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ABSTRACT

HDR-VDP 2 has convincingly shown to be a reliable met-
ric for image quality assessment, and it is currently playing
a remarkable role in the evaluation of complex image pro-
cessing algorithms. However, HDR-VDP 2 is known to be
computationally expensive (both in terms of time and mem-
ory) and is constrained to the availability of a ground-truth
image (the so-called reference) against to which the quality
of a processed imaged is quantified. These aspects impose
severe limitations on the applicability of HDR-VDP 2 to real-
world scenarios involving large quantities of data or requir-
ing real-time responses. To address these issues, we propose
Deep No-Reference Quality Metric (NoR-VDPNet), a deep-
learning approach that learns to predict the global image qual-
ity feature (i.e., the mean-opinion-score index Q) that HDR-
VDP 2 computes. NoR-VDPNet is no-reference (i.e., it oper-
ates without a ground truth reference) and its computational
cost is substantially lower when compared to HDR-VDP 2 (by
more than an order of magnitude). We demonstrate the per-
formance of NoR-VDPNet in a variety of scenarios, including
the optimization of parameters of a denoiser and JPEG-XT.

Index Terms— HDR-VDP 2, Objective metric, No-
reference, Deep-learning, Image quality assessment.

1. INTRODUCTION

In computer vision and related tasks, the quality of synthetic
images is commonly assessed either through user studies or
through objective metrics. Despite the former being more re-
liable, the large number of users and images typically required
by subjective studies makes the adoption of objective metrics
more attractive in applicative scenarios. For this reason, the
community is devoting a great deal of effort to the study of
new sophisticated objective metrics [1]. Objective metrics are
nonetheless very reliable, and especially so when focusing on
the simulation of complex aspects of the Human Visual Sys-
tem (HVS); something which, however, comes at a high com-
putational cost. Yet another limitation is to be found in the
so-called Fully-Reference (FR) metrics, a class of objective
metrics that, as their name suggests, require the availability
of a ground truth image (i.e., a version of the image being
evaluated that contains no artifacts) – an unaffordable price
for many practical scenarios. For all these reasons, the study

of reliable No-Reference (NR) metrics is nowadays gaining
considerable research attention.

Despite being very popular as an objective metric in the
field, the High Dynamic Range Visual Differences Predictor
(HDR-VDP 2) [2] is a good example of the aforementioned
limitations. Its high computation cost, along with the need for
a ground truth reference, precludes HDR-VDP 2 (and related
metrics) from being used in several quality assessment sce-
narios such as standardization, real-time quality assessment,
etc. This altogether motivates the need for more efficient, yet
effective, objective metrics that can predict visual significant
differences of test images without relying on ground truth ref-
erences.

In this paper, we investigate practical solutions to counter
these issues. The main contribution of this paper concerns
the study and evaluation of a deep-learning-based alternative
to the popular HDR-VDP 2 [2] implementation. We propose
No-Reference VDP Quality Metric (NoR-VDPNet), a model
which (i) is able to predict visual metric features that are
believed to be well correlated with the mean-opinion-score
(MOS) (e.g., the quality index Q of HDR-VDP 2 – [2]), that
(ii) does so at a fraction of the time HDR-VDP 2 demands
(more than an order of magnitude faster), and (iii) without the
need of a ground truth reference.

We tested NoR-VDPNet on a variety of scenarios de-
signed to demonstrate its robustness and flexibility. Our
method is available online1. NoR-VDPNet performs in real-
time and is thus suitable to be integrated as the main optimiza-
tion component into different applications, which we tested
in our experiments. These include a denoiser for Standard
Dynamic Range (SDR) images, and a High Dynamic Range
(HDR) encoder. Finally, our framework has very low compu-
tational costs. This would be very helpful for standardization
bodies (e.g., JPEG and MPEG) to use it for extremely large
datasets.

2. RELATED WORK

Several NR metrics have been described in the literature, pay-
ing special attention to the difficulties that the absence of a
proper reference imposes to perform Image Quality Assess-
ment (IQA).

1https://github.com/banterle/NoR-VDPNet

https://github.com/banterle/NoR-VDPNet


Fig. 1. The proposed architecture for computing HDR-VDP 2.

A possible idea to overcome this limitation is to extract
some statistics from the distorted image and compare them
against similar statistics previously extracted from natural
undistorted images [3, 4, 5]. Another approach consists of
extracting specific characteristics of the distortion when the
type of artifact is known beforehand. Some approaches fol-
lowing this intuition use local gradient [6], saliency map and
Support Vector Regression (SVR) [7], or measure the power
of the blocking signal [8].

Convolutional Neural Networks (CNN) are continuously
showing impressive performance in many computer vision
tasks, and IQA is by no means an exception. Most of the
recently proposed CNN-based models focus on the FR case.
Among those, [9] compares feature maps extracted from
the CNN layers of test and reference images, [10] learns
the HVS behavior from the underlying data distribution of
IQA databases, and [11] fuses scores obtained from multiple
quality indices into one score. Other proposed metrics are
data-driven [12], or train a model to learn perceptual trans-
forms [13, 14], or use both [15, 16]. CNN-based approaches
that tackle the NR problem also exist. Some examples in-
clude purely data-driven approaches [17], approaches that
learn rules from linguistic descriptions [18], others that ex-
tract different gradient-based features [19, 20], or approaches
modeling the perceptual masking effects in distorted HDR
images [21].

3. DEEP NO-REFERENCE QUALITY METRIC

Our goal is to predict the quality value (Q) of HDR-VDP 2 [2]
given exclusively a distorted image as input; i.e., in the ab-
sence of a reference. Although HDR-VDP 2 generates addi-
tional outputs, such as a threshold normalized contrast map
(Cmap) and its maximum value, we restrict our attention to
the quality value in this research. The reason why we avoid
the prediction of theCmap responds to the fact that such maps
turn out to be of limited help in applicative scenarios like stan-
dardization committees (e.g., JPEG and MPEG) since, when
analyzing large datasets [14], a single value is typically pre-
ferred.

As the model architecture, we adopted a CNN model [22],
since such architectures have provided high-quality results in
several computer vision/imaging tasks while at the same time
run very efficiently on GPUs. Specifically, we take an already
existing architecture [14] as a starting point, which is based

(a) NoR-VDPNet for SDR images (Scenario 1).

(b) NoR-VDPNet for HDR Compression (Scenario 2)

Fig. 2. Plots of the training, evaluation, and testing
datasets for each epoch. The minimum Evaluation RMSE is
3.6 × 10−5 (Scenario 1) and 1.8 × 10−3 (Scenario 2).

on a modified version of the U-Net [23].

We tweaked this network by taking a single image as input
(thus removing the part of the network dealing with the ref-
erence) and removing the max-pooling operator from the net-
work. The reason behind getting rid of the max-pooling layer
is to retain as much information as possible when detecting
distortions (pooling strategies are known to discard informa-
tion). During preliminary experiments, we indeed observed
that removing the max-pooling layer brings about a 5% of
decrease in the validation loss.

Furthermore, we decided to force the network to work
only on luminance images (i.e., a single channel image) in-
stead of having three color channels. This is because we no-
ticed there was not a drop in the quality of the performance.
Furthermore, we gained a significant speed-up when evaluat-
ing the network, see Section 5.2. Figure 1 shows the scheme
of our network.



3.1. Datasets

We employed two datasets by Artusi et al. [14] to train our
model (those datasets are available upon request). Since our
goal is to have a no-reference HDR-VDP 2, we focused on
Scenario 1 and Scenario 2 as defined in [14].

Scenario 1 is a dataset of SDR images presenting different
distortions (e.g., blur, quantization, noise, etc.) and consisting
of 16,002 images. We randomly split the dataset in 80% for
training, 10% for validation, and 10% for testing. Scenario 2
is a dataset of HDR images with different levels of JPEG-XT
[24, 25] compression using all profiles, and it has 14,418 im-
ages. As for Scenario 1, we randomly split the dataset in 80%
for training, 10% for validation, and 10% for testing. Note
that when we were splitting the datasets, we enforced that
augmentations from Artusi et al. [14] where not shared be-
tween different sets. In addition, both SDR and HDR images
have a 512× 512 resolution in all sets.

4. TEST CONDITIONS

We trained our model on a Linux machine (Ubuntu 18.04)
equipped with an Intel CPU Core i7-7800X (3.50 GHz) with
64 GB of memory and an NVIDIA GeForce GTX 1080 GPU
with 8 GB of memory. We implemented NoR-VDPNet using
PyTorch 1.3.1 deep-learning framework.

The pixel values from HDR and SDR images are pre-
processed differently, following the indications in [14]. SDR
images are linearly scaled from the original range [0, 255] to
[0, 1] before feeding them to the network. Instead, we apply
the logarithm to HDR images:

x′ = log10(x+ 1) , (1)

where x is the input pixel value. By doing so, we obtain
an equilibrate scale in the positive only real values that is
not biased towards large differences in high luminance val-
ues [26]. More sophisticated tone-mapping operators [27] or
encodings [28] can be applied for very dark images (e.g., less
than 0.1 cd/m2).

We trained the network using mini-batch stochastic gradi-
ent descent and the Adam update rule [29] with the learning
rate set to 0.001. We left the rest of the parameters set to their
default values; i.e., β1 = 0.9, β2 = 0.999, and ε = 1e−8.
As in Artusi et al. [14], we defined the loss function to be
the Mean Square Error (MSE) between the predicted and
the true scores. We initialized all network weights follow-
ing the Xavier initialization [30]. We set the batch size of
NoR-VDPNet to 32 samples, which was the largest parameter
for which enough memory could be allocated in our NVIDIA
GeForce GTX 1080 GPU. The training set is shuffled when-
ever an epoch is completed to diminish the impact of order-
based biases during training. We set the maximum number
of epochs to 75; the training time varies from approximately
6 hours to 10 hours depending on the size of the training set.

In all cases, the reported results correspond to the models ob-
taining the minimum loss as measured in the validation set.

5. RESULTS

5.1. Quality of Learning

Figure 2 displays the training curves; i.e., the evolution of the
loss as evaluated on the training, validation, and testing2 data.
In both scenarios (i.e., Scenario 1 and Scenario 2), the model
seems to converge to low loss figures around 75 epochs (no
further improvement in validation is observed thereafter).

Figure 3 plots the histograms of errors for the test data
with respect to the ground truth for Scenario 1 (a) and Sce-
nario 2 (b). The predictions our model produces are particu-
larly accurate for Scenario 2 (Figure 3 (a)) i.e., for the case of
HDR images compressed with JPEG-XT distortions, as wit-
nessed by the narrow distribution of test errors around 0 and
the low presence of outliers. Figure 3 (a) shows the model
produces comparatively higher errors in Scenario 1 (i.e., for
SDR images), but the error remains still withing acceptable
margins for many practical applications; in this case, there
are no outliers.

(a) NoR-VDPNet for SDR images (Scenario 1).

(b) NoR-VDPNet for HDR Compression (Scenario 2).

Fig. 3. The histograms of the relative error distribution be-
tween the ground truth Q value and the predicted value by
our network, Qp, for the testing dataset.

5.2. Timings

Figure 4 reports testing times at different image resolutions
for our method NoR-VDPNet against the ground-truth HDR-

2Test data is, of course, assumed unavailable during model training. We
still report test trends here for demonstrating purposes.



Fig. 4. Testing times for the prediction of the Q value for
our method NoR-VDPNet against the ground-truth HDR-
VDP 2 [2] (CUDA version) and DIQM [14]. Note the log
scale.

VDP 2 [2] and the deep learning model DIQM [14] (currently,
the state of the art for reproducing HDR-VDP 2 using CNNs).
The implementation we used for HDR-VDP 2 [2] is the vari-
ant proposed in [14] which takes advantage of the GPU par-
allel processing via CUDA libraries. All times reported are
clocked in the same machine (see Section 4 for details). Note
the size of the input images ranges from 128 × 128 (VGA
resolution) to 8-Mpixel resolution. The most interesting fact
that emerges from Figure 4 is that our method is faster than
the competitors. Specifically, it happens to be 1.5 times faster
than DIQM [14]. This is because our network works on lumi-
nance images (one channel) instead of on RGB (three chan-
nels) images as DIQM. Furthermore, our method is nearly
two orders of magnitude faster than (the CUDA based imple-
mentation) HDR-VDP 2 which, in turn, is unable to process
images larger than 4-MPixel due to high usage of memory.

5.3. Applications

Our proposed metric can be used in different applications in
which not only the efficacy of the estimation of the image
quality, but also the efficiency, are important. In this section,
we demonstrate the performance of NoR-VDPNet in two rep-
resentative applications.

As a first application, we implemented a denoiser based
on the bilateral filter [31]; more sophisticated methods for
denoising exist in literature, but it is merely used here as
an example. This denoiser uses NoR-VDPNet to optimize
the filter parameters; i.e., σr (which controls the smoothing
threshold) and σs (which controls the size of the spatial ker-
nel/neighborhood). Then, we ran it on a 1Mpixel noisy image
and we compared the result against DIQM [14]. While both
outputs were similar, our method took 1.34s to run, DIQM
took 1.82s on the same image.

The second application is a companding scheme based on
a parameterized sigmoid function, y(x) = ax/(1 + ax), for
compressing HDR images using JPEG. This application uses
the predictions of NoR-VDPNet to optimize the sigmoid pa-
rameter a and the JPEG quality parameter for compressing

HDR images in an efficient way. We tested it on a 4Mpixel
HDR image. Again, both outputs were similar. In this case,
our method took 11.67s to run, while DIQM took 18.74s on
the same image.

6. CONCLUSIONS AND FUTURE WORK

In this work, we have shown how to convert and distill HDR-
VDP 2 into a no-reference metric, that we dub NoR-VDPNet,
using a deep learning approach. The results we have obtained
show that NoR-VDPNet performs robustly (in terms of error
w.r.t. the ground truth) in scenarios concerning both SDR and
HDR images. Furthermore, our method is computationally
efficient, especially when compared to a CUDA-based imple-
mentation of the original HDR-VDP 2.

In future work, we plan to broaden the generalization of
the method by incorporating other types of inputs (e.g., in-
cluding viewing conditions) to our network. This may im-
ply extending the large datasets made available by Artusi et
al. [14]. Finally, we want to extend this work by comparing
the performance of our network against other non-reference
solutions for SDR and HDR distortions.
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