
C3NET: END-TO-END DEEP LEARNING FOR EFFICIENT
REAL-TIME VISUAL ACTIVE CAMERA CONTROL

THIS PAPER IS A PREPRINT OF A PAPER SUBMITTED TO AND ACCEPTED FOR PUBLICATION IN JOURNAL OF
REAL-TIME IMAGE PROCESSING.

Christos Kyrkou∗,
KIOS Research and Innovation Center of Excellence
Department of Electrical and Computer Engineering

University of Cyprus
1 Panepistimiou Avenue, Nicosia Cyprus

{kyrkou.christos}@ucy.ac.cy

July 28, 2021

ABSTRACT

The need for automated real-time visual systems in applications such as smart camera surveillance,
smart environments, and drones necessitates the improvement of methods for visual active monitoring
and control. Traditionally, the active monitoring task has been handled through a pipeline of modules
such as detection, filtering, and control. However, such methods are difficult to jointly optimize
and tune their various parameters for real-time processing in resource constraint systems. In this
paper a deep Convolutional Camera Controller Neural Network is proposed to go directly from
visual information to camera movement in order to provide an efficient solution to the active vision
problem. It is trained end-to-end without bounding box annotations to control a camera and follow
multiple targets from raw pixel values. Evaluation through both a simulation framework and real
experimental setup, indicate that the proposed solution is robust to varying conditions and able to
achieve better monitoring performance than traditional approaches both in terms of number of targets
monitored as well as in effective monitoring time. The advantage of the proposed approach is that
it is computationally less demanding and can run at over 10 FPS (∼ 4× speedup) on an embedded
smart camera providing a practical and affordable solution to real-time active monitoring.

Keywords Real-Time Active Vision, Smart Camera, Deep Learning, End-to-End Learning

1 Introduction

Real-time active vision systems (i.e., movable cameras with controllable parameters such as pan and tilt) can provide
extended coverage, flexibility, and cost-efficiency compared to static vision systems running in the cloud. Active
cameras can track targets (i.e. follow them) in order to record their movements and alert in case of an intrusion [1].
Real-time operation on resource-constraint hardware is needed for such systems which are increasingly being used for
various applications ranging from surveillance [2], mobile robots [3], and intelligent interactive environments [4].

Currently existing approaches for active vision decompose the problem into separate modules, namely detection,
tracking, and control and employ different algorithms for the purpose of detecting targets and then following them
[5, 6]. Such examples include motion detection, background modelling/subtraction, and lastly tracking by detection.
The former two are widely used in static camera scenarios [7] due to their relative computational efficiency however, for
active cameras that move and exhibit constant background change the latter methods are preferred since they are more
widely applicable. Such techniques are often augmented with post-processing filters that increase the computational
complexity making it difficult to use in embedded scenarios where the algorithm needs to run on the camera itself in
real-time [8]. Hence, existing methods that rely on hand-crafted features, motion models, and modeling of the camera

∗ckyrkou@gmail.com,www.christoskyrkou.com



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

Input 
Image

Smart
Camera

Object
Detection

State-Estimation/
Tracking

Post
Processing

Camera Movement
Vertical Motion - TiltHorizontal Motion - Pan

Traditional Active Monitoring

Proposed End-to-End Active Monitoring

Figure 1: Traditional active monitoring Vs Proposed end-to-end deep visual active camera control.

views are not optimized for active vision scenarios e.g., tracking in the case of a camera mounted on a pan-tilt station [7].
Some approaches utilize a master-slave paradigm, but there has not yet been any attempt to deal with active monitoring
of multiple targets in an end-to-end way. End-to-end learning approaches allow encapsulating all the intelligence into
the machine learning algorithm thus can optimize all processing steps simultaneously and learning the best features to
associate with camera control for visual active monitoring purposes.

To deal with the aforementioned challenges, this paper investigates the appealing potential of end-to-end learning
using Convolutional Neural Networks (CNN) [9, 10, 11] to develop an active vision system for monitoring people
in surveillance and smart-environment applications. In particular the task of visual active monitoring is formulated
as a supervised learning problem to be solved by deep learning in an end-to-end manner so that the low-level image
features are directly associated with camera motion. In doing so it is possible to have a more compact system with
reduced sub-modules to optimize and more efficient operation. An efficient Convolutional Camera Controller neural
network, referred to as C3Net, is designed and trained in an end-to-end manner to associate image features with control
actions. To achieve the former an appropriate simulation framework and dataset for training and evaluating CNN-based
controllers for active smart cameras is also introduced.

The effectiveness of the proposed C3Net has been verified by experiments through the simulation framework using
image sequences from a publicly available PETS2009 [12] dataset. Moreover, experiments were also performed under
a real setup of a smart camera implementation and UAV acquired data. Results indicate that the proposed end-to-end
approach is able to consistently monitor 1− 3 targets more on average than other methods and for a longer period of
time. In addition, through experiments designed to test the robustness of the method it is validated that the network
learns to focus on the majority of targets, without been given the bounding boxes and never explicitly trained to detect
people. It also facilitates real-time performance for surveillance applications using resource-constraint platforms as it is
computationally efficient as it has a small size and operates at over 10 frames-per-second (FPS).

The rest of this paper is structured as follows. Section II outlines relevant research and key areas of background material.
Section III formally introduces the problem as well as the data collection and training procedures, and the proposed
controller CNN. The experimental results and evaluation are presented in Section IV. Section V provides a discussion
on possible extensions, while Section VI concludes the paper.

2 Background and Related Work

2.1 Problem Overview

The objective of active vision in contrast to a static camera setting is to change the control parameters of a vision
sensor in order to maximize a visual-task-related performance objective such as following one or more targets that are
located within the field-of-view (FoV) to improve the overall surveillance and monitoring capabilities. In particular this
work deals with active monitoring defined as the process of controlling the camera in order to position the center of its
Field-of-View (FoV) at the center of mass of one or more targets in the image [13] (i.e., keep subject(s) as close to the
center of the camera image as possible).

Typically, detection algorithms [14] that provide bounding box estimates centering around objects (Figure Fig. 1) are
used to guide the active vision systems. Bounding boxes used for localization and estimating target position can be

2



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

affected by noise, occlusions, and even bad Non-maximum-suppression parameters [14]. In addition, hand-crafted
post-processing steps such as non-maximum suppression, used to remove superfluous detections, can lead to localization
errors that affect the active monitoring performance [15, 16]. Furthermore, tracking and state estimation approaches
require fine tuning various parameters and can be negatively affected by the detection performance degradation.
Therefore, there is a need to improve visual active monitoring methods for emerging applications that simultaneously
require real-time performance, have battery limitations or operate in remote locations and with requirements for rapid
deployment in temporary installations by providing computational cost that can lead to simpler active vision systems.

2.2 Visual Active Monitoring

Over the last years, deep neural networks, especially Convolutional Neural Networks (CNN), have improved the state-
of-the-art in static object tracking/monitoring [17, 18, 19, 6]. Conventional solutions for active visual tracking tackle the
problem by decomposing it into two or more sub-tasks [20]., i.e., object detection typically using a machine-learning-
based classifier/detector, a tracking algorithms such as Kalman filter [21], and a control output for the camera movement.
Each task is optimized individually resulting in highly complex systems with many tuning parameters. Furthermore,
this leads to difficulty in obtaining real-time performance on resource-constraint embedded camera systems. Different
works have investigated the use of active cameras with one or more degrees of freedom for monitoring applications and
are summarized next.

Initial approaches such as [22], followed a master-slave approach to track targets at a high resolution. One camera,
the master, has a wide FoV and performs blob detection and uses a Kalman filter to track a target in an area and by
projecting from image plane to world coordinates it controls (pan, tilt, and zoom) the other active camera, the slave, to
follow a target. In contrast the goal of this work is to improve the tracking performance of a single camera agent so that
it can autonomously follow all targets present in its FoV.

In [23], the authors proposed a camera control module to follow an intruder. A background model is used to detect
motion in the scene while a Proportional-Integral (PI) controller moves the camera to follow the target. Illumination
changes and crowded environments can affect the performance of such techniques. Moreover, the approach is only
suitable for a single target.

A similar system was developed in [24] where a combination of Haar cascades and color histograms are used to track
face and upper body of a target in indoor environments. A fuzzy controller is used to steer the camera. The input
to the fuzzy controller are the x and y position, as well as the size of the target object in the image. Likewise, the
output of the fuzzy controller are the required pan, tilt, and zoom settings for the camera. The behavior of the system is
determined by a set of rules connecting input values to expected outputs. The system can only track a single target and
the hand-engineered rules can hinder its performance.

The system proposed in [25] uses face detection to find a single face in the camera. It then extracts features for tracking
and then feedback control loop is applied to vary the pan and tilt camera angles by certain steps based on the target
velocity until it is centered.

The approach in [26] uses complementary features and a multi-scale mechanism to follow the subject in front of the
camera. In the first stage, a discriminative pre-filter automatically chooses the features which best separate object
and background to build a confidence map which helps to remove all low confidence samples. In the second stage, a
rough model of object appearance is built at the beginning and continuously updated according to all changes in pose,
viewpoint, illumination. The accumulation over time can cause the model to fail with sudden changes in pose and
cluttered background. Furthermore, this system again tracks only a single object.

In [27] an Extended Kalman filter is used to jointly track the object position in the real world as well as estimating the
intrinsic camera parameters. The filter outputs are used as inputs to two PID controllers (one for pan and one for tilt
motion axis) which continuously track a moving target at a certain resolution. The focus of this work is on tracking
only a single target however, and the objects are assumed to have a predetermined size.

In [5] the authors propose a control approach for visual tracking to estimate and reduce the impact of different
disturbances affecting the servoing system performance. The experiments where conducted with a pan-tilt camera
following a single moving target. Furthermore, there is an assumption that the tracking module always performs ideally.

The active camera system proposed in [4] is composed of multiple components in order to track a subject. The face of
the target is identified through a face detection system and then a tracker is employed to estimate the targets motion
across frames based on previous observations. An online learning approach is also used to learn the appearance model
over time and reduce false detections. In addition, Gaussian Mixture Models are used to model the body movement in
case the face detection fails. The final part is the controller of the pan-tilt camera which makes its decision of how to

3



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

I
x

(XT
1
,YT

1
)

(XT
2
,YT

2
)
d
x

d
y

(XC,YC)

(XM,YM)

I
y

α
x

α
yd

x

d
y

Image Plane Real World

Figure 2: Mapping from Image Plane to Real-World: (Left) Displacement between image center and target center of
mass. (Right) Camera angle of views associated with motion at each axis.

move based on where in the image the target is positioned and using a set of rules. This multi-component system can be
difficult to tune and transfer to more resource-constraint systems that monitor multiple targets.

An end-to-end active tracker is proposed in [28] for following a character in the VizDoom video game environment.
It uses reinforcement learning to train a CNN with LSTM to output discrete movement actions. Even though they
are somewhat realistic, these scenarios do not correspond to real-world use cases since evaluation is done in a video
game environment whereas herein images of real environments from PETS2009 are used. Furthermore, the step-based
output controls a video game player and is not suitable for the dynamic range need to control a pan-tilt camera. In
addition, the control actions happen within the context and dynamics of a virtual world. In contrast, in this work the
active monitoring problem is formulated in such a way as to be directly applicable to real-world camera systems.

In summary, it is evident from the literature that related works make excessive use of multiple modules composed of
hand-crafted models and rules that must be tuned separately and in most cases track only a single target [6]. While there
has been considerable progression in utilizing deep learning for static camera tracking there has been relatively few
works dealing with deep learning for active smart camera systems. In addition, most of them do not consider important
system requirements, such as real-time constraints on low-end hardware systems.

This work attempts to bridge the gap between the use of active cameras with deep learning algorithms by proposing an
end-to-end learning approach to simultaneously built an implicit detector and controller for cameras with pan and tilt
motion capabilities. In contrast to existing works e.g. [28, 6] that follow a single target our goal is to give the same
priority to all targets and attempt to follow as many as possible without a specific focus a single target. In addition, it
does not require to be given an anchor target to follow and thus can be used in generic scenarios where the goal is to
monitor targets in an area. Overall, the approach eliminates the need to rely on bounding box predictions which can be
noisy and face difficulties with dense targets.

3 Deep Active Visual Monitoring

3.1 Approach Overview

The problem of end-to-end active visual control of a camera through a single image, as shown in Fig. 1, is formulated
as a regression problem. The input is an image I from the camera sensor with resolution Ix × Iy, and the output is a
motion control vector ~M . The control vector corresponds to the pan and tilt motion that the camera will have to perform
in order to position the target(s) close to the center of the image. A Convolutional Camera Controller neural network
(C3Net) is trained end-to-end to learn a control function f such that ~M = f(I).

A pinhole camera model and rectilinear lens [29] are assumed, as illustrated in Fig. 2. Under this assumption the pixel
distances of the image center to the camera center are analogous to the angle that the servo motors have to move in order
to position the target at the center of FoV [5, 25, 3, 30]. In addition, the motion of the camera when following targets in

4



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

Figure 3: C3Net Architecture: Conceptually comprised of a feature extractor and a controller that condenses the high
level semantic information to infer an action.

its FoV is bounded by the half of its horizontal and vertical angles of view (αx, αy). Accordingly, the motion of the
camera in the the pan and tilt axes (denoted by Mx and My) can be calculated with respect to the viewing angles [30].
This can be done by first calculating the distance of the camera center from the target(s) center of mass (XM , YM )
for the horizontal and vertical direction (dx, dy), and then use Eq. 1 to associate the pixel distance to the camera
angles. Hence, during the learning process the objective is to map the input image to normalized pixel displacement
values (dx/Ix, dy/Iy) which will then be used to calculate the corresponding angle displacements in the pan and tilt
axes. Predicting offsets instead of angles effectively bounds the output making it easier for the network to learn, and
decouples the learning process from camera specific parameters.

Mx →
dx
Ix
× αx

2
,My →

dy
Iy
× αy

2
(1)

3.2 Convolutional Camera Controller Network (C3Net)

C3Net is a suitable CNN trained to perform the regression task and estimate the camera motion displacement. Figure 3
shows the network architecture which is comprised of two main parts, a feature extractor made up of convolutional
layers and a motion controller that summarizes the feature maps in order to calculate the final output values. Since
the system is trained end-to-end it is difficult to distinguish the parts of the network that function primarily as feature
extractor and which serve as controller. The input to the CNN is an RGB image which has normalized pixel values
between [0 . . . 1]. The network can process images of 320× 240, but any other image size can be provide after it is
resized.

Convolutional Feature Extractor: The layers were designed to perform feature extraction and were chosen empirically
through a series of experiments that varied layer configurations. There are 5 major blocks each comprised of a
convolutional layer with Relu activation and batch normalization layer. Furthermore, dropout is applied at the middle
of the sub-network to combat overfitting with a rate of 0.2. Overall, the feature extractor is designed to be inherently
computationally efficient to support use in embedded smart cameras for local control and decision making. To reduce
the computational cost the image is down-sampled early on and a relatively small number of filters is used in the
convolutional layers. Note that this is not an explicit object detector that produces bounding boxes, but rather implicitly
learns the features to focus on through the controller supervision.

Controller Subnetwork: The controller subnetwork is responsible to map the extracted image features to control
actions. It is comprised of layers with predetermined functionality as well as fully-connected layers. The custom
layers serve to condense the information from the feature extractor essentially encoding our prior knowledge on the
problem. The custom layers perform a per channel average of the feature maps extracted from blocks 5 and 6 (Fig.
3). The reason of using the last two layers is that they encode more semantically meaningful information thus can
provide better indication for the presence of objects in the image. The response of each feature map is averaged over
the channels and then multiplied element-wise emphasizing the overlapping regions. This activity map is then reshaped
into a vector and given as input to the fully connected layers. The idea behind this is to leverage multi-level features
to first encode an activity map with the presence of objects over an image grid and then provide a small vector to the
fully connected layers to reduce parameter count. There are 4 fully connected layers with 100,50,10 and 2 neurons
respectively to map the feature vector to motion controls. There is a dropout in between the dense layers and all layers
have a leakyrelu activation function. The output of the controller subnetwork is further processed through a hyperbolic
tangent activation that bounds the output between [−1, . . . , 1]. Overall, C3Net has a total of ∼ 500, 000 parameters
which requires ∼ 4MB, resulting in a lightweight network that can run even on low-end CPUs.

5



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

y
ΘP

true y
ΘT

true

,

Deep Convolutional Neural Network

Batch of Images

Simulation Environment

Generated Augmented 
Images

Ground Truth Angles
and target count

Simulated FoV of 
Active Camera

Adjust for shift 
and rotation

Simulated 
Pan-Tilt

Virtual
Camera

Figure 4: Overall framework for simulating virtual active camera movements and tracking, and extracting ground truth
data.

3.3 Active Camera Data Generation

Proper training and testing data are necessary to train a deep CNN regressor for the visual active monitoring task. To
the best of the authors knowledge there is no publicly available dataset for active vision applications with ground truth
camera controls. For this reason an existing multi-person image dataset, such as the PETS2009[12], traditionally used
for static tracking [31] is re-purposed to develop a simulation framework. The particular dataset is selected over more
recent ones as it has multiple targets, larger image frames where targets only occupy a small region, and has ground
truth bounding box annotations.

Overall, the framework allows for i) simulate the behaviour of active cameras using real-world images, ii) Capturing and
storing multiple frame sequences with ground truth data that can be used for bounding box, density, and camera control,
iii) evaluate performance of active vision algorithms in a realistic environment in similar conditions and controlled
experiments. The simulation framework shown in Fig. 4 simulates the movement of a virtual active camera with pan-tilt
control with a fixed FoV by moving it within a larger image frame. By cropping a fixed region from the original frame,
it effectively restricts the active camera to a limited part of the overall image frame. These crops take ∼ 15% of the
original image. Obtaining the ground truth data for each image crop is a straight forward procedure if bounding box
annotations are provided with the dataset, as is the case with PETS2009. First, the center of mass is calculated for
all objects within each crop. The difference between the centre of the mass of the annotated people and the centre of
the cropped region, in x, y directions, dictates the two control signals for that frame as per Eq. 1. Alternatively if no
bounding boxes are provided it is possible to use a trained object detector to provide candidate boxes and train in a
weakly supervised manner. The ground truth of images without objects is set to (0, 0), meaning no movement. It is
worth noting the same exact values used to move the camera in the simulated environment can be used to move the
camera in the real-world when multiplied with the camera horizontal and vertical viewing angles. Thus the framework
provides a valuable complementary data source for developing and benchmarking data-driven methodologies for smart
camera applications.

6



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

Figure 5: Distribution of the pan and tilt values. The majority of values are close to zero so selective sampling is used to
balance the dataset.

A single sequence from the PETS-2009 [12] database, with ground truth bounding boxes, was selected as the basis to
generate training data. A dataset of over 4500 frames was generated using the simulation software in order to train
C3Net. Starting at various positions in random frames in the sequence the changes in displacement of pan and tilt axes
are calculated according to Eq. 1 so that the targets will be positioned at the camera image center in the next frame.
Hence, the training set effectively contains single images sampled from the sequence, paired with the corresponding
ground truth future pan and tilt displacement. The pan and tilt displacement values are normalized between −1 and 1
with regards to the maximum motion of the camera in both axes. For this work images of 320× 240 are considered,
which have been used in similar studies [24], but it is also trivial to extract different resolution images.

An important part of data preparation is balancing the data. During the data collection process depending on the
motion of successive frames, the target displacement values may not change significantly in both axes. As a result, the
distribution of camera motion values might be imbalanced as shown in Fig. 5. To ensure that the learning algorithm
does not overfit by producing small values around zero, during training the data in each batch is sampled to contain
high as well as low values.

The whole data is randomly split into 60% for training the CNN regression model, and 40% of the data was used for
validation purposes. In addition, augmentations are probabilistically applied to the images to increase the variability
and combat over-fitting. The augmentation strategy included some transformations on the image pixels such as blurring
and sharpening, color-shifting, illumination changes. Geometric transformations such as translations and horizontal
flip were also performed with appropriate adjustment of the target pan and tilt values. The combinations of all these
augmentations resulted in a variety of novel images that were used for training.

3.4 Network Training

The objective of the learning process is to regress a motion vector ~M corresponding to motion in the pan and tilt axes.
Accordingly the euclidean distance loss function in Eq. 2 is employed for learning the camera controls between ground
truth y and predictions ŷ. The Keras deep learning framework [32] with Tensorflow [33] running as the backend is
used for the training of the CNN regressor. The network was trained using a GeForce Titan Xp, on a PC with an Intel
i7 − 7700K processor, and 32GB of RAM. The Adam optimization method was used for training with a learning
rate step-decay approach starting from an initial learning rate of 0.001, and decreasing it by 0.5 when encountering a
plateau. The CNN regressor is trained for 300 epochs with a batch size of 128 and 50 batches per epoch resulting in
6400 augmented images per epoch.

7



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

L =
1

NB

NB∑
j=1

[
(yjdx

− ŷjdx
)2 + (yjdy

− ŷjdy
)2
]1/2

(2)

3.5 Weighted Moving Average Filtering

A form of momentum is introduced to smooth out the outputs of the neural network and avoid being misled by a single
frame, that is based on a weighted moving average (Eq. 3). It is grounded on the assumption that the target motion will
not change rapidly between frames. By incorporating a simple form of memory into the system the previous actions
are also considered which reduces the impact of possible outliers. A window of 3 most recent outputs is maintained
(K = 3) which was empirically found to represent a good trade-off between having a smoother control output but
not being influenced too much by passed control outputs. The weight w can be determined through different policies.
Herein, the weight factor is determined as shown in Eq. 3, where t equals K is the most recent output that is weighted
the highest. Each frame the network produces output ŷ, and the moving average produces the filtered output y.

y =

K∑
t=1

ŷt × wt, where wt =
t∑K

z=1 z
(3)

4 Evaluation

To compare the proposed method a traditional active tracking pipeline is implemented as shown in Fig. 1. It follows the
tracking-by-detection approach used by related works for active camera control [34, 21]. In this paradigm an object
detector is used to localize the targets and a tracker is applied to filter the detections over time. Finally based on the
filter target positions the camera is moved to position the targets to their center of mass. We compare the different
approaches with respect to their monitoring efficiency with metrics outlined in section . Also through an experimental
setup we compare the performance of each approach in terms of real-time performance on an embedded smart camera.

The remaining sequences from the PETS2009 dataset that were not used during training and have available ground truth
data are used to generate a separate testing dataset. The sequences differ in the time of day, illumination conditions,
density and amount of targets, paths of the targets as well as the identity, scale, and appearance of the targets. As such,
the performance of the proposed approach is measured objectively. In addition, additional datasets were collected using
two different experimental setups to further test whether the approach generalizes to completely different environments.
The proposed approach is compared against three other baselines. All have a detector and tracking component.
Comparisons are shown with since single-shot detectors the smaller YOLO[35] variant referred to as tinyYOLO. In
addition, for fairness a CNN (referred to as PDN) for pedestrian detection is trained with the YOLO framework on
the same dataset as C3Net and is developed from scratch for detecting pedestrians on 320 × 240 images. It has a
slightly larger feature extraction subnetwork and the latter stages are different to regress the bounding boxes compared
to C3Net. Comparisons are also made against the widely used SVM-HOG pedestrian [36] detector implemented in
OpenCV [37] still used in many applications (e.g., [38, 39]). On top of the detectors tracking is applied with Kalman
filter which is a common approach used in active tracking [29, 27, 21]. The incorporated filtering handles bounding box
associations, maintains trajectories, and handles the creation and termination of tracks. The kalman filter is prefered
since it was not only use in prior works for active tracking but also is less computationally and memory demanding
while providing comparable performance [21]. Also note that there is no explicit detection step implemented within the
proposed network. As such, it is not possible to directly compare detection performance with standard object detection
approaches and metrics. Furthermore, our goal is not detection itself but rather the monitoring performance. It is
important to note that we restrict the comparison to methods followed by previous works and that are more suitable
for smart camera applications where the compute-budget is limited. It is worth noting that recent deep-learning-based
methods for tracking running on GPU platforms achieve 2− 5 FPS [19]. Hence, methods such as visual trackers that
rely on cascade CNNs [40] that increase the processing time on top of the detection part are not considered. Another
important differentiation to recent works that utilize CNNs for tracking is that in their majority they rely on static
camera images and specifically on tracking single objects in the frame. Hence, they are not directly comparable.

4.1 Performance Metrics

The image frames are taken from the PETS2009 dataset however, performance is not measured in the same way since
the objective is not to compare with traditional tracking systems that operate on static sensors. Specifically, besides

8



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

Figure 6: Visualizing what the network learns to look for in images (left) Input Image and direction of motion estimated
by C3Net. (Center) Visualizations created using Grad-CAM for finding the pixels that mostly influnce the network
prediction. (Right) Activation map produced by the controller sub-network by aggregating the features from B5 and
B6.(Best viewed in color)

calculating the error between ground truth and predicted motion vector from a set of test images, three metrics are
also examined that can holistically evaluate how well an algorithm manages to monitor targets within an area. For all
metrics for a target to be considered visible over 50% of the target’s body should appear in the frame

1) Average Number of Targets in FoV: The mean number of targets that are monitored over the duration of the
sequence. It is the average across the number of visible targets at each frame. It essentially measures how well an
algorithm can handle multiple targets within a frame.

2) Average Monitoring Time: The percentage of time for which one or more targets are visible within the FoV of the
camera. It essentially measures how well an algorithm does in keeping up with the target(s). This is important aspect as
it provides an indication of how likely it is to lose a target and how likely it is to follow a new one once it has entered
the FoV.

3)Average Distance from Target Centroid: This is the Euclidean distance of the image center (i.e., camera center) to
the centroid of the visible targets (i.e., center of mass). It shows how well an algorithm can keep the targets at the center
of its FoV.

4.2 Evaluation of Learning

First, a closer look is taken into what features and image regions influence the prediction of C3Net and what it has
learned to respond to in the various cases. To this end, the Gradient-weighted Class Activation Mapping (Grad-CAM)
approach proposed in [41] is employed to generate heat maps of the image regions that mostly influence the control

9



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

Figure 7: Results on the same image with and without the presence of targets. In the case that no target is present in the
image the camera does not move. (Best Viewed in Color)

decision by the network. The visualization is with regards to the target outputs of the network. In addition, the activation
maps of the feature-extracting sub-network are visualized to understand what features the CNN is looking at (specifically
the sum of the spatial averages from blocks B5 and B6). As shown in Fig. 6, the Grad-CAM visualization the network
bases its control output on the targets in the image even if they are partially occluded. Note, that the network is never
given the bounding boxes and never explicitly trained to detect people or any other body part but as shown in the
activation visualization these are exactly the features that it detects in order to control the camera. Another way to gain
confidence in what the network has learned to look for is through an ablation study where image parts are systematically
removed to see how relevant they are to the network output. As shown in Fig. 7 for images not used during training, the
network will only steer the camera to move only when a target is present in the image view. Also notice that it responds
even in cases where the target is at different resolutions and not fully visible.

4.3 Performance in Simulated Environment

The next experiment involved evaluating all the aforementioned methods in the simulation environment and the
performance metrics from Sec. 4.1. But first it is important to understand why common tracking benchmarks are not
well suited for this purpose. The main objective during evaluation is to examine the behaviour of each algorithm and
the influence of the control actions on the overall performance. Hence, a camera view needs to be placed within a larger
frame in a suitable simulation environment that provides images of moving targets that the virtual camera can follow. In
addition, the set of images needs to come with bounding box annotations to calculate whether a target is within the
FOV and subsequently measure the different performance metrics described in section 4.1. Hence to conduct these
experiments, 3 sequences from the PETS2009[12] dataset were used for which the ground truth is available but have not
been used in the training and validation phases. The developed simulation framework outlined in section 3.3 models the
camera motion based on the visual input and evaluates its performance. The output of each vision pipeline is a motion
vector that will be passed to the simulator to perform the action. These sequences provide an additional challenge as
they feature different visual conditions with higher crowd densities and different motion patterns. All approaches start
at the same point in every video sequence. The images in the sequences are of 768× 576 resolution and the virtual
camera FoV is set to 320× 240 for all methods so that there is margin for the camera to move and follow the targets.
The first sequence (Seq. 1) has 241 images and features sparse groups of people walking together, the second (Seq. 2)
has 795 frames and shows individuals independently moving in the area, and the third (Seq. 3) contains 436 frames
of sparse crowd moving randomly in different directions. The camera FoV for all methods is set at the same initial
position. In all cases the objective of the camera is to move in such a way as to keep the most number of targets in its
FoV. Fig. 8 shows some examples from each sequence and the direction of movement chosen by the network.

Performance on Still Images: First to understand precisely how well each algorithm performs, comparisons are made
against the ground truth motion on a per image basis and the overall error for each motion direction is calculated. Table
1 shows that the proposed CNN achieves the lowest average error as well as the lower maximum error in terms of
estimating the camera motion controls. Since still images are used the detection approaches are mostly influenced by the
predicted bounding boxes, their size, and the smoothing of the response maps through the non-maximum suppression
process. In the case of C3Net the only difference is that the moving average is not employed. Overall, as shown in

10



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

Figure 8: Samples of Sequences: (a) Seq1: Following 1 and then 2 targets. Notice that the network decides to move
towards the center of mass of the two targets. (b) Seq2: The network follows a single target then it moves to the center
of the group. Also the network does not move away from the partially occluded target. (c) Seq3: Multiple targets
present the network adjusts to the movement of incoming targets.

Table 1: Error analysis on estimated values.

Method Avg. Error Max Error
θx θy θx θy

C3Net (Proposed) 0.074 0.020 0.315 0.344
SVM-HOG w tracking 0.170 0.086 0.917 0.784
tinyYOLO w tracking 0.136 0.077 0.899 1.076

PDN w tracking 0.076 0.034 0.459 0.351

Table 1, the proposed approach has a much lower error rate across the two control signals while in the worst case it still
has lower error margins.

Performance on Continuous Frames: Results using the metrics defined in 4.1 on continuous frames from the 3
aforementioned sequences are shown in Table 2 which will also incorporate the temporal aspect and demonstrate the
effect of how compounded errors can affect the overall performance. First, the average number targets in the FoV
is recorded which indicates how well each approach manages to follow a group of targets. The proposed approach
manages to outperform the other approaches by following between 1-5 more targets on average as it is not affected by
missed bounding box detections. In terms of average monitoring time, C3Net is active for the whole duration of the
sequences whereas the other approaches lose the targets in some cases. Finally, the average distance of the target center
of mass from the FOV center is reported. By keeping targets closer to the center it is less probable that they will exit the
FoV. C3Net on average keeps targets close to the center with the other approaches having a slightly worse performance
in this respect due to some bad localization of bounding boxes. In some cases some false positive detections also
contributed to the decreased performance as they introduced jitter to the camera motion. Overall, C3Net does not face
such challenges as it is not affected by issues related to bad localization of bounding box, errors of the tracker due
to retaining outdated bounding box information, multiple overlapping bounding boxes that can cause the camera to
remain in an area with less targets, and false positives. The performance gains between C3Net and other methods can
be attributed end-to-end nature of the approach that associates lower-level-features with control actions. The continuous
frames experiments also allowed to understand how the network behaves under different motion patterns and situations.
As shown, in Fig. 8-a when a new target enters the FoV the solution will focus on the center of all visible targets until
one of them moves away in which case it will focus on the most prominent target(s) in its view.

4.4 Use-Case Evaluation

To evaluate the performance of the proposed approach in the real-world under different circumstances an embedded
platform equipped to a smart camera and a UAV to provide on-board processing. In the experimental setup we use the
network output that is related to the camera FoV angles and thus directly controls the camera motion. The same exact

11



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

Table 2: Monitoring results on 3 different sequences.

Method Avg. Number of Targets in FoV Average Monitoring Time Avg. of Target Centroid
Seq. 1 Seq. 2 Seq. 3 Seq. 1 Seq. 2 Seq. 3 Seq. 1 Seq. 2 Seq. 3

C3Net (Proposed) 8 3.3 13 100% 100% 100% 21 18 24
SVM-HOG w tracking 4.4 2.9 8 77% 97% 96% 41.2 33 43.9
tinyYOLO w tracking 5.8 3 10 90% 100% 100% 26.5 26.9 39.06

PDN w tracking 5 3 10.5 98% 74% 100% 25.8 24.2 28.4

Figure 9: Images from the experimental setup evaluation as well as the embedded smart camera (Best viewed in color)

values to move the camera in the simulated environment are used to move the camera in the real world. It is worth
noting that none of data captured from the experimental setups were used during the development and training of the
network. As such, these experiments also test the generalization capabilities of the network on novel images taken from
completely different sources. The real-world experiments also allow for evaluating the processing and timing aspects
which was not possible in the simulated environment.

4.4.1 Smart Camera Experiment

C3Net is first evaluated on an embedded smart camera based on the Raspberry Pi computer and a webcam [3]. The
webcam is mounted on a motorized two degrees-of-freedom (DoF) pan-tilt stage. The two angular positions are
controlled independently using a corresponding servo motor controlled by the Raspberry Pi. Using off-the shelf motor
components the time delay to send the camera control and perform the action was very small since the platform
interfaces directly with the motor electronics, thus for the purposes of our experiments it is considered negligible
[3]. The camera is positioned at a certain height and is tilted with pan range [−80, . . . , 80] and tilt range [0, . . . , 45].
The network sends the motion vector to the camera controller that converts it to angles using Eq. 1 and moves the
camera head. The indoor environment poses another challenge since there are more reflections, and various background
objects in the area. Some results from the lab experiments, as well as the smart camera are shown in Fig. 9. Even in
environments which are significantly different form the training set, C3Net manages to follow the target(s).

4.4.2 UAV experiment

To test the algorithm under different conditions we also perform experiments by controlling the camera of a UAV.
We assume the same processing platform as with the previous use-case. A series of controlled experiments where
carried out with 5 different targets forming a dataset suitable for UAV target detection and following. The purpose of

12



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

Figure 10: Images taken from the UAV experiment and not used in training. (a)Seq1: The camera using the proposed
approach manages to follow the targets even when occluded. (b)Seq2: For a group of targets moving in opposite
directions the camera stays with the majority of targets. (Best viewed in color)

the experiments was to observe the behaviour of the algorithm as targets perform different motion patterns, such as
moving in opposite directions or move behind an obstacle. Examples from these experiments are shown in Fig. 10. In
the first case, the targets move in a group behind a tree. The algorithm is still able to follow the targets even though
they are partially occluded. In the second case, the algorithm is centered at the field of view of the targets and as they
diverge it chooses to stay with the majority of them since more features are present in that area of the image. Notice
that the targets appear in the two sequences at different resolutions but the algorithm is still able to follow them. This
also indicates that the algorithm is rather robust to variations in the target-camera distance. In our experiments good
performance was observed when the target(s) were in the range of 10− 50m, i.e., not too close and not too far for the
camera. This suites a variety of smart camera applications.

4.4.3 Benchmarking the computing/processing time

To benchmark the processing time we measure single frame performance which is more representative for real-time
camera applications and calculate the resulting FPS. Hence, batching techniques are not applicable. The same processing
platform is considered for both use-cases. As shown in Table 3, the proposed approach running on the smart camera
platform can achieve a performance of over 10 frames-per-second (FPS) which make it suitable for surveillance
applications using embedded smart cameras [42]. The other approaches require considerably more processing time on
such low-power platforms (4 FPS at best) and hence are not suited for embedded active smart camera applications. The
increased latency also hinders the performance of other approaches since targets may drastically change their direction
of movement within the time necessary to calculate a new control output. Further C3Net requires ∼ 40× less memory
(∼ 4MB) compared to tinyYOLO (∼ 177MB). The nets are also benchmarked on the Titan-XP GPU platform for
reference. Notice, that C3Net is an order of magnitude faster than the other approaches.

Table 3: Computing results based on single frame performance

C3Net PDN tinyYOLO SVM-HOG1

FPS(embedded) 13 4 3 4
FPS(TitanXP) 367 85 52 N/A
Memory (MB) 4 18 177 N/A

1No GPU implementation
5 Discussion

Overall, the results are encouraging in that C3Net learns the camera control task and generalizes to unseen environments.
It first builds an internal representation of the object(s) of interest and learns how to move based on the aggregated
feature maps. As such, it has learned to detect stationary targets within a single frame and is guided by their positioning
and center of mass.

13



THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

The proposed end-to-end approach is more robust in finding the control actions as it eliminates the need to rely on
bounding box predictions which necessitate complex networks, can be noisy and face difficulties with dense targets as
illustrated by the results. Such an approach is well suited for scenarios where no one target is more important that the
others but persistent monitoring is necessary while following the maximum number of targets within the FoV. As the
objective function is implicitly defined through the training set the approach is flexible and can be adapted to different
purposes. For example, the action can be weighted by the distance of the targets from the image center as to give more
emphasis on targets at the center of the image that have a higher probability of remaining within the image in future
time steps.

Another aspect that is important in practical applications is the response time of the system. The slower it is, the higher
the probability that a target will exit its FoV if they suddenly change their motion patterns. The proposed system can
tolerate such changes in the order of 0.1 seconds, and can be further improved.

The proposed approach can operate alongside other vision subsystems, can provide robust camera control while other
subsystems can perform counting, detection and reidentification at different time intervals. C3Net can be used to follow
a group of people while blobs from the activity map, which is is computed at no additional cost, can provide regions of
interest.

6 Conclusion

This work investigated how to design a more efficient smart camera controller for active vision applications via end-to-
end learning using deep convolutional neural networks. A small CNN architecture referred to as C3Net is proposed that
maps input images to pan and tilt motion commands. This alleviates the need to have multiple sub-components leading
to improved processing times. Even with single image information the proposed network outperforms other multi-stage
approaches in terms of monitoring efficiency. Finally, it provides higher frame-rates (a speedup of ∼ 4×) while being
lightweight validating the assumption that end-to-end approaches can lead to smaller and simpler systems. Our results
indicate that when appropriately formulated, end-to-end approaches can lead to more efficient systems thus providing a
promising avenue for future research. As future work more elaborate architectures will be explored to take advantage of
temporal information. In addition, even though this paper has primarily tackled pan and tilt camera motion, the present
study can provide a foundation for similarly controlling other parameters such as zoom.

Acknowledgment

The author would like to acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used
for this research.

References

[1] C. Micheloni, B. Rinner, and G. L. Foresti, “Video analysis in pan-tilt-zoom camera networks,” IEEE Signal
Processing Magazine, vol. 27, no. 5, pp. 78–90, Sept 2010.

[2] F. Angella, L. Reithler, and F. Gallesio, “Optimal deployment of cameras for video surveillance systems,” in 2007
IEEE Conference on Advanced Video and Signal Based Surveillance, Sept 2007, pp. 388–392.

[3] C. Kyrkou, E. G. Christoforou, S. Timotheou, T. Theocharides, C. Panayiotou, and M. Polycarpou, “Optimizing the
detection performance of smart camera networks through a probabilistic image-based model,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 28, no. 5, pp. 1197–1211, May 2018.

[4] R. Wang, H. Dong, T. X. Han, and L. Mei, “Robust tracking via monocular active vision for an intelligent
teaching system,” The Visual Computer, vol. 32, no. 11, pp. 1379–1394, Nov 2016. [Online]. Available:
https://doi.org/10.1007/s00371-015-1206-8

[5] H. Chen, X. Zhao, and M. Tan, “A novel pan-tilt camera control approach for visual tracking,” in Proceeding of
the 11th World Congress on Intelligent Control and Automation, June 2014, pp. 2860–2865.

[6] M. Kiran, V. Tiwari, L. Nguyen-Meidine, L. Morin, and E. Granger, “On the interaction between deep detectors
and siamese trackers in video surveillance,” in 16th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS). Los Alamitos, CA, USA: IEEE Computer Society, sep 2019, pp. 1–8. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/AVSS.2019.8909864

[7] H. R. Patil and K. S. Bhagat, “Detection and tracking of moving objects; a survey,” International Journal of
Engineering Research and Applications, vol. 5, no. 11, pp. 138–142, 2015.

14

https://doi.org/10.1007/s00371-015-1206-8
https://doi.ieeecomputersociety.org/10.1109/AVSS.2019.8909864


THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

[8] S. V. e. Christophe Bobda, Distributed Embedded Smart Cameras: Architectures, Design and Applications, 1st ed.
Springer-Verlag New York, 2014.

[9] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-driving cars,” CoRR, vol. abs/1604.07316,
2016. [Online]. Available: http://arxiv.org/abs/1604.07316

[10] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke, “Training deep neural networks for visual
servoing,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 3307–3314.

[11] X. Miao, X. Zhen, X. Liu, C. Deng, V. Athitsos, and H. Huang, “Direct shape regression networks for end-to-
end face alignment,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp.
5040–5049.

[12] J. Ferryman and A. Shahrokni, “Pets2009: Dataset and challenge,” in 2009 Twelfth IEEE International Workshop
on Performance Evaluation of Tracking and Surveillance, Dec 2009, pp. 1–6.

[13] B. Bhanu, C. V. Ravishankar, A. K. Roy-Chowdhury, H. Aghajan, and D. Terzopoulos, Distributed Video Sensor
Networks, 1st ed. Springer Publishing Company, Incorporated, 2011.

[14] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with deep learning: A review,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 11, pp. 3212–3232, Nov 2019.

[15] J. Hosang, R. Benenson, and B. Schiele, “Learning non-maximum suppression,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 4507–4515.

[16] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Soft-nms – improving object detection with one line of code,”
in Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[17] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Detect to track and track to detect,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Oct 2017, pp. 3038–3046.

[18] R. P. Pflugfelder, “Siamese learning visual tracking: A survey,” CoRR, vol. abs/1707.00569, 2017. [Online].
Available: http://arxiv.org/abs/1707.00569

[19] C. Neff, M. Mendieta, S. Mohan, M. Baharani, S. Rogers, and H. Tabkhi, “Revamp2t: Real-time edge video
analytics for multicamera privacy-aware pedestrian tracking,” IEEE Internet of Things Journal, vol. 7, no. 4, pp.
2591–2602, 2020.

[20] C. Ding, B. Song, A. Morye, J. A. Farrell, and A. K. Roy-Chowdhury, “Collaborative sensing in a distributed ptz
camera network,” IEEE Transactions on Image Processing, vol. 21, no. 7, pp. 3282–3295, July 2012.

[21] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in 2016 IEEE
International Conference on Image Processing (ICIP), 2016, pp. 3464–3468.

[22] Ser-Nam Lim, A. Elgammal, and L. S. Davis, “Image-based pan-tilt camera control in a multi-camera surveil-
lance environment,” in 2003 International Conference on Multimedia and Expo. ICME ’03. Proceedings (Cat.
No.03TH8698), vol. 1, 2003, pp. I–645.

[23] A. Biswas, P. Guha, A. Mukerjee, and K. S. Venkatesh, “Intrusion detection and tracking with pan-tilt cameras,”
in 2006 IET International Conference on Visual Information Engineering, Sept 2006, pp. 565–571.

[24] K. Bernardin, F. van de Camp, and R. Stiefelhagen, “Automatic person detection and tracking using fuzzy
controlled active cameras,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[25] P. S. Dhillon, “Robust real-time face tracking using an active camera,” in Computational Intelligence in Security
for Information Systems, Á. Herrero, P. Gastaldo, R. Zunino, and E. Corchado, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 179–186.

[26] T. Dinh, Q. Yu, and G. Medioni, “Real time tracking using an active pan-tilt-zoom network camera,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2009, pp. 3786–3793.

[27] M. A. Haj, A. D. Bagdanov, J. Gonzalez, and F. . Roca, “Reactive object tracking with a single ptz camera,” in
2010 20th International Conference on Pattern Recognition, Aug 2010, pp. 1690–1693.

[28] W. Luo, P. Sun, F. Zhong, W. Liu, T. Zhang, and Y. Wang, “End-to-end active object tracking via reinforcement
learning,” in Proceedings of the 35th International Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, vol. 80, 10–15 Jul 2018, pp. 3286–3295.

[29] M. Al Haj, C. Fernández, Z. Xiong, I. Huerta, J. Gonzàlez, and X. Roca, Beyond the Static Camera: Issues and
Trends in Active Vision, T. B. Moeslund, A. Hilton, V. Krüger, and L. Sigal, Eds. London: Springer London,
2011.

15

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1707.00569


THIS A PREPRINT OF A PAPER ACCEPTED IN JRTIP- JULY 28, 2021

[30] Y. Salih and A. S. Malik, “Depth and geometry from a single 2d image using triangulation,” in 2012 IEEE
International Conference on Multimedia and Expo Workshops, July 2012, pp. 511–515.

[31] N. Bo Bo, F. Deboeverie, P. Veelaert, and W. Philips, “Real-time multi-people tracking by greedy likelihood
maximization,” in Proceedings of the 9th International Conference on Distributed Smart Cameras, ser. ICDSC ’15.
New York, NY, USA: ACM, 2015, pp. 32–37. [Online]. Available: http://doi.acm.org/10.1145/2789116.2789125

[32] F. Chollet et al., “keras,” https://github.com/fchollet/keras, 2015.
[33] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,

S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI’16. Berkeley, CA, USA: USENIX
Association, 2016, pp. 265–283. [Online]. Available: http://dl.acm.org/citation.cfm?id=3026877.3026899

[34] D. Chahyati, M. I. Fanany, and A. M. Arymurthy, “Tracking people by detection using cnn
features,” Procedia Computer Science, vol. 124, pp. 167–172, 2017, 4th Information Systems
International Conference 2017, ISICO 2017, 6-8 November 2017, Bali, Indonesia. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050917329113

[35] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017, pp. 6517–6525.

[36] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, June 2005, pp. 886–893 vol. 1.

[37] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
[38] V. Campmany, S. Silva, A. Espinosa, J. Moure, D. Vázquez, and A. López, “Gpu-based pedestrian detection for

autonomous driving,” Procedia Computer Science, vol. 80, pp. 2377 – 2381, 2016, international Conference on
Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA.

[39] F. Al Machot, M. Ali, and A. Haj Mosa, “Real-time raindrop detection based on cellular neural networks for adas,”
J Real-Time Image Proc, vol. 16, pp. 1–1, 2019.

[40] H. Fan and H. Ling, “Siamese cascaded region proposal networks for real-time visual tracking,” in 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7944–7953.

[41] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations
from deep networks via gradient-based localization,” in 2017 IEEE International Conference on Computer Vision
(ICCV), Oct 2017, pp. 618–626.

[42] V. Kulathumani, S. Parupati, A. Ross, and R. Jillela, Collaborative Face Recognition Using a Network of Embedded
Cameras. London: Springer London, 2011, pp. 373–387.

16

http://doi.acm.org/10.1145/2789116.2789125
https://github.com/fchollet/keras
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://www.sciencedirect.com/science/article/pii/S1877050917329113

	Introduction
	Background and Related Work
	Problem Overview
	Visual Active Monitoring

	Deep Active Visual Monitoring
	Approach Overview
	Convolutional Camera Controller Network (C3Net)
	Active Camera Data Generation
	Network Training
	Weighted Moving Average Filtering

	Evaluation
	Performance Metrics
	Evaluation of Learning
	Performance in Simulated Environment
	Use-Case Evaluation
	Smart Camera Experiment
	UAV experiment
	Benchmarking the computing/processing time


	Discussion
	Conclusion

