
Revista Facultad de Ingeniería, Universidad de Antioquia, No. xx, pp. x-x, 20xx 

S. Nesmachnow et al.; Revista Facultad de Ingeniería, No. xx, pp. x-x, 20xx 

 

 

Title: Optimizing household energy planning in smart cities: a multiobjective approach 

 

Authors: Sergio Nesmachnow1 https://orcid.org/0000-0002-8146-4012 Giovanni Colacurcio2 
https://orcid.org/0000-0002-1489-0329 Diego Gabriel Rossit3* https://orcid.org/0000-0002-8531-445X Jamal Toutouh4 
https://orcid.org/0000-0003-1152-0346 Francisco Luna5 https://orcid.org/0000-0002-0455-7223 
 

[1] Faculty of Engineering, Universidad de la República, Uruguay 
[2] Faculty of Engineering, Universidad de la República, Uruguay 
[3] INMABB, Department of Engineering, Universidad Nacional del Sur (UNS)-CONICET, 
Argentina 
[4] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of 
Technology, United States of America 
[5] Department of Languages and Computer Science, Universidad de Málaga, Spain 
 

Corresponding author: Diego Gabriel Rossit 
E-mail: diego.rossit@uns.edu.ar 
 
 
DOI: 10.17533/udea.redin.20200587 

 

To appear in:   Revista Facultad de Ingeniería Universidad de Antioquia 

 

Received:  December 10, 2019 

Accepted:  June 05, 2020 

Available Online:  June 05, 2020 

  

This is the PDF version of an unedited article that has been peer-reviewed and accepted for 

publication. It is an early version, to our customers; however, the content is the same as the 

published article, but it does not have the final copy-editing, formatting, typesetting and other 

editing done by the publisher before the final published version. During this editing process, 

some errors might be discovered which could affect the content, besides all legal disclaimers 

that apply to this journal. 

 

Please cite this article as: S. Nesmachnow, G. Colacurcio, D. G. Rossit, J. Toutouh and F. Luna. 

Optimizing household energy planning in smart cities: a multiobjective approach, Revista 

Facultad de Ingeniería Universidad de Antioquia. [Online]. Available: 

https://www.doi.org/10.17533/udea.redin.20200587 

 

https://orcid.org/0000-0002-8146-4012
https://orcid.org/0000-0002-1489-0329
https://orcid.org/0000-0002-8531-445X
https://orcid.org/0000-0003-1152-0346
https://orcid.org/0000-0002-0455-7223
mailto:diego.rossit@uns.edu.ar


Revista Facultad de Ingeniería, June 5, 2020

Optimizing household energy planning in Smart cities: a
multiobjective approach
Optimización de la planificación energética en hogares inteligentes: un enfoque multi-
objetivo
Authors: Double-blind review

KEYWORDS:
Smart cities, household energy planning, Evolutionary computation, Multiobjective optimization, Mixed
integer programming

Ciudades inteligentes, Planificación energética de hogares, Algoritmos evolutivos, Optimización multiobjetivo,
Programación mixta-entera

ABSTRACT: This article presents the advances in the design and implementation of a recommendation system
for planning the use of household appliances, focused on improving energy efficiency from the point of view of
both energy companies and end-users. The system proposes using historical information and data from sensors
to define instances of the planning problem considering user preferences, which in turn are proposed to be
solved using a multiobjective evolutionary approach, in order to minimize energy consumption and maximize
quality of service offered to users. Promising results are reported on realistic instances of the problem,
compared with situations where no intelligent energy planning are used (i.e., ‘Bussiness as Usual’ model) and
also with a greedy algorithm developed in the framework of the reference project. The proposed evolutionary
approach was able to improve up to 29.0% in energy utilization and up to 65.3% in user preferences over the
reference methods.

RESUMEN: Este artículo presenta los avances en el diseño e implementación de un sistema de recomendación
para planificar el uso de electrodomésticos, enfocado en mejorar la eficiencia energética desde el punto de vista
tanto de las compañías de energía como de los usuarios finales. El sistema propone el uso de información
histórica y datos de sensores para definir instancias del problema de planificación considerando las preferencias
del usuario, que a su vez se proponen resolver mediante un enfoque evolutivo multiobjetivo, para minimizar
el consumo de energía y maximizar la calidad del servicio ofrecido a los usuarios. Se informan resultados
prometedores en casos realistas del problema, en comparación con situaciones en las que no se utiliza una
planificación energética inteligente (es decir, modelo ‘Bussiness as Usual’) y también con un algoritmo goloso
desarrollado en el marco del proyecto de referencia. El enfoque evolutivo propuesto fue capaz de mejorar hasta
el 29.0 % en la utilización de energía y hasta el 65.3 % en las preferencias del usuario sobre los métodos de
referencia.

1. Introduction

Aiming at being economically competitive within
highly demanding environmental standards, energy
management was initially initiated by all types of orga-
nizations worldwide to reduce both the incurred mon-5

etary costs and their carbon footprint in their oper-
ation (1). Lately, with the “smartization” of power
grids, the citizens come into play, as they can be en-
couraged to shape their demand profiles to increase the
sustainability of the domestic tasks (2; 3).10

In order to guarantee increased access to energy re-
sources at affordable costs, either for citizens or orga-
nizations, effective energy management policies must
be implemented, together with easy-to-use computer-
assisted applications for both electricity producers and15

end-users. However, the requirements of these applica-

tions will be fairly different for each of these to agents.
On the one hand, companies may want to be capable
of performing realistic simulations, as well as control-
ling and planning the electricity market. On the other20

hand, citizens have to be provided with applications
that ease them to monitor and manage the energy con-
sumption at household level. These applications are
clearly under the context of the smart city paradigm,
as they target citizen engagement, environment pro-25

tection, and economic considerations to provide a good
Quality of Service (QoS) and user experience (4).
By 2018, the average household energy consumption
reported by the US Energy Information Administration
has been 12,906 KWh of electricity (5), with an annual30

growing rate of approximately 0.9% (5). In Europe, the
figure is less than 10,000 KWh, but also significant as
it represents 21.4% of the total energy consumed by
households, which is 27.2% of total energy consump-
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tion in EU (6). Temperature control and electronic
and kitchen appliances are those that most contribute
to the consumption (ranging from 65% to 75%), and
this pattern is fairly similar worldwide, even in devel-
oping countries.5

But energy efficiency at domestic level can be improved
by accurately planning the usage of deferrable appli-
ances, that is, those devices whose demand for energy
can be postponed or interrupted (dishwashers, wash-
ing machines, etc.), with little-to-no impact on the QoS10

provided to the users (2; 3). In this context, citizens
can be aware of different electricity prices and the avail-
ability of sustainable, yet not-storable energy gener-
ated by renewable sources, to properly schedule the
operation of these appliances.15

The aim of this work is to extend our previous con-
ference article (7) presented at the Ibero-American
Congress of Smart Cities ICSC-CITIES 2019, which
addresses the problem of planning household appli-
ances considering user preferences. For the purpose of20

providing a recommendation system for the end-users,
two conflicting objectives, namely maximizing the user
satisfaction (measured in terms of the QoS provided
with respect to the given preferences) and minimizing
the total energy consumed (in terms of the total cost25

of the electricity bill), are considered. The novel con-
tributions of this research include the formulation of a
newly developed mixed-integer mathematical program-
ming model of the problem. This has been addressed
with an exact solver that may serve as a baseline for30

comparing with the EA, on the basis of the smaller
instances.

This work has been developed under the context of
the Cloud Computing for Smart Energy Management
(CC-SEM) project (8; 9), which proposes building an35

integrated platform for smart monitoring, controlling,
and planning energy consumption and generation in ur-
ban scenarios. Technologies such as Big Data analysis,
computational intelligence, Internet of Things, High
Performance Computing and Cloud Computing, and40

specific hardware for energy monitoring/control are the
key enabling pillars of the project.

The article is organized as follows. Section 2 presents
the formulation of the multiobjective household energy
consumption planning and a review of related works.45

The proposed evolutionary approach for household en-
ergy planning is described in Section 3. The experi-
mental analysis is reported in Section 4. Finally, Sec-
tion 5 presents the conclusions and the main lines of
future work.50

2. The household energy planning
problem

This section introduces the household energy planning
problem, the multiobjective formulation addressed in
this article, and a review of related works.55

2.1 General considerations
The goal of the study is to develop a system to help
end-users to take appropriate decisions concerning the
use of household appliances in a given planning pe-
riod (e.g., daily, weekly, etc.). The problem consists60

in scheduling the use of different household appliances
to minimize the energy household costs while consider-
ing end-user preferences (customer satisfaction). These
can easily become conflicting interests (10) since the
period of time in which end-users prefer to use the65

appliances might not be the one that minimizes the
energy cost. Therefore, an optimization model that
takes into account the end-user preferences, electricity
prices, and the available contracted power is devised to
solve this problem.70

The planning period is divided in slots considering the
user preferences. For every slot, each user can indicate
a value that represents the priority of using a certain
appliance in that time. Higher values of priority rep-
resent a higher desire of using the appliance. In case75

that users do not indicate their preferences, machine
learning is applied to infer preferences from the analy-
sis of historical utilization data. Classification methods
can also be applied to characterize the household power
consumption, regarding neighboring houses and socio-80

economical data, such as for other public services (11).
The problem formulation assumes that the energy cost
is known for each time interval. In general, these values
are publicly available from the energy companies, for
example from the National Electricity Company (UTE85

for its Spanish acronym) in Uruguay. Also, the max-
imum contracted power for each user is known, from
the contract details provided by the energy company.
The contracted maximum power can only be surpassed
by a small amount in a short period of time, without90

causing a short circuit. In line with informal surveys
performed to energy practitioners implemented for this
study, the users are allowed to use up to 30% more than
the maximum energy. However, schedules that include
such a surplus are penalized.95

2.2 Problem formulation
The multiobjective version of the household energy
planning problem addressed in this article considers
the following sets:
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• a set of users U =
(
u1 . . . u|U |

)
, each user repre-

sents a house in a city;

• a set of minutes T =
(
t1 . . . t|T |

)
in the planning

period;

• a set of domestic appliances Lu =
(
lu1 . . . l

u
|L|

)
for5

each user u;

And the following parameters:

• a parameter Wu indicates the maximum electric
power contracted by user u;

• a penalty term ρ applied to those users that sur-10

pass the maximum electric power contracted;

• a parameter Du
l indicates the average time of uti-

lization for user u of appliance l ∈ Lu ;

• a parameter Ct indicates the utilization cost (per
kW) of the energy in time t;15

• a parameter Pu
l indicates the power (in kW) con-

sumed by appliance l;

• a parameter UPu
lt indicates the preference of user

u to use the appliance l ∈ Lu at time t.

• a parameter Ct indicates the energy cost at time20

t.

Parameter UPu
lt considers the energy consumption

measurements of electrical devices reported by Kolter
and Johnson (12). For each minute of the day, in the
period of a month, the user preference is defined con-25

sidering how many times each appliance was turned on
for each appliance at that minute. Parameter D uses
consumption values of user appliances from a represen-
tative day. The usage duration of the appliance was
studied, defined as the number of consecutive minutes30

in which it remained powered on (13).
Two alternatives are defined for defining the penalty
model used for those situations in which the household
consumption exceeds the maximum power contracted.
The first alternative (soft penalty) is when the user ex-35

ceeds the maximum power contracted for less than 30%
of it. This is the maximum value of energy consump-
tion that can exist without a short circuit occurring. In
that case, the solution is penalized by a 30% of ρ. The
second scenario (hard penalty) is when the user exceeds40

the maximum power contracted in a value greater than
or equal to 30%. Therefore, those plannings are penal-
ized entirely by the penalty term ρ.
Lets consider the binary variable xult, that indicates if
user u has appliance l ∈ Lu turn on at time t; and45

variable yult that indicates the time period in which
user u has appliance l ∈ Lu turned on continuously
(without intermediate turn off) from time t. yult =

m − j with m = max r/∀t′ ∈ (t, r) xult′ = 1. Addition-
ally, lets consider binary variables δult which is 1 when50

the continuous usage appliance l by user u from time t
is equal to or larger than the average time of utilization
for user u of appliance l ∈ Lu, 0 otherwise; ψu

t which
is 1 when the consumed energy by user u at time t is
exceeds the maximum power contracted by that user,55

0 otherwise; and Ψu
t which is 1 when the consumed en-

ergy by user u at time t is exceeds in more than 30% the
maximum power contracted by that user, 0 otherwise.
Then, the problem can be formulated as a mixed-
integer programming (MIP) model as follows:60

max f(X) =
∑
u∈U

∑
l∈Lu

∑
t∈T

t≤|T |−Du
l

δult
 ∑

t∈T
t≤t′<t+Du

l

UPu
lt′




(1)

min g(X) =
∑
u∈U

∑
t∈T

∑
l∈Lu

(xultP
u
l Ct + ρ (0.3ψu

t + 0.7Ψu
t ))

(2)
Subject to

yult = yul(t+1)x
u
lt + xult,

∀ u ∈ U, l ∈ Lu, t ∈ T, t < t|T | (3)
yult|T |

= xult|T |
, ∀ u ∈ U, l ∈ Lu (4)

yult ≤ Du
l , ∀ u ∈ U, l ∈ Lu, t ∈ T, t ≤ t|T |−Du

l

(5)

δult ≤ 1− Du
l − yult
Du

l

, ∀ u ∈ U, l ∈ Lu, t ∈ T

(6)

ψu
t ≥

∑
l∈Lu Pu

l x
u
lt −Wu∑

l∈Lu Pu
l

, ∀ u ∈ U, t ∈ T

(7)

Ψu
t ≥

∑
l∈Lu Pu

l x
u
lt − 1.3Wu∑

l∈Lu Pu
l

, ∀ u ∈ U, t ∈ T

(8)
ψu
t ∈ {0, 1}, ∀ u ∈ U, l ∈ Lu (9)

Ψu
t ∈ {0, 1}, ∀ u ∈ U, l ∈ Lu (10)
δult ∈ {0, 1}, ∀ u ∈ U, l ∈ Lu, t ∈ T (11)
xult ∈ {0, 1}, ∀ u ∈ U, l ∈ Lu, t ∈ T (12)
yult ≥ 0, ∀ u ∈ U, l ∈ Lu, t ∈ T (13)

The problem proposes finding a planning function X =
{xult} for the use of each household appliance that si-
multaneously minimizes the cost of the total energy
consumed, i.e., Equation (1) which include the charge
for energy consumption and the penalization for ex-65

ceeding the maximum power contracted, and maxi-
mizes the user satisfaction defined in Equation 2 (given
the users’ preference functions). In regard to restric-
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tions, Equation (3) establishes the length of the inter-
val of time that each appliance will be turn on for each
user at each time slot. Equation (4) sets a boundary
condition for variable yult. Equation (5) ensures that
the length of time an appliance will be on does not5

exceed more than required by the user. Equation (6)
sets δult to be one when the length of time an appli-
ance will be on is equal to the required by the user.
Equation (7) enforces ψu

t to be one if the user exceeds
the maximum power contracted (soft penalty). Equa-10

tion (8) enforces Ψu
l to be one if the user exceeds the

maximum power contracted for more than 30% (hard
penalty). Equations (9)-(12) establish the binary na-
ture of the variables. Equation (13) establishes that yult
is a non-negative continuous variable.15

Equation (3) is not linear. In order to get a linear
model, linearization of (14) is applied to obtain a linear
model without increasing the number of integer vari-
ables. Therefore, continuous variable sul(t+1)j is intro-
duced and Equation (3) is replaced by Equations (14)-20

(18).

yult = sul(t+1)t + yul(t+1) − |T |(1− xult) + xult,

∀ u ∈ U, l ∈ Lu, t ∈ T, t < t|T | (14)
sul(t+1)t ≥ |T |(1− xult)− yul(t+1),

∀ u ∈ U, l ∈ Lu, t ∈ T, t < t|T | (15)
sul(t+1)t ≤ |T | − yul(t+1),

∀ u ∈ U, l ∈ Lu, t ∈ T, t < t|T | (16)
sul(t+1)t ≥ 0, ∀ u ∈ U, l ∈ Lu, t ∈ T, t < t|T | (17)
sul(t+1)t ≤ |T |(1− xult),

∀ u ∈ U, l ∈ Lu, t ∈ T, t < t|T | (18)

2.3 Related works
The analysis of the related literature allows identi-
fying several hardware- and software-based methods
for household energy consumption characterization and25

planning. The main related works are reviewed next.
The main line of work related to the proposed research
has been developed by Soares et al., who studied the
household electricity demands and categorized a set
of appliances, according to their use and management30

strategies that can be applied to them (15). An ini-
tial work (2) introduced a model based on integer non-
linear programming for energy utilization planning,
with the aim of reducing cost. The authors applied
an EA to minimize the cost of invoice and violations35

to the maximum contracted power. The EA allowed
to reduce up to 40% the energy cost for the users with
respect to a reference scenario without demand man-
agement. Later, the authors proposed minimizing cost
and maximizing user satisfaction (3), which is the main40

motivation for the work proposed in our research. Re-
sults showed that the cost reduction was 22–24%. How-
ever, no trade-off solutions were computed, so different
users with equal contracted power and equal prefer-
ences should adapt to the same planning. Additionally,45

no studies were carried out in different urban levels
(buildings, neighborhoods, etc.) or used real data.
Our previous work (16) presented a hardware and soft-
ware platform for intelligent monitoring and planning
of energy consumption in homes. The proposed system50

integrates a hardware controller for energy efficiency,
a communication protocol to improve data transmis-
sion, and a software module for planning and man-
aging household devices. The proposed solution was
implemented applying the Internet of Things (IoT)55

paradigm, allowing the integration of computational
intelligence techniques. A greedy algorithm was pro-
posed for planning, considering user preferences and a
maximum allowed power consumption. Results showed
that it is possible to reduce the energy consumption60

of a water heater to 38.9% and that two water heaters
and an air conditioner can be optimized simultaneously
without reducing QoS. These results suggest that the
proposed approach is useful for energy consumption
planning in homes.65

Bilil et al. proposed a characterization of household ap-
pliances and a dynamic planning method for collabora-
tive microgrids (17). Two multiobjective optimization
problems were studied, accounting for the activation
and power profiles of appliances. A simulation pro-70

cedure was applied to generate the instances of these
problems and NSGA-II was used to solve them. The
instances consisting in 40 microgrids that include a
flexible deferrable appliance, such as a water heater,
and a non-flexible one (i.e., dishwasher). For the ex-75

periments, a residential load curve based on U.S. user
profiles was used. The results showed that the load
curve can indeed become very flat by applying the pro-
posed bi-level multiobjective optimization scheduling
approach.80

Geem et al. (18) proposed an Harmony search opti-
mization algorithm to define charging schedule of an
energy storage system with renewable power generators
under dynamic electricity prices and demand charge
policy.85

Although heuristic methods were generally used to
solve energy scheduling problems (mainly due to the as-
sociated computational complexity (19)), other meth-
ods have also been applied to similar problems in the
related literature. For example, Guan et al. proposed90

an exact formulation for configuring the household en-
ergy planning while considering a variety of energy sup-
ply sources and electric demands (20). They solved
the problem using CPLEX while considering uncer-
tainty associated with energy supply sources. Barbato95

4

Acc
ep

ted
 M

an
us

cri
pt

Revista Facultad de Ingeniería, Universidad de Antioquia, No. xx, pp. x-x, 20xx 
S. Nesmachnow et al.; Revista Facultad de Ingeniería, No. xx, pp. x-x, 20xx



et al. modelled a problem of household energy planning
with a non-cooperative game theoretical approach (21)
where they considered dynamic energy prices in order
to induce a reduction of demand peaks.
The analysis of the related works indicates that there5

is room to contribute with solutions focused on the de-
velopment of systems to implement the management of
domestic demand through the integration of IoT tech-
nologies and computational intelligence algorithms.

3. The proposed EA for household en-10

ergy planning
This section describes the proposed EA to solve the
household energy planning problem.

3.1 Evolutionary algorithms
EAs are stochastic techniques that emulate natural15

evolution to solve optimization, search, and learning
problems. They are useful for solving complex real-
world problems in multiple application areas (22).
An EA is an iterative technique (each iteration is called
generation). In each generation, probabilistic opera-20

tors are applied on a set of individuals (the popula-
tion). The initial population is generated by applying
a random procedure or using a specific heuristic for the
problem to be solved. Each individual encodes a tenta-
tive solution to the problem and has a fitness value that25

determines its suitability to solve the problem. The
goal of the EA is to improve the fitness of individuals
in the population. In order to achieve this objective,
evolutionary operators are applied iteratively, such as
the recombination of parts of two individuals and the30

random mutation of an individual’s coding. These op-
erators are applied to individuals selected according to
their fitness, thus guiding the EA toward tentative so-
lutions of higher quality that replace old individuals.
The stop criterion usually involves a fixed number of35

generations, a quality level on the fitness of the best
individual, or detecting convergence. The EA returns
the best solution found in the iterative process, tak-
ing into account the fitness function considered for the
problem. Algorithm 1 presents the generic schema of40

an EA with a population P.

3.2 The proposed EA for household appliances
planning

The main features of the proposed EA for household
appliances planning are described next.45

Solution encoding. A problem-specific encoding is used
to represent solutions. The proposed encoding consid-
ers for each user a vector X = (x0, x1, . . . , xT ), where

Algorithm 1 Schema of an evolutionary algorithm.
1: initialize(P (0))
2: t←0 ◃ generation counter
3: while not stop criterion do
4: evaluate(P (t)) ◃ evolutionary cycle
5: parents←selection(P (t))
6: children←variation operators(parents)
7: newpop←replacement(children,P (t))
8: t++
9: P (t)←newpop

10: end while
11: return best individual found ◃ best fitness value

T is the total number of timesteps (i.e., minutes) in the
planning period. Each element xj in the encoding is a50

vector of binary values xj = (b1, b2, . . . , bL), where L
is the number of appliances considered in the planning
and each value bi indicates if the appliance is on on
timestep j.
Fig. 1 presents an example of solution encoding for an55

instance of the problem considering five appliances. In
the example, at timestep (minute) i, appliances #1,
#2, and #5 are ON, while appliances #3 and #4 are
OFF.
Fitness assignment. The fitness function of the pro-60

posed EA (F ) corresponds to a linear aggregation of
the power consumption and user satisfaction functions:

F = αf(X) + βg(X) (19)

Several combinations of weights (α, β) were studied in
order to properly weight each objective function and
provide a useful search pattern. The main results of the65

analysis are reported in Section 4.2. The combination
that allowed computing the best results was (α = 0.65,
β = 1).

Initialization. The population of tentative solutions is
initialized by applying a randomized method that as-70

signs to each appliance a probability γ = 0.6 (value
tuned in preliminary experiments) to be ON at each
time step, following a discrete non-uniform distribu-
tion. Assigning a slightly larger probability to each
appliance to be ON than to be OFF allows starting the75

evolutionary search for a more diverse set of solutions.
The value of γ was set to provide an equal pressure to
both objectives, considering the weights defined in the
previous paragraph.

Selection. The standard tournament selection was ap-80

plied in the proposed EA. Preliminary experiments
demonstrated that tournament selection provides an
appropriate selection pressure to guide the search. Af-
ter a preliminary configuration analysis, the size of the
tournament was set to two individuals, and the best of85

them is selected.
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Figure 1 An example of the proposed solution encoding.

Evolutionary operators. Ad-hoc evolutionary opera-
tors were conceived to provide efficacy and diversity to
the search, working with the proposed solution encod-
ing. The proposed evolutionary operators are:

• Recombination. An ad-hoc version of the Single5

Point Crossover operator was conceived to recom-
bine solutions. A cutting point is selected for each
user and a new planning is created for each user,
using information from the first parent (before the
cutting point) and from the second parent (after10

the cutting point). Fig. 2 presents an example
of the application of the proposed recombination
operator between two solutions for a problem in-
stance with three users and six appliances for each
user.15

Mutation. The mutation operator modifies the
current state of an appliance. First, a specific time
interval is randomly selected for every user, ac-
cording to a uniform distribution. An appliance is
then randomly selected (applying a uniform dis-20

tribution) from all belonging to that user, and
its state is changed (on/off or viceversa). Fig. 3
presents an example of the mutation operator.

3.3 Development and execution platform
The evolutionary approach was implemented using25

the ECJ library, a Java-based evolutionary compu-
tation system developed at George Mason University
(cs.gmu.edu/~eclab/projects/ecj). ECJ includes
easily modifiable classes for solving optimization prob-
lems. The experimental evaluation was performed on30

a Dell Power Edge server, Quad-core Xeon E5430 pro-
cessor at 2.66GHz, 8 GB RAM, from Cluster FING,
Universidad de la República, Uruguay (23).

4. Experimental analysis

This Section presents the experimental analysis of the35

proposed EA for household energy consumption plan-
ning in order to test the capability of developing an
automated recommendation system for end-users. As
aforementioned, this is a relevant problem for both en-
ergy companies and citizens under the novel smart city40

paradigm.

4.1 Problem instances
A set of six problem instances was built using real data
(Table 1).
First of all, a set of representative deferrable appli-45

ances of household consumption was chosen. For this
purpose, the following information was consulted: i)
the categorization of household appliances according to
their operating profiles and purposes (2); ii) the aver-
age and maximum time of use of each appliance -which50

was computed (calculated from real energy household
consumption data of the REDD dataset (12)) to de-
termine those appliances that mostly contribute to the
overall energy consumption-; and iii) other complemen-
tary parameters, such as, the number of times that the55

appliance is turned in a month, the number of house-
holds where each appliance is present, the frequency
of activation, etc. At the end of this procedure, six
deferrable appliances were selected: dishwasher, mi-
crowave, dryer, air conditioning, oven, and refrigerator.60

The planning period is one day.
From REDD dataset (12), data of the energy consump-
tion of one month was retrieved studied for the selected
appliances. This data, that in REDD dataset (12) is
sampled every three seconds, was discretized in fifteen65

minutes time intervals. For each time interval and for
each appliance, the user’s preference to have that appli-
ance turned on was defined as directly proportional to
the number of days in which that appliance was turned
on in that time interval. Since considerable differences70

were detected in the usage profile of the appliances on
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Figure 2 An example of the proposed recombination operator.

Figure 3 An example of the proposed mutation operator.

weekdays and weekend, different instances were made
for these two parts of the week. Finally, data of the
energy prices and maximum allowable electric power
that can be used by a household were retrieved from
the National Electricity Company (UTE) in Uruguay5

(https://portal.ute.com.uy).

4.2 Linear aggregation of EA fitness function
Since the presented problem in Section 2.2 aims at si-
multaneously minimizing costs and maximizing user

satisfaction, a linear aggregation approach was used10

for handling this biobjective nature in the fitness func-
tion of the EA as stated in Eq. (19). An analysis was
performed to set the best values of α and β. Par-
ticularly, the candidate values considered for α were
{0.3, 0.65, 0.75, 1.0} and β were {0.3, 0.5, 1.0}. For this15

analysis, the EA was executed over three medium-size
instances of the problem (two, four, and six devices).
Table 2 reports the mean and interquartile range (IQR)
of the best fitness value computed in 30 independent
executions of the proposed EA for the three instances20
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Table 1 Proposed problem instances
# name users appliances in the instance consumption pattern
1 small.1 (s1) 2 (2,3) weekday
2 small.2 (s2) 2 (2,3) weekend
3 medium.1 (m1) 4 (4,4,3,2) weekday
4 medium.2 (m2) 4 (4,4,3,2) weekend
5 large.1 (l1) 6 (5,5,4,4,3,2) weekday
6 large.2 (l2) 6 (5,5,4,4,3,2) weekend

solved, using the studied configurations.
A graphical example is shown in Fig. 4, in which the
trade-off analysis of different combinations of (α,β) are
presented for solutions for instance #3. These results
are representative of those obtained for other tested in-5

stances. Finally, the combination (0.65,1.0) was chosen
since it allowed computing the best trade-off solutions
regarding user satisfaction and energy cost.
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Figure 4 Trade-off analysis of solutions computed using
different values of (α,β)

4.3 Baseline algorithms for results comparison
Two baseline heuristics strategies were implemented for10

evaluating the results of the proposed EA for house-
hold appliances planning: a greedy algorithm and a
Business-as-Usual (BaU) planning strategy, which are
described next.
Greedy planning strategy. Greedy algorithms itera-15

tively build solutions based on a taking optimal lo-
cal decisions in each step. For this particular case, a
greedy algorithm from the literature (16) was adapted
. The proposed strategy searches the best time inter-
vals to switch on each appliance dk, according to the20

user satisfaction and cost, considering the linear aggre-
gation fitness function used for the EA (Eq. (19)) using
α = 0.65 and β = 1 (Algorithm 2).
BaU planning strategy. The BaU strategy proposes
assigning ON times to each appliance without plan-25

Algorithm 2 Greedy algorithm for household appli-
ances planning

procedure IntervalMaxPrefCost(initMin,ui,d,X)
prefCost ← 0; duration ← 0
for (m=initMin; m< tM ; m++) do

if duration < D(d, ui) then
if

∑K
k=1 x

i
km × P (dk) + P (d) < E(ui) then

prefCost ← prefCost + α × UP (u, d,m) − β ×
C(m)

duration ← duration + (tm+1 − tm)
else

prefCost ← 0
duration ← 0

end if
else

return [m, prefCost] ◃ interval found
end if

end for
return [m, prefCost] ◃ no interval found

end procedure

X ←
−→
0⃗

for (i = 1; i ≤N; i++) do ◃ for each user
for (k=1;i≤K;k++) do ◃ for each appliance

prefCost ← 0; bestPrefCost ← -1; bestmin ← 0 ◃
search best interval

for (m=t1; m< tM −D(dk, ui); m++) do
[min, prefCost] = IntervalMaxPrefCost(m, dk, ui,

X)
if prefCost > bestPrefCost then

bestPrefCost ← prefCost
bestmin ← min

end if
end for
for (m=bestmin −D(dk, ui); m ≤ bestmin; m++) do

xi
km ← 1 ◃ set appliance ON

end for
end for

end for

ning considering only user satisfaction. These plan-
nings have good user preference values, but suboptimal
cost values.
The model presented in Section 2.2 is a combinatorial
optimization problem. Although this kind of problems30

is known to be time-consuming for exact methods, spe-
cially for real-world instances as the one used in this pa-
per (24), the EA solutions are also compared with the
exact resolution for small instances to validate the re-
sults. The MIP model is solved with Gurobi 8.1.1. (25)35

through Pyomo as modelling language (26). For the
purpose of comparison, the same combination (α,β)
that was used in the linear aggregation of the EA was
used is Gurobi.
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Table 2 Best fitness values computed using different values of (α, β)

α β
instance #1 instance #2 instance #3

median IQR median IQR median IQR
0.3 0.3 15.81 1.09 179.83 0.55 132.35 6.68
0.3 0.5 11.02 1.54 167.94 2.03 110.10 4.54
0.3 1.0 4.27 6.39 128.55 28.66 54.82 13.56
0.5 0.3 34.06 0.81 311.32 28.66 253.95 5.11
0.5 0.5 26.75 1.06 298.80 23.71 224.47 12.21
0.5 1.0 13.53 10.28 269.83 26.03 175.11 40.39

0.65 0.3 47.28 2.08 409.91 1.76 342.66 6.57
0.65 0.5 39.87 0.83 398.45 1.34 316.32 8.40
0.65 1.0 25.48 6.12 369.21 3.91 257.55 39.03
0.75 0.3 54.85 2.79 475.64 0.39 405.86 10.03
0.75 0.5 48.52 3.20 462.74 35.73 373.95 4.11
0.75 1.0 30.18 3.43 433.82 3.23 304.31 21.64
1.0 0.3 81.21 4.41 640.62 0.59 548.20 5.64
1.0 0.5 71.46 4.55 628.42 2.76 524.55 9.10
1.0 1.0 52.05 2.89 597.33 0.24 454.48 20.50

4.4 Parametric configuration analysis
EA parameters must be adjusted to determine the con-
figuration that allows computing the best results. The
analysis was performed over three problem instances,
different from those used in the evaluation to avoid5

bias. After an initial evaluation, the population size
was fixed at 150 individuals after preliminary experi-
ment (27).
Three relevant parameters of the proposed EA were
studied: number of generations used as stopping crite-10

rion (G), recombination probability pC and mutation
probability pM . Candidate values for each parameter
were: pC ∈ {0.1, 0.25, 0.5}; pM ∈ {0.1, 0.05, 0.01}; and
G ∈ {2500, 5000, 10000}. All combinations of parame-
ter values were studied by performing 50 independent15

executions of the proposed EA for the three problem
instances considered in the analysis. The metric con-
sidered in the analysis was the linear aggregation fit-
ness function defined in the previous subsection.
The methodology for selecting the best configuration20

included: i) the Shapiro-Wilk statistical test was ap-
plied to check normality, taken as a null hypothesis
that the results followed a normal distribution; as p-
values less than 0.05 were obtained, the null hypothe-
sis was discarded and it was assumed that the fitness25

results follow a non-normal distribution; ii) the Fried-
man’s rank test was applied, taken as a null hypothesis
that the fitness distributions for the different configu-
rations were not different, as p-values less than 0.05
were obtained, the null hypothesis was discarded and30

the results significantly differ from each other.
Table 3 reports the fitness values computed in the pa-
rameter setting experiments for a representative prob-
lem instance. Overall, the best results (i.e., largest
fitness median and also lower IQR) were obtained us-35

ing configuration #11 (values G = 10000, pC = 0.1,
and pM = 0.1). Henceforth, these values were used in
the validation experiments of the proposed EA.

4.5 Experimental results
Table 4 reports the median of the best fitness com-40

puted by the EA and the comparison with the reference
heuristics algorithms. The relative improvement on fit-
ness values (∆f ) and on each objective function (∆cost,
∆pref) over each reference algorithm refA is computed
as ∆ = (f(EA)−f(refA))/f(refA).45

Results in Table 4 indicate that the proposed EA is
able to improve significantly over the greedy algorithm
regarding the fitness values.
Considering the baseline results computed by the pro-
posed greedy algorithm, improvements of up to 42.0%50

were obtained in instance medium.1. Results also sug-
gest that consumption patterns during the weekend are
harder to plan for the EA, as the improvements over the
greedy algorithm reduced to 5.1% in instance large.2.
This can be explained due to the interactive utiliza-55

tion of household appliances in weekends, when people
are at home a significantly larger periods than in week-
days. Regarding the improvements on user satisfaction
and cost, the plannings computed by the proposed EA
allow reducing more than 20% the electric bill, and60

preferences improve more than 40% in all the studied
scenarios.
The EA computed significantly cheaper plannings than
those of BaU, which systematically failed to provide
good cost values, indicating that users do not take the65

correct decisions to turn on home appliances in this
regard, and they can benefit of having an automated
planning offered by a recommendation system. In addi-
tion, preferences on the solutions computed by the EA
were 16–31% better than BaU. The obtained improve-70

ments over a BaU strategy are consistent with results
reported in previous works for a reduced subset of home
appliances (air conditioner and water heater) (16).
On the other hand, Gurobi was applied to the smaller
instances with a execution timelimit of 1800 sec: in75

small.1 obtained a fitness function of 17.3 (-18.5% dif-
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Table 3 Parameter setting results for the proposed EA

configuration fitness configuration fitness
(G, pC , pM ) median IQR (G, pC , pM ) median IQR

(2500, 0.1, 0.01) 7.88 10.45 (10000, 0.5, 0.1) 40.27 7.61
(5000, 0.1, 0.01) 38.74 11.71 (2500, 0.25, 0.1) 40.73 7.01

(10000, 0.1, 0.01) 40.04 6.98 (5000, 0.25, 0.1) 41.64 6.76
(2500, 0.5, 0.01) 9.26 11.17 (10000, 0.25, 0.1) 40.72 8.67
(5000, 0.5, 0.01) 39.22 9.37 (2500, 0.1, 0.05) 39.60 6.97

(10000, 0.5, 0.01) 39.28 9.88 (5000, 0.1, 0.05) 40.22 9.23
(2500, 0.25,0.01) 9.06 9.22 (10000, 0.1, 0.05) 40.58 7.95
(5000, 0.25,0.01) 39.39 10.18 (2500, 0.5, 0.05) 38.66 7.39

(10000, 0.25,0.01) 38.69 11.76 (5000, 0.5, 0.05) 39.59 10.07
(2500, 0.1, 0.1) 41.77 8.88 (10000, 0.5, 0.05) 40.79 11.62
(5000, 0.1, 0.1) 41.30 8.46 (2500, 0.25, 0.05) 38.17 10.32

(10000, 0.1, 0.1) 42.57 6.46 (5000, 0.25, 0.05) 41.67 8.38
(2500, 0.5, 0.1) 40.62 7.22 (10000, 0.25, 0.05) 41.00 8.44
(5000, 0.5, 0.1) 41.28 8.65

Table 4 Experimental results: fitness values and improvements of the proposed EA over the baseline greedy algorithm
and the BaU strategy.

instance f(EA) greedy BaU
f ∆f ∆cost ∆pref f ∆f ∆cost ∆pref

weekday
small.1 14.1 11.0 28.3% 22.6% 56.2% -7.6 284.6% 81.1% 16.0%

medium.1 340.0 239.4 42.0% 27.2% 65.3% 69.5 388.9% 77.9% 19.4%
large.1 407.8 347.9 17.2% 20.8% 47.3% -187.1 317.0% 70.6% 22.0%

weekend
small.2 323.7 252.1 28.4% 25.1% 44.9% 67.4 383.1% 76.6% 25.8%

medium.2 253.4 197.2 28.5% 29.0% 48.1% 153.8 64.7% 60.6% 20.8%
large.2 369.8 351.9 5.1% 19.7% 37.4% -299.9 224.2% 72.2% 31.6%

ference with the EA) with an optimality gap of 9.79%,
and in small.2 obtained a fitness function of 1320.36
(-75.48% difference with the EA) with optimality gap
of 0.23%. .
The obtained results suggest that the proposed evolu-5

tionary approach is accurate for computing household
energy consumption plannings accounting for both en-
ergy costs and user satisfaction at the same time in
comparison to the baseline heuristics. The proposed
approach is a first step towards designing an intelli-10

gent recommendation system for end-users.

5. Conclusions and future work
This article presents a mathematical formulation based
on mixed-integer programming to address the problem
of household energy planning that aims to optimize15

the energy cost, which is affected by an electricity rate
that varies along the day, and the user preferences. As
a first approach to develop an automated recommen-
dation system for end-users, this is a relevant problem
for both energy companies and citizens under the novel20

smart city paradigm.
A specific EA was proposed to solve the problem, si-

multaneously optimizing both criteria using a linear
aggregation multiobjective function and ad-hoc evolu-
tionary operators. A set of six realistic problem in-25

stances built using real data were considered in the ex-
perimental evaluation of the proposed EA. The analy-
sis compared the EA results with two baseline planning
heuristic methods (greedy and business-as-usual) and
an exact approach based on Gurobi for small instances.30

The experimental results showed that the proposed
EA is able to compute accurate plannings, account-
ing for significant improvements on the problem objec-
tives in comparison to the baseline heuristics. Regard-
ing the baseline greedy algorithm, improvements of up35

to 42.0% were obtained in the proposed multiobjective
function, accounting for an average reduction of more
than 20% in the energy consumption (and thus, on
the electric bill) and preferences improved more than
40% in all the studied scenarios. Regarding the BaU40

strategy, the EA computed significantly cheaper plan-
nings and user preferences improved up to 31%, in line
with previous results from our research group. The ex-
act approach was able to compute better solutions but
consuming a larger amount of resources.45

The obtained results suggest that the proposed evolu-
tionary approach is accurate for computing household
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energy consumption plannings accounting for both en-
ergy costs and user satisfaction at the same time. Over-
all, the proposed algorithm showed to be effective for
addressing the considered optimization problem. The
analysis demonstrated that users can significantly ben-5

efit of having an automated planning offered by a rec-
ommendation system.
The main lines for future work are related to study ex-
plicit multiobjective algorithms to solve the problem,
in order to compute several trade-off solutions at the10

same time. The problem formulation can be extended
to include the noisy nature of user preferences in or-
der to define an uncertainty optimization problem. In
this regard, robust evolutionary approaches should be
studied to solve this problem variant. Another impor-15

tant research line is to continue enhancing the exact
resolution either by implementing more advanced mul-
tiobjective approaches (such as augmented epsilon con-
straint method) or considering stochastic variations of
the exact model with extensive formulation. Future20

work also should include a more extensive computa-
tional experimentation to calibrate the parameters of
the EA and a set of formal surveys to decision-makers
(including users and practitioners) to estimate more ac-
curately some of the inputs of the model (such as, the25

usage patron of the appliances by the users’ and the
maximum amount of energy that can be used before
producing a shortcut).
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