An imprint of planet formation in the deep interior of the Sun

Masanobu Kunitomo (Kurume Univ.), Tristan Guillot (OCA)

kunitomo.masanobu@gmail.com

Take-home message

Planet formation does not affect the solar abundance problem, but does affect the solar central metallicity

Kunitomo & Guillot, in prep. see also Kunitomo+18, A&A and Kunitomo+17, A&A

Solar abundance problem e.g., Asplund+09, Serenelli+09

- Solar models from stellar evolution simulations disagree with helioseismic constraints
 - In 2000s, the solar surface abundances were revised
 - → the problem became prominent

Proposed scenarios

- Uncertainties in opacity
- Composition gradient due to accretion
- Extra mixing (overshooting, rotation, etc.)

Christensen-Dalsgaard+09, Bailey+15, Serenelli+11, Yang19

This study

We revisit the effect of accretion considering the recent progress in planet formation theory

- Even if the surface is metal-poor, the interior may be metal-rich
- Planet formation can induce metal-poor gas accretion

Composition of accreting materials

- Evolution of dust grains in disks is complicated:
 - phase I: Small (≤ mm) dust grains couple to gas
 - phase 2: Once dust grains grow to ~cm size (pebbles),
 they are decoupled and grains migrate inward
 - \rightarrow Accreting materials' metallicity, $Z_{\rm acc}$, increases
 - phase 3: Once planetesimals or protoplanets form, they efficiently filter grains $\rightarrow Z_{\rm acc}$ decreases
- Grain growth is likely to occur in the protostellar phase (class 0/l)
 Tsukamoto+17, Manara+18
 - → We investigate solar models including planet formation in the protostellar phase
 - $M_1 = [0.8, 0.99] \,\mathrm{M}_{\odot}, M_2 = [0.9, 0.99] \,\mathrm{M}_{\odot}$
 - · Previous studies investigated solar models with pre-main-sequence accretion and showed that it does not solve the solar abundance problem.

Guzik+05, Serenelli+11, Hoppe+20

Garaud+07, Guillot+14, Applegren+20, Elbakyan+20

Method

stellar evolution calculations + minimization

- Simulate the protostellar phase to the solar age (4.567 Gyr)
 - ID quasi-static simulation with the MESA code Paxton+11, 13, 15, 18, 19
 - Three effects: planet formation, opacity increase, overshooting
 - Accretion: from 0.1 M_{\odot} to 1 M_{\odot} with $\dot{M} \propto t^{-3/2}$ Hartmann+98
- Minimization of the χ^2 value with the simplex method Nelder-Mead65
 - When a simulation ends, we calculate the χ^2 value by comparing the result with observed values. By iterating this, we search for the best input parameters.
 - Inpur parameters:
 - ullet mixing-length parameter $lpha_{
 m MLT}$, overshooting parameter $f_{
 m overshoot}$, Initial composition ($Y_{
 m acc.ini}$, $Z_{
 m acc.ini}$)
 - $+M_1, M_2, Z_{\text{acc.max}}$ for planet formation
 - Herwig00
 - +opacity changes
 - Observational constraints:

Name	Description	Value	Uncertainty
$\overline{(Z/X)_{\text{surf}}}$	Abundance ratio of metals to hydrogen ^a	0.0181	10^{-3}
		0.02292	10^{-3}
$Y_{ m surf}$	Surface helium abundance	0.2485	0.0035
$R_{ m CZ}$	Location of the convective-radiative boundary [R _☉]	0.713	0.01^{b}
$\operatorname{rms}(\delta c_s)$	Root-mean-square sound speed	0	$10^{-3} c$
$\log L_{\star}$	Bolometric luminosity [L _☉]	0	$0.01\mathrm{dex}^c$
$_{-}T_{ m eff}$	Effective temperature [K]	5777	10^c

GS98

Planet formation alone does not solve the problem

- Metal-poor accretion (by planet formation) does not improve the sound-speed profile
 - ullet Low-mass protostar and pre-MS have a thick convective zone ullet accreting materials are mixed and diluted

Opacity increase has a great effect

- Opacity increase improves the sound-speed profile, as suggested by previous studies e.g., Christensen-Dalsgaard+09
 - Opacity affects the stellar structure (e.g., the size of convective zone)
 - Opacity depends on metallicity
 - -> Solar structure is reproduced even with the low metallicity, if opacity increase is considered

How much increase do we need?

- ~ 2 18% opacity increase at around ~3×106 K
- Recent experiments at Los Alamos suggested 7±3% increase (Bailey+15; only by iron opacity increase).
 Our solution is slightly larger but qualitatively in good agreement.

Solar neutrino: imprint of planet formation?

- Planet formation can increase the solar central metallicity
 - Recent neutrino observations have suggested a metal-rich solar core → consistent!
 - Detailed comparison with neutrino fluxes is our future work

Agostini+18, Borexino Collaboration 20

Summary

- In the 2000s, the estimate of the solar surface metallicity decreased considerably, but both helioseismic and neutrino observations have suggested the old metal-rich composition
- We investigated the effect of planet formation (metal-poor accretion) on the solar abundance problem by performing a large number of stellar evolutionary simulations
- We found that
 - planet formation has little impact on the sound-speed profile, whereas opacity increase has a great impact
 - the required opacity increase is ~12–18%
 - planet formation, instead, has a great impact on the solar central metallicity, which is important for neutrino fluxes

Future work:

- Finding a solution that is quantitatively consistent with both helioseismic and neutrino observations
- Optimization using MCMC instead of the simplex method