

24. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia,
S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing
unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA), pp. 1–12. IEEE (2017)

25. Khalid, F., Ali, H., Hanif, M.A., Rehman, S., Ahmed, R., Shafique, M.: Red-attack: Resource
efficient decision based attack for machine learning. arXiv preprint arXiv:1901.10258 (2019)

26. Khalid, F., Hanif, M.A., Rehman, S., Qadir, J., Shafique, M.: Fademl: Understanding the
impact of pre-processing noise filtering on adversarial machine learning. arXiv preprint
arXiv:1811.01444 (2018)

27. Khalid, F., Hanif,M.A., Rehman, S., Qadir, J., Shafique,M.: Fademl: Understanding the impact
of pre-processing noise filtering on adversarial machine learning. In: Design, Autimation and
Test in Europe. IEEE (2019)

28. Khalid, F., Hanif, M.A., Rehman, S., Shafique, M.: Isa4ml: Training data-unaware impercep-
tible security attacks on machine learning modules of autonomous vehicles. arXiv preprint
arXiv:1811.01031 (2018)

29. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion
deblurring using conditional adversarial networks. In: Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2018)

30. Kwon, H., Samajdar, A., Krishna, T.: Maeri: Enabling flexible dataflow mapping over dnn
accelerators via reconfigurable interconnects. In: Proceedings of theTwenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems, pp.
461–475. ACM (2018)

Robust Computing for Machine Learning-Based Systems 23

31. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436 (2015)
32. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998). DOI 10.1109/5.726791
33. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image

dehazing and beyond. IEEE Transactions on Image Processing 28(1), 492–505 (2019)
34. Limbrick, D.B., Mahatme, N.N., Robinson, W.H., Bhuva, B.L.: Reliability-aware synthesis of

combinational logic with minimal performance penalty. IEEE Transactions on nuclear science
60(4), 2776–2781 (2013)

35. Lu, W., Yan, G., Li, J., Gong, S., Han, Y., Li, X.: Flexflow: A flexible dataflow accelerator
architecture for convolutional neural networks. In: 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 553–564. IEEE (2017)

36. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve computer
reliability. IBM journal of research and development 6(2), 200–209 (1962)

37. Marchisio, A., Hanif, M.A., Shafique, M.: Capsacc: An efficient hardware accelerator for
capsulenets with data reuse. arXiv preprint arXiv:1811.08932 (2018)

38. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: Capsat-
tacks: Robust and imperceptible adversarial attacks on capsule networks. arXiv preprint
arXiv:1901.09878 (2019)

39. Marchisio, A., Nanfa, G., Khalid, F., Hanif, M.A., Martina, M., Shafique, M.: Snn under
attack: are spiking deep belief networks vulnerable to adversarial examples? arXiv preprint
arXiv:1902.01147 (2019)

40. Marchisio, A., Shafique, M.: Capstore: Energy-efficient design and management of the on-chip
memory for capsulenet inference accelerators. arXiv preprint arXiv:1902.01151 (2019)

41. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. In:
Proceedings of ICLR 2017 (2017)

42. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practical black-box
attacks against machine learning. In: Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pp. 506–519. ACM (2017)

43. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations
of deep learning in adversarial settings. In: Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on, pp. 372–387. IEEE (2016)

44. Putra, R.V.W., Hanif, M.A., Shafique, M.: Romanet: Fine-grained reuse-driven data organi-
zation and off-chip memory access management for deep neural network accelerators. arXiv
preprint arXiv:1902.10222 (2019)

45. Raghunathan, B., Turakhia, Y., Garg, S., Marculescu, D.: Cherry-picking: exploiting process
variations in dark-silicon homogeneous chip multi-processors. In: 2013 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pp. 39–44. IEEE (2013)

46. Reagen, B., Gupta, U., Pentecost, L., Whatmough, P., Lee, S.K., Mulholland, N., Brooks, D.,
Wei, G.Y.: Ares: A framework for quantifying the resilience of deep neural networks. In: 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2018)

47. Rehman, S., Shafique, M., Henkel, J.: Reliable Software for Unreliable Hardware: A Cross
Layer Perspective. Springer (2016)

48. Schorn, C., Guntoro, A., Ascheid, G.: Efficient on-line error detection and mitigation for deep
neural network accelerators. In: International Conference on Computer Safety, Reliability, and
Security, pp. 205–219. Springer (2018)

49. Shafique, M., Garg, S., Henkel, J., Marculescu, D.: The eda challenges in the dark silicon
era: Temperature, reliability, and variability perspectives. In: Proceedings of the 51st Annual
Design Automation Conference, pp. 1–6. ACM (2014)

50. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against ma-
chine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18.
IEEE (2017)

51. Suciu, O., Marginean, R., Kaya, Y., Daume III, H., Dumitras, T.: When does machine learning
{FAIL}? generalized transferability for evasion and poisoning attacks. In: 27th {USENIX}
Security Symposium ({USENIX} Security 18), pp. 1299–1316 (2018)

24 M. A. Hanif et al.

52. Swami, K., Das, S.K.: Candy: Conditional adversarial networks based fully end-to-end system
for single image haze removal. https://arxiv.org/abs/1801.02892v2 (2018)

53. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE 105(12), 2295–2329 (2017)

54. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

55. Tariq, H., Ali, H., Hanif, M.A., Khalid, F., Rehman, S., Ahmed, R., Shafique, M.: Sscnets: A
selective sobel convolution-based technique to enhance the robustness of deep neural networks
against security attacks. arXiv preprint arXiv:1811.01443 (2018)

56. Tiwari, A., Torrellas, J.: Facelift: Hiding and slowing down aging inmulticores. In: Proceedings
of the 41st annual IEEE/ACM International Symposium on Microarchitecture, pp. 129–140.
IEEE Computer Society (2008)

57. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models
via prediction apis. In: 25th {USENIX} Security Symposium ({USENIX} Security 16), pp.
601–618 (2016)

58. Vadlamani, R., Zhao, J., Burleson, W., Tessier, R.: Multicore soft error rate stabilization using
adaptive dual modular redundancy. In: Proceedings of the Conference on Design, Automation
and Test in Europe, pp. 27–32. European Design and Automation Association (2010)

59. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using
dropconnect. In: International conference on machine learning, pp. 1058–1066 (2013)

60. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: 2018 IEEE Sympo-
sium on Security and Privacy (SP), pp. 36–52. IEEE (2018)

61. Wei,X., Yu,C.H., Zhang, P., Chen,Y.,Wang,Y.,Hu,H., Liang,Y., Cong, J.: Automated systolic
array architecture synthesis for high throughput cnn inference on fpgas. In: Proceedings of the
54th Annual Design Automation Conference 2017, p. 29. ACM (2017)

62. Whatmough, P.N., Das, S., Bull, D.M., Darwazeh, I.: Circuit-level timing error tolerance for
low-power dsp filters and transforms. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 21(6), 989–999 (2013)

63. Yang,X.,Xu, Z., Luo, J.: Towards perceptual image dehazing by physics-based disentanglement
and adversarial training. In: AAAI (2018)

64. Zhang, J., Rangineni, K., Ghodsi, Z., Garg, S.: Thundervolt: Enabling aggressive voltage
underscaling and timing error resilience for energy efficient deep neural network accelerators.
arXiv preprint arXiv:1802.03806 (2018)

65. Zhang, J.J., Garg, S.: Fate: fast and accurate timing error prediction framework for low power
dnn accelerator design. In: Proceedings of the International Conference on Computer-Aided
Design, p. 24. ACM (2018)

66. Zhang, J.J., Gu, T., Basu, K., Garg, S.: Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator. In: 2018 IEEE 36th VLSI Test
Symposium (VTS), pp. 1–6. IEEE (2018)

67. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2242–2251 (2017). DOI 10.1109/ICCV.2017.244

