
Machine Learning analysis of self-consistent magnetic flux ropes realized in M-dwarf dynamo simulations
Connor P. Bice1,2 ; Juri Toomre1,2

(1) JILA; (2) Department of Astrophysical & Planetary Sciences, University of Colorado Boulder

Motivation

Simulation

An Automated Pipeline

The Near Future

Classification Network

Contact: connor.bice@colorado.edu

The calculations presented here were performed on the NASA Pleiades supercomputer, and were 
supported by NASA grants NNX17AG22G and 80NSSC20K1543

Segmentation Network

Despite their small sizes, cool temperatures, and dim luminosities, 
M-dwarf stars are well known for the vigorous magnetism many of them 
display. Large flares can occur with extreme frequency on these stars, and 
in the case of superflares, may briefly outshine the rest of the star by 
factors as large as 1000. The active regions which give rise to these flares 
are thought to be formed by the rise of buoyant magnetic flux ropes born 
from dynamo action deeper in the convective interior of the star.

MHD simulations of such interiors have yielded great insight into the 
global scale dynamo processes and their interaction with stars’ flow 
structures, but precious few have ever identified self-consistently 
generated buoyant flux ropes (e.g. Nelson et al. 2011). This is in part due 
to these structures defiance of well-constrained mathematical isolation, 
necessitating extremely time-consuming “by-hand” approaches.

We introduce here the first automated tool for the identification and 
tracking of self-consistent magnetic flux ropes in global 3D MHD 
simulations, allowing for comprehensive analyses of the dynamics of such 
structures should they be present, without investing dozens of hours.

The magnetic field lines considered in training and testing the pipeline 
were integrated from the fields of case D2ta of Bice & Toomre 2020. This 
global anelastic MHD model of an M2 star was computed in the 
open-source simulation code Rayleigh (Featherstone & Hindman 2016) 
and has the following properties:

● A 1D background state computed in MESA (Paxton et al. 2010)

● A stably-stratified radiative interior below its convective envelope, 
which contains a diffusively mediated tachocline of shear

● Extremely strong, time-steady toroidal magnetic fields in places 
reaching amplitudes in excess of 50 kG.

● A magnetic event leading to the simultaneous release from the 
tachocline and rise of more than 1037 erg of magnetic energy.

1. Tens of thousands of magnetic field lines are integrated from 
randomly seeded locations in snapshots of the stellar interior 
spanning the desired interval.

a. Oversaturating the volume with field lines ensures that all structures of 
interest will appear on at least one field line.

b. Physical variables which will be used in classification and segmentation 

are recorded at all points along each field line.

2. A neural network designed for binary classification scores 
each field line, with higher scores indicating a higher 
probability that the line contains a rising loop.

3. Field lines meeting a threshold score are fed through a 
separate neural network designed for segmentation,, 
potentially identifying sections of the field line as candidate 
loops and discarding the rest.

4. Redundant loop candidates from different field lines passing 
nearby through the same structure are grouped together.

5. The approximate evolution of each loop candidate is 
estimated and used to pair loop candidates to their 
counterparts in the following snapshot, if present.

6. A set of evolution trees containing all loop candidates across 
every snapshot is constructed. From it, rising loops are 
identified and presented for further dynamical analysis.

● Inputs are 400 “pixel” long field lines with 11 channels encoding 
derivatives of the 3 spherical coordinates, line curvature, cylindrical 
radius and height, radial velocity, radial and horizontal magnetic field 
strength, entropy, and plasma β.

● Architecture adapted from the popular AlexNet (Krizhevsky et al. 2017), 
featuring 2 convolution layers, each followed by max pooling and 
linear rectification, and 3 fully connected layers, each followed by 
linear rectification.

● Trained on 1800 hand-classified field lines Stochastic Gradient 
Descent using a Cross-Entropy loss
○ 20% dropout in the Conv layers and 50% dropout in the FC layers
○ Selected model achieved a positive detection probability of 0.96 and false 

positive rate of 0.04

● Development on this project is expected to be complete within weeks 
of the start of Cool Stars 20.5. 

● Preliminary testing of the neural networks has shown promise in 
models of both fully convective and solar-like stars without needing to 
re-train, with more rigorous validation in non-M2 geometries to come.

● A paper detailing the pipeline and analyzing the dynamics of rising 
loops identified in case D2ta is soon to be submitted

● Following publication, the pipeline will be made freely available to 
anyone interested in applying it to their own simulations.
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● Architecture is an adapted W-Net (e.g. Xia & Kulis 2017)
○ The first “U” is an encoder, classifying segments of input. Its output 

is all that is taken when segmenting out loop candidates
○ The second “U” is a decoder, reconstructing the input image from 

the classified segments. It is used only during training.
● Trained unsupervised on 180,000 field lines with soft-N-cut loss for the 

encoder, RMS error loss for the full network, and 20% dropout.
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Figure 1. (a) Visualization of the near-surface radial velocity in case D2ta with warm, red 
upflows and cold, blue downflows. Axially-aligned Busse columns can be seen near the 
equator, with more isotropic convection visible near the north pole. (b) Visualization of the 
magnetic fields generated in case D2ta, with bright colors indicating stronger fields. A cutaway 
reveals the interior of the equatorial wreath. The remains of several emerged loops can be seen.

Figure 2. Field line tracings of a sequence of hand-identified loops rising from the tachocline in 
case D2ta, seen from above the north pole of the model at instants separated by roughly 24 days 
each.  

Figure 3. An example segmentation 
of a field line containing a loop, 
seen projected into (a) the xy-plane 
and (b) the xz-plane. The loop 
candidate is shown in red, while the 
discarded section is in blue.


