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A heteronuclear double-resonance !HDR" method based on MLEV-32 or WALTZ-32 pulse
sequences has been designed for the investigation of relaxation of heteronuclear multiple-quantum
!MQ" coherences. The theoretical analysis of this technique uses average Hamiltonian theory !AHT"
to treat the effects of coherent evolution associated with scalar couplings, offsets, and
inhomogeneous radiofrequency !rf" fields during the pulse sequence. Under most conditions, the
dynamics of the MQ coherences during the HDR sequence is not affected by rf inhomogeneities and
scalar couplings for offsets as large as the nutation frequency. The predictions drawn from AHT are
supported by numerical simulations and experiments. © 2009 American Institute of Physics.
#DOI: 10.1063/1.3072559$

I. INTRODUCTION

Nuclear magnetic resonance !NMR" spectroscopy offers
many ways to investigate dynamic properties of molecules.
A wide variety of experimental techniques can probe mo-
lecular dynamics on time scales that range from 10−12 to
103 s.1,2 Many biological processes, such as protein folding,
ligand binding, allosteric effects, and enzyme catalysis, in-
volve conformational motions that occur on a microsecond
to millisecond time scale. Conformational motions can give
rise to chemical exchange contributions to relaxation. The
two most popular NMR methods used to study these effects
are Carr–Purcell–Meiboom–Gill !CPMG" echo trains3–6 and
R1! spin-lock relaxation dispersion experiments.7–11 CPMG
experiments are suited for the investigation of conforma-
tional exchange processes occurring on a millisecond time
scale.12–15 In R1! experiments a radiofrequency !rf" field of
amplitude "1 is applied in order to lock the magnetization in
the rotating frame along an effective field "eff=%#2+"1

2,
where # is the offset from the carrier frequency. Such R1!

experiments can probe chemical exchange processes on time
scales ranging from milliseconds down to approximately
10 $s.11,16,17 The past few years have seen significant ad-
vances in the developments of both methods for the charac-
terization of dynamics in proteins.1,2,10,11 The reduced contri-
bution of chemical exchange to relaxation rates under a spin
lock has also been employed to obtain more precise and ac-
curate NMR data.18,19

CPMG and R1! studies of the relaxation rates of single
quantum !SQ" coherences can be complemented by multiple-
quantum coherence !MQC" experiments, which can provide
information whether two spins !typically 15N and 1H nuclei"

are affected simultaneously by chemical exchange.20–24 In
particular, heteronuclear MQC CPMG experiments have pro-
vided measurements of exchange rates and chemical shift
differences between exchanging sites.22–24 So far, R1! experi-
ments have been applied only to the study of SQ relaxation
processes.

In heteronuclear systems, correlated chemical exchange,
i.e., an exchange process which affects two nuclei simulta-
neously, gives rise to cross-relaxation between MQ coher-
ences 2IxSx and 2IySy. The simultaneous application of two
continuous-wave rf fields to both nuclei, for instance, along
the x axes of the doubly rotating frame, allows one to lock a
MQ coherence 2IxSx while 2IySy nutates about the rf fields.
Since unavoidable rf inhomogeneities will lead to partial
dephasing of 2IySy, the observation of cross-relaxation be-
tween the two operators 2IxSx and 2IySy becomes impractical
under such conditions. Ideally, one should simultaneously
preserve all coherences in the MQC subspace, i.e., 2IxSx,
2IxSy, 2IySx, and 2IySy, so that the interconversion between
these operators can only arise through cross-relaxation.

We introduce a new method designed to effectively pre-
serve all relevant MQ coherences simultaneously. This
method can be employed to extend the scope of R1! experi-
ments from SQ to MQ coherences and give access to dy-
namic processes that occur on time scales that are shorter
than those accessible to CPMG experiments. This new
method comprises a windowless sequence of rf pulses ap-
plied simultaneously to both spins I and S. The sequence is
based on supercycles which are built on combinations of
composite inversion pulses R and their phase-inverted coun-

terparts R̄. These supercycles constitute the basis of the well-
known MLEV and WALTZ decoupling schemes.25–29 We
have applied similar schemes in double-resonance mode, i.e.,
to both spins simultaneously. We shall refer to our schemesa"Electronic mail: fabien.ferrage@ens.fr.
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as heteronuclear double resonance !HDR". In this paper, we
consider only coherent spin dynamics. The effects of relax-
ation and chemical exchange will be treated elsewhere. In
Secs. II and III we apply average Hamiltonian theory !AHT"
to treat coherent effects and inhomogeneities of the rf fields.
We present the results of simulations and experiments in
Secs. IV and V.

II. COHERENT EVOLUTION: AVERAGE HAMILTONIAN
THEORY

A. Introduction

Throughout this paper, we consider an isolated hetero-
nuclear system comprising two scalar-coupled spins I=1 /2
and S=1 /2, such as 15N– 1HN pairs in perdeuterated proteins
which are enriched uniformly with 15N !but not 13C".

The Hamiltonian in the laboratory frame !LF" that de-
scribes a scalar-coupled heteronuclear two-spin system under
the effect of two rf fields can be written as

H!LF"!%" = H0
!LF" + Hrf

!LF"!%" , !1"

with

H0
!LF" = "IIz + "SSz + &JIS2IzSz, !2"

and

Hrf
!LF"!%" = "1

I &Ix cos#"rf
I % + 'I!%"$ + Iy sin#"rf

I % + 'I!%"$'

+ "1
S&Sx cos#"rf

S % + 'S!%"$

+ Sy sin#"rf
S % + 'S!%"$' , !3"

where "k, with k= I ,S, is the Larmor angular frequency of
spin I or S, JIS is the scalar-coupling constant, and "rf

k , "1
k,

and 'k, with k= I ,S, are the carrier angular frequencies, nu-
tation angular frequencies, and phases of the rf fields. In a
doubly rotating frame !DRF" which precesses about the z
axis at the two rf !angular" frequencies "rf

I for spin I and "rf
S

for spin S, the Hamiltonian may be written as

H!DRF"!%" = H0
!DRF" + Hrf

!DRF"#'I!%",'S!%"$ , !4"

with

H0
!DRF" = #IIz + #SSz + &JIS2IzSz, !5"

where #k="k−"rf
k !k= I ,S" is the angular frequency offset

and

Hrf
!DRF"#'I!%",'S!%"$ = "1&Ix cos#'I!%"$ + Iy sin#'I!%"$

+ Sx cos#'S!%"$ + Sy sin#'S!%"$' ,

!6"

where we have assumed that the rf field components of the
Hamiltonian have the same amplitude for spins I and S, "1

I

="1
S="1, i.e., that the Hartmann–Hahn condition is fulfilled,

and that the phases 'I!%" and 'S!%" are constant over the
duration of a single pulse, within a composite-pulse

sequence, for instance. Note that we refer to the terms "1
I and

"1
S as the amplitudes of the rf field Hamiltonians and not the

amplitudes of the rf magnetic fields B1
I and B1

S. We will as-
sume that the rf fields for spins I and S act only on their
corresponding nuclear species and that the rf amplitude "1 is
large compared to both the angular frequency offsets #I and
#S and the scalar-coupling constant JIS.

Henceforth we shall drop the superscript !DRF" and al-
ways refer to the Hamiltonian in the form of Eq. !4".

The effects of coherent processes, i.e., scalar couplings,
offsets, and inhomogeneous rf fields, during a periodic rf
pulse sequence can be taken into account by AHT.30,31 The
Hamiltonian in the interaction frame of the rf fields is

H̃!%" = Ûrf
† !%"H0Ûrf!%" , !7"

with the propagator Ûrf, describing the evolution during the
nth pulse of the sequence, defined as

Ûrf!%" = exp&− iHrf#'I,n,'S,n$%n'

(T̂( )
j=1

!n−1"

exp&− iHrf#'I,j,'S,j$% j'* , !8"

where T̂ is the Dyson time-ordering operator, 'I,j and 'S,j
are the phases of the jth pulse, and %=+ j=1

n % j. Under the
assumption that Hrf is a periodic function of time, with a
period T, one may define an average Hamiltonian using the
Magnus expansion as

H̃!av" = H̃!0" + H̃!1" + H̃!2" + ¯ , !9"

where the various orders are

H̃!0" =
1
T
,

0

T

d%H̃!%" , !10a"

H̃!1" =
1

2iT
,

0

T

d%,
0

%

d%!#H̃!%",H̃!%!"$ , !10b"

H̃!2" = −
1

6T

( ,
0

T

d%,
0

%

d%!,
0

%!
d%"&#H̃!%",#H̃!%!",H̃!%""$$

+ #H̃!%"",#H̃!%!",H̃!%"$$' , !10c"

¯ .

A prerequisite of AHT is that the observation is stroboscopic,
i.e., the observables of interest are sampled synchronously
with the period T. The average effect of scalar couplings and
offsets may be described by the transformation
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)!T" = exp#− iH̃!av"T$)!0"exp#iH̃!av"T$ , !11"

where )!0" and )!T" are the density operators of the spin
system at the beginning and at the end of one repetition
period of the pulse sequence, respectively.

B. Average Hamiltonian during an HDR MLEV-32
sequence

The new HDR MLEV-32 pulse sequence can be written
as

R̄aRaRaR̄a R̄aR̄aRaRa RaR̄aR̄aRa RaRaR̄aR̄a

R̄bRbRbR̄b R̄bR̄bRbRb RbR̄bR̄bRb RbRbR̄bR̄b, !12"

where the overbars represent & phase shifts and where Ra
and Rb represent composite pulses applied simultaneously to
both spins I and S,

Ra = (*x
I 2*y

I *x
I

*x
S 2*−y

S *x
S*, Rb = (*x

I 2*y
I *x

I

*−x
S 2*y

S *−x
S * , !13"

where *I=*S-& /2. In the following we shall consider the
ideal case *I=*S=& /2 unless mentioned otherwise. Devia-
tions of * from & /2 will be treated as perturbations in
Sec. III.

One may notice that Eqs. !12" and !13" actually define
an MLEV-16 sequence Ka based on the element Ra, followed
by a second MLEV-16 sequence Kb based on Rb. For spin I
one has Ka

I =Kb
I , and the sequence thus turns out to be an

MLEV-16 cycle applied twice. On the other hand, for spin S
one has Ka

S=Kb
S, which gives a true MLEV-32 cycle. Simu-

lations, discussed in Sec. IV, have shown that a real
MLEV-32 cycle applied simultaneously to both spins does
not work as well as the HDR sequence defined above.

Let us consider the first composite-pulse R̄a of the HDR
MLEV-32 sequence. The corresponding rf propagator can be
written as

Ûrf
R̄a!%" =.

exp#− iHrf!&,&"%$, 0 + % , %p,

exp#− iHrf!− &/2,&/2"%$exp/− i
Hrf!&,&"

"1

&

2
0, %p + % , 3%p,

exp#− iHrf!&,&"%$exp/− i
Hrf!− &/2,&/2"

"1
&0exp/− i

Hrf!&,&"
"1

&

2
0, 3%p + % , 4%p,1 !14"

where %p=& / !2"1" is the duration of an ideal & /2 pulse and where the three components correspond to three sequential pulses
& /2−&−& /2. The complete propagator up to the end of the first composite-pulse R̄a takes the form

Ûrf
R̄a 2 Ûrf

R̄a!4%p" = exp/− i
Hrf!&,&"

"1

&

2
0exp/− i

Hrf!− &/2,&/2"
"1

&0exp/− i
Hrf!&,&"

"1

&

2
0 , !15"

and its matrix representation shows that Ûrf
R̄a =4IySy. By changing the phases 'k !k= I ,S" in Eqs. !14" and !15" according to the

definition given in Eq. !13", one can define also the propagators Ûrf
Ra!%", Ûrf

Rb!%", and Ûrf
R̄b!%", and verify by explicit matrix-

algebra calculations that the following equalities hold for the propagators of each full composite pulse:

Ûrf
R 2 Ûrf

R̄a = Ûrf
Ra = 4IySy , !16a"

Ûrf
R̄b = Ûrf

Rb = −4 IySy = − Ûrf
R , !16b"

Ûrf
RÛrf

R = E , !16c"

where E is the identity operator. Finally, by inserting the expressions of the rf propagators given by Eq. !14" into Eq. !7", the
coherent Hamiltonian H0 can be transformed into the rf interaction frame. During the first block of composite pulses
!R̄aRaRaR̄a" of the HDR MLEV-32 sequence one has

H̃!%" =.!Ûrf
R̄a!%""†

H0Ûrf
R̄a!%" , 0 + % , 4%p,

!Ûrf
R"†!Ûrf

Ra!%""†
H0Ûrf

Ra!%"Ûrf
R , 4%p + % , 8%p,

!Ûrf
R"†!Ûrf

R"†!Ûrf
Ra!%""†

H0Ûrf
Ra!%"Ûrf

RÛrf
R = !Ûrf

Ra!%""†
H0Ûrf

Ra!%" , 8%p + % , 12%p,

!Ûrf
R"†!Ûrf

R̄a!%""†
H0Ûrf

R̄a!%"Ûrf
R , 12%p + % , 16%p.

1 !17"
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At the end of the full block one has H̃!16%p"
= !Ûrf

R"†!Ûrf
R"†H0Ûrf

RÛrf
R =H0, and therefore the Hamiltonian H0

turns out to be in its original state. This property is true for
any block of four composite pulses !MLEV-4". The proce-
dure outlined above can be iterated for all eight blocks of
composite pulses of the HDR MLEV-32 pulse sequence, and
the zeroth-order average Hamiltonian #Eq. !10a"$ can then be
calculated as the sum of 96 integrals !one for each pulse of
the sequence", with the period of the MLEV-32 sequence T
=64& /"1=128%p. The explicit calculations, based on
straightforward matrix algebra, show that

H̃MLEV
!0" =

&JIS

4
2IzSz. !18"

The offsets #I and #S do not contribute to the zeroth-order
term, which only depends on the JIS coupling constant. The
factor 1/4 in Eq. !18" corresponds to a scaling down of the
scalar-coupling interaction produced by rotational averaging
of the operators over the x, y, and z spatial orientations.

C. The zeroth-order effect

The effect of H̃MLEV
!0" on the density operator )!t" during

the HDR MLEV-32 pulse sequence can be calculated accord-
ing to Eq. !11" by replacing the general average Hamiltonian
H̃!av" with the zeroth-order term H̃MLEV

!0" . The resulting equa-
tion shows that the dynamics of MQ coherences is not af-
fected by H̃MLEV

!0" since the operator 2IzSz commutes with all
MQC operators, 2IxSx, 2IxSy, 2IySx, and 2IySy, which are thus
invariant after any integer number of complete HDR cycles.

It is interesting to compare the above results to a simpli-
fied HDR pulse sequence with the same phases for both the
spins I and S, i.e., when Ra and Rb are replaced by the same
composite pulses

Rc = (*x
I 2*y

I *x
I

*x
S 2*y

S *x
S* , !19"

with *I=*S-& /2. This sequence is equivalent to an
MLEV-16 cycle applied simultaneously to both spins. The
state of the system at the end of the HDR cycle may be
described by solving the Liouville–von Neumann equation

d

dt
)!t" = − i#H̃!0",)!t"$ , !20"

which leads to

d

dt3
Iz

Sz

2IxSy

2IySx

2IxSx

2IySy

4 =
&JIS

4 3
0 0 − 2 1 0 0

0 0 1 − 2 0 0

2 − 1 0 0 0 0

− 1 2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

43
Iz

Sz

2IxSy

2IySx

2IxSx

2IySy

4 .

!21"

Clearly, this simplified sequence induces undesirable cross
terms between the MQ and Zeeman subspaces.

D. Higher-order average Hamiltonians

We consider now the effects of higher-order terms in the
expansion of Eq. !9". All odd-order average Hamiltonians
vanish because of symmetry properties.32 As a consequence,
the next higher-order term that may affect the dynamics of

the system is H̃!2", defined in Eq. !10c". The !rather cumber-
some" explicit calculations yield

H̃MLEV
!2" =

1

"1
2

JIS

48
#!20 − 7&"#I

2 − 20&#I#S

+ !20 − 7&"#S
2$2IzSz. !22"

The structure of this Hamiltonian closely resembles the

zeroth-order term H̃MLEV
!0" of Eq. !18", thus extending the in-

variance of MQC operators to second-order effects. The am-

plitude of H̃MLEV
!2" defined in Eq. !22" becomes comparable to

the amplitude of H̃MLEV
!0" when 5#I#S5-"1

2.

E. Average Hamiltonian during an HDR WALTZ-32
sequence

An alternative to the HDR MLEV-32 cycle treated in
Secs. II B–II D is the HDR WALTZ-32 pulse sequence de-
fined as

RdR̄dR̄dRdReR̄eR̄eRe, !23"

where Rd is

! "1 / (2 ) [Hz]

A
rb

.
U

.

FIG. 1. !Color online" Distribution of the rf field "1 measured with a nuta-
tion experiment !filled circles" and fit of the experimental data obtained with
two half-Gaussian functions of different widths !dashed line". More details
are given in the text.
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Rd = (3*−x
I 4*x

I 2*−x
I 3*x

I *−x
I 2*x

I 4*−x
I 2*x

I 3*−x
I

3*−x
S 4*x

S 2*−x
S 3*x

S *−x
S 2*x

S 4*−x
S 2*x

S 3*−x
S * , !24"

and Re is

Re = (3*−x
I 4*x

I 2*−x
I 3*x

I *−x
I 2*x

I 4*−x
I 2*x

I 3*−x
I

3*x
S 4*−x

S 2*x
S 3*−x

S *x
S 2*−x

S 4*x
S 2*−x

S 3*x
S * , !25"

with *I and *S defined as in Sec. II B. The first block in Eq.

!23" !RdR̄dR̄dRd" corresponds to a true WALTZ-16 sequence
applied simultaneously to both spins, whereas during the sec-

ond block !ReR̄eR̄eRe" the phases of the pulses applied to spin
S are shifted by &. Simulations have shown that the effi-
ciency of preservation of MQ coherences of this sequence is
better than other alternatives, i.e., a true WALTZ-16 cycle
applied twice to both spins simultaneously or a cycle in
which, during the second block, the phases of the pulses
applied to both spins I and S are shifted by &.

The procedure outlined in Sec. II B can also be applied
to the HDR WALTZ-32 sequence. The calculations, based on
simple matrix algebra, are rather cumbersome and not of

prime interest and therefore not shown explicitly here. The
two nonzero lowest-order average Hamiltonians turn out to
be

H̃WALTZ
!0" =

&JIS

2
2IzSz, !26"

and

H̃WALTZ
!2" = −

1

"1
2

JIS

576
#21JIS

2 &3

+ 4!10 + 49&"!#I
2 + #S

2"$2IzSz. !27"

All orders of the average Hamiltonians that were computed
commute with the MQ operators of interest so that the effects

(d)
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0
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Ω
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0
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]

(b)(a)
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1
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]

FIG. 2. !Color online" Simulations of the expectation value of the coherence 2IxSx as a function of the offsets #I and #S of spins I and S after different HDR
pulse sequences based on !a" DIPSI, !b" GARP, !c" WALTZ-32, and !d" MLEV-32 blocks with a scalar-coupling constant JIS=90 Hz and an rf field amplitude
"1 / !2&"=2 kHz. We have set the initial density operator )!0"=2IxSx and the durations of the sequences were !a" T=28.8 ms, !b" 31.2 ms, !c" 48 ms, and !d"
32 ms. These durations correspond to 1 cycle of the DIPSI and GARP schemes and 2 cycles of the HDR WALTZ-32 sequence given in Eq. !23" and of the
HDR MLEV-32 sequence given in Eq. !12".
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of offsets and scalar couplings much smaller than the rf am-
plitudes can be neglected. Similar to the average Hamil-
tonian of the HDR MLEV-32 sequence, the zeroth-order
term does not depend on the offsets #I and #S but only on
the scalar-coupling constant JIS. One may also notice that
H̃WALTZ

!0" =2H̃MLEV
!0" . Intuitively, this last property makes the

WALTZ-32 sequence less robust with respect to scalar-
coupling effects than the MLEV-32 sequence. This conclu-
sion is indeed supported by numerical simulations.

III. INHOMOGENEOUS rf FIELDS

A. Experiment

We have measured the distribution of the rf field
"1 / !2&" with a nutation experiment on the nitrogen-15 chan-
nel of a TCI cryoprobe on a Bruker Avance 500 spectrom-
eter. The sample consisted of 250 $l of a solution of 15N
labeled and selectively deuterated tBoc-glycine in perdeuter-
ated dimethyl sulfoxide !DMSO" in a Shigemi tube. The re-
sult of the experiment is shown in Fig. 1 !filled circles".33 In
order to have a reliable model for numerical simulations

!presented in Sec. IV" we have fitted the experimental data
with two half-Gaussian functions of different widths,

f fit#"1/!2&"$

= .exp/ 1
!2&"2

!"1 − "c"2

2)1
2 0, "1 , "c,

exp/ 1
!2&"2

!"1 − "c"2

2)2
2 0, "1 - "c.1

!28"

In Fig. 1 !dashed line" we have used "c / !2&"=1090 Hz,
)1=47 Hz, and )2=30 Hz. The full width at half maximum
!FWHM" of the fitting function thus turns out to be -10% of
the carrier frequency. Henceforth, we will assume this distri-
bution model for both the spins, independent of the carrier
frequency.

B. Average Hamiltonian theory

The AHT outlined in Sec. II can be applied to treat the
effects of inhomogeneities of the rf fields. During a complete
HDR pulse sequence we shall assume a perfectly calibrated
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FIG. 3. !Color online" Simulations of the expectation values of the heteronuclear MQ coherences 2IxSx #!a"–!c"$ and 2IySy !d" as a function of the offsets #k
!k= I ,S" of spins I and S after the HDR MLEV-32 sequence assuming a scalar-coupling constant JIS=90 Hz. The rf amplitudes for both spins are !a"
"1 / !2&"=0.8 kHz with a single HDR MLEV-32 block, !b" "1 / !2&"=1.6 kHz with two HDR MLEV-32 blocks, !c" "1 / !2&"=2.4 kHz with three blocks, and
!d" "1 / !2&"=2.0 kHz with two blocks as in Fig. 2!d". The duration of the HDR sequences !a"–!c" was T=40 ms, while in !d" T=32 ms. The initial density
operator was )!0"=2IxSx. The 62IySy7 profile !d" shows that during the rf sequence coherent leakage from the initial operator 2IxSx to 2IySy is small for offsets
as large as #k- ."1.
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rf interaction, described by the ideal Hamiltonian Hrf of Eq.
!6", plus a perturbation that we may write in the form

H/#'I!%",'S!%"$ = "/
I&Ix cos#'I!%"$ + Iy sin#'I!%"$'

+ "/
S&Sx cos#'S!%"$ + Sy sin#'S!%"$' ,

!29"

with "/
k= !*k−& /2" /%p, where *k is the actual nutation angle

and k= I ,S. The evolution of the system under the effect of
the !inhomogeneous" rf fields is thus governed by the Hamil-
tonian

Hrf
!inh" = Hrf#'I!%",'S!%"$ + H/#'I!%",'S!%"$ , !30"

and the procedure described in Sec. II B can be applied by
substituting H0 by H/. One can thus transform H/ into the rf
interaction frame #see Eq. !17"$ and calculate explicitly the
zeroth-, first-, and second-order average Hamiltonians. The
calculations show that all the contributions to the average
Hamiltonian up to second order vanish. One may thus expect
that perturbations of the form H/, i.e., imperfections of the
rf fields, would not affect the dynamics of the spin system
under the HDR MLEV-32 sequence. The first three orders of

the average Hamiltonian were also calculated for the HDR
WALTZ-32 sequence, with identical results. The low sensi-
tivity of MQC operators to the effect of small rf field inho-
mogeneities has been confirmed by simulations, as shown in
Sec. IV.

IV. SIMULATIONS

The AHT results discussed in Sec. II are valid in the
limits &5JIS50 5"15 and 5#I5 , 5#S50 5"15, i.e., close to reso-
nance. Under these conditions one can treat the evolution
under scalar couplings and offsets as perturbations in the
interaction frame. In order to estimate the effects of a rather
large scalar-coupling constant over a wide range of offsets
and rf amplitudes we have carried out numerical simulations.

The main purpose of our sequence is to preserve all MQ
coherences over a range of offsets that is as large as possible.
In the ideal case, we should be able to cover the resonance
frequencies of all residues of a protein in a single experi-
ment. Therefore, we have simulated the behavior of MQ co-
herences under the effect of several HDR sequences, based
on well-known methods such as WALTZ-16,29 WALTZ-32,
GARP,34 DIPSI,35 XY-32,36 MLEV-16, and MLEV-32.25–28
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FIG. 4. !Color online" Simulations of the expectation values of the heteronuclear MQ coherences 2IxSx #!a"–!c"$ and 2IySy !d" as a function of the offsets #k
!k= I ,S" of spins I and S after the HDR WALTZ-32 sequence assuming a scalar-coupling constant JIS=90 Hz. The rf amplitudes for both spins are !a"
"1 / !2&"=1 kHz with a single HDR WALTZ-32 block, !b" "1 / !2&"=1.4 kHz also with a single HDR WALTZ-32 block, !c" "1 / !2&"=1.8 kHz with two
blocks, and !d" "1 / !2&"=2.0 kHz with two blocks as in Fig. 2!c". The durations of the HDR sequences were T=48 ms !a", T=34.28 ms !b", T
=53.32 ms !c", and T=48 ms !d". The initial density operator was )!0"=2IxSx. The 62IySy7 profile !d" shows that coherent leakage from 2IxSx to 2IySy is small
for offsets as large as #k- ."1.
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Results for some of these sequences are shown in Fig. 2. We
have tried different approaches. For instance, the sequences
based on & phase shift of all pulses applied to spin S during
the second half of the cycle turned out to be always better
than sequences applied without any phase shift. The best
performance was obtained with the HDR WALTZ-32 #Fig.
2!c"$ and HDR MLEV-32 #Fig. 2!d"$ pulse sequences. In
Figs. 3 and 4 we plot the simulated profiles of the operators
62IxSx7 and 62IySy7 for different rf amplitudes as a function of
the offsets #k, with k= I ,S, after the HDR MLEV-32 !Fig. 3"
and WALTZ-32 !Fig. 4" sequences. We have set the initial
density operator )!0"=2IxSx and assumed JIS=90 Hz. Iden-
tical results were obtained when starting with 2IySy. The pro-
files shown in Figs. 3 and 4 are characterized by a plateau
which shows the efficiency of the pulse sequence in preserv-
ing MQ coherences over a wide range of offsets. The edges
of this plateau correspond to values of the offsets #I and #S
comparable to the rf amplitude !#k-."1". One can safely
assume that over such a range of offsets the evolution of the
system is not affected by scalar couplings and that

Hartmann–Hahn cross-polarization does not affect the dy-
namics of MQ coherences. Moreover, we have carried out
simulations with a range of scalar-coupling constants JIS

from 50 to 200 Hz. In Fig. 5 we show the offset profiles
obtained with HDR WALTZ-32 and HDR MLEV-32 se-
quences with JIS=150 Hz #!a" and !c"$ and JIS=200 Hz #!b"
and !d"$. We observed significant changes in the profiles ob-
tained with the HDR MLEV-32 sequence only close to the
limit JIS-200 Hz, whereas we observed a general deterio-
ration of the performance of the WALTZ-32 sequence for
scalar-coupling constants larger than about 120 Hz. The
higher sensitivity to large scalar-coupling interactions of the
HDR WALTZ-32 sequence compared to the HDR MLEV-32
scheme may be linked intuitively to the larger residual scalar
coupling in the average Hamiltonian #see Eqs. !18" and !26"$.

The effects of rf field inhomogeneities have been in-
cluded in the simulations by considering the asymmetric dis-
tribution of rf amplitudes given in Eq. !28", sampled at 17
amplitudes ranging from 0.9"1 to 1.1"1. The parameters
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FIG. 5. !Color online" Simulations of the expectation value 62IxSx7 as a function of the offsets #k !k= I ,S" of spins I and S after the HDR WALTZ-32 sequence
#!a" and !b"$ and after the HDR MLEV-32 sequence #!c" and !d"$. We have assumed scalar-coupling constants #!a" and !c"$ JIS=150 Hz and #!b" and !d"$
JIS=200 Hz. The rf amplitude for both spins was "1 / !2&"=2 kHz with two blocks of both the HDR WALTZ-32 and HDR MLEV-32 schemes. The durations
of the HDR sequences were T=48 ms #!a" and !b"$ and T=32 ms #!c" and !d"$. The initial density operator was )!0"=2IxSx. These profiles should be
compared to the profiles of Fig. 2!c" !HDR WALTZ-32" and Fig. 2!d" !HDR MLEV-32" obtained with JIS=90 Hz.
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)1 and )2 were chosen to produce a FWHM of -10% of the
carrier frequency. In the simulations we have assumed the
same rf amplitude distribution for both spins, i.e., "1

I !r!"
="1

S!r!". The offset profiles simulated with correlated or un-
correlated rf inhomogeneities did not show any remarkable

differences compared to profiles obtained for ideal rf fields,
at least in the regions where the MQ coherences can be pre-
served efficiently. In Fig. 6!a" we show the differential offset
profile 61xx7= 62IxSx7inh− 62IxSx7hom, i.e., the difference be-
tween the simulated profiles obtained with and without rf
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FIG. 6. !Color online" Simulated differential expectation values 61xx7= 62IxSx7inh− 62IxSx7hom !a" and 61yy7= 62IySy7inh− 62IySy7hom !b" of the MQ operators 2IxSx
and 2IySy, respectively, as a function of the offsets #k !k= I ,S" of spins I and S after 2 cycles of the HDR MLEV-32 scheme, assuming a scalar-coupling
constant JIS=90 Hz, an rf amplitude "1 / !2&"=2 kHz, and an initial density operator )!0"=2IxSx. The duration of the sequence was T=32 ms. These profiles
show the differences of the profiles of 62IxSx7 !a" and 62IySy7 !b" obtained with and without rf inhomogeneities.

3 4

FIG. 7. Pulse sequence used to preserve the MQ coherence HxNx of the N–H pair in deuterated tBoc-glycine. Filled and open rectangles represent & /2 and
& pulses, respectively. The widths of the rectangles are not proportional to the actual durations of the rf pulses. All pulses are applied along the x-axes unless
indicated otherwise. The proton carrier frequency is switched to the desired offset before the HDR block !freq1" and then switched back !freq2" to the center
of the spectrum !3.5 ppm". The carrier frequency of the nitrogen-15 channel is switched to the desired frequency before the HDR block !freq3" and switched
back to its initial value !freq4", 78.5 ppm, right after the HDR block. The delays are %d= t&/2!15N"− t&/2!1H"−%e, %e= #t&/2!15N"− t&/2!1H"$(0.637, % f!
=652 $s, and % f"=650 $s+ t&/2!15N"(0.637 with durations of strong & /2 pulses t&/2!15N"=35 $s and t&/2!1H"=6.62 $s. The number 0.637 is 2 /&. These
delays are inserted to compensate for chemical shift evolutions during the & /2 pulses on the proton and nitrogen channels. The echo pulses before the HDR
blocks are needed to provide time to change the power levels from high amplitude to attenuated values for HDR pulses. The other delays are %a=1.2 ms,
%b=1 / !4JHN", and %c=1.157 ms. The WALTZ-16 decoupling scheme at the end is applied using a low-amplitude rf field of 0.5 kHz. The duration of the
acquisition is 500 ms. The gradients are g1x=6.5 G /cm, g2y =8.5 G /cm, g3z=13.5 G /cm, g4z=15 G /cm, g5z=40 G /cm, g6x=−9.5 G /cm, g7y
=10.5 G /cm, g8z=4.05 G /cm, g9x=4.5 G /cm, g9y =5.5 G /cm, g10x=7.5 G /cm, and g10y =8.5 G /cm. The phase cycling is '1= !y"4 , !−y"4; '2= !y ,−y";
'3= !x ,−x"; '4= !x"2 , !y"2 , !−x"2 , !−y"2; and 'rec= !x ,−x ,−x ,x"2 , !−x ,x ,x ,−x"2.
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inhomogeneities after a HDR MLEV-32 sequence. In Fig.
6!b" we also show a similar differential profile 61yy7
= 62IySy7inh− 62IySy7hom, obtained after a HDR MLEV-32 se-
quence. Identical results were obtained for the HDR
WALTZ-32 sequence !data not shown here". In both cases
we have assumed a distribution of rf amplitudes with a maxi-
mum value for "1 / !2&" of 2 kHz, a coupling constant JIS
=90 Hz, and an initial density operator )!0"=2IxSx. These
results did not change significantly by varying "1 and JIS or
by setting the initial state to )!0"=2IySy.

V. METHODS

All symbolic calculations were carried out with the sup-
port of MATHEMATICA !Version 6.0" and all numerical calcu-
lations were performed under MATLAB R2007B !Version 7.5".
The experimental characterization of the offset profiles was
carried out for the 15N– 1H pair in selectively deuterated
tBoc-glycine, !CH3"3COCO–NHCD2CO2H !15N, 2H2", in
DMSO. Deuteration is necessary to prevent dipolar cross-
relaxation as well as cross-polarization effects between the
HN and the two scalar-coupled H2 nuclei. All data were col-
lected in a static magnetic field B=11.7 T !500 MHz" on a

Bruker Avance 500 spectrometer equipped with a TCI cryo-
probe. The full pulse sequence used in the experiments is
shown in Fig. 7. In Figs. 8!a" and 8!c" we show the experi-
mental profiles of the observable 62IxSx7 for the isolated
15N– 1H pair in tBoc-glycine with rf field amplitudes
"1 / !2&"=1 kHz !a" and 1.4 kHz !c", after the HDR
MLEV-32 sequence. The durations of the HDR MLEV-32
sequences were T=32 ms !a" and T=23 ms !c". In both
cases the block of Eq. !12" was repeated only once. The
corresponding simulated contour plots obtained with the
HDR sequence of Fig. 7 are shown in Figs. 8!b" and 8!d". In
Figs. 9!a" and 9!c" we show the experimental profiles ob-
tained with the HDR WALTZ-32 sequence, with rf field am-
plitudes "1 / !2&"=1.0 kHz !a" and 1.6 kHz !c". The dura-
tions of the HDR WALTZ-32 sequences were T=48 ms !a"
and T=30 ms !c", corresponding to one block of Eq. !23". In
Figs. 9!b" and 9!d" we show the corresponding simulated
contour plots. The simulations of Figs. 8 and 9 differ from
those shown in Figs. 2–4 since in the former all pulses and
delays shown in the “HDR” insert of Fig. 7 were simulated,
whereas in the latter only the HDR cycle was considered.

FIG. 8. #!a" and !c"$ Experimental profiles of the expectation value 62IxSx7 after a single HDR MLEV-32 block for the 15N– 1H pair in tBoc-glycine !15N, 2H2"
as a function of the offsets of 15N and 1H obtained with rf amplitudes "1 / !2&" of 1 kHz !a" and 1.4 kHz !c". The durations of the sequences were T
=32 ms !a" and T=23 ms !c". #!b" and !d"$ Corresponding simulations. The contour levels are expressed as percentage of the on-resonance peak intensity.
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VI. DISCUSSION

We have presented a new HDR method based on
MLEV-32 and WALTZ-32 sequences applied simultaneously
to spins I and S and we have developed a theoretical frame-
work to treat the effects of coherent processes. The require-
ments for the effective preservation of multiple-quantum co-
herences are rather challenging, particularly when the
objective is to determine small cross-relaxation rates be-
tween multiple-quantum operators. The ability to measure
cross-relaxation rates between the MQ operators 2IxSx and
2IySy presupposes the suppression of coherent pathways for
their interconversion. The separation of coherent evolution
and relaxation effects is difficult unless the MQ coherences
are effectively forced to remain stationary under all coherent
processes. On the other hand, since cross-relaxation path-
ways have to be retained, it is necessary to keep the evolu-
tion on both spins as synchronous as possible. Thus, the rf
field amplitudes have to match the Hartmann–Hahn condi-
tion. This increases the risk of artifacts arising from undesir-
able cross-polarization.

All orders of the average Hamiltonian that were com-

puted commute with the operators under investigation !i.e.,
2IxSx and 2IySy" so that effects of offsets, scalar couplings,
and rf inhomogeneity can be neglected as long as they are
small, i.e., when &5JIS50 5"15 and 5#I5 , 5#S50 5"15. Moreover,
both simulations and experiments show that the offset pro-
files are reasonably flat for offsets as large as the rf ampli-
tude. The effects of scalar couplings are limited if rf ampli-
tudes are more than ten times larger than the scalar-coupling
constant with the HDR MLEV-32 scheme !see Figs. 3–5".
This means that the lowest rf amplitude for 1H– 13C pairs
would be of the order of 1.5 kHz. On the other hand, the
deterioration of the preservation profiles for the HDR
WALTZ-32 scheme #Figs. 5!a" and 5!b"$ with large scalar-
coupling constants restricts its use to systems with scalar-
coupling constants smaller than -120 Hz for rf amplitudes
of 2 kHz. As shown in Figs. 3!d" and 4!d" the coherent leak-
age between the operators 2IxSx and 2IySy is effectively
quenched on resonance and strongly inhibited off resonance.
We have estimated the leakage level to be less than 1% for
the HDR WALTZ-32 and less than 3% for the HDR
MLEV-32 when 5#I5 , 5#S53 5"15 /2. The leakage increases to
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FIG. 9. #!a" and !c"$ Experimental profiles of the expectation value 62IxSx7 after a single HDR WALTZ-32 block for the 15N– 1H pair in tBoc-glycine
!15N, 2H2" as a function of the offsets of 15N and 1H channels obtained with rf amplitudes "1 / !2&"=1.6 kHz !a" and 1.0 kHz !c". The durations of the
sequences were T=30 ms !a" and T=48 ms !c". #!b" and !d"$ Corresponding simulations. The contour levels are expressed as percentage of the on-resonance
peak intensity.
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about 7 % and 10% for the HDR WALTZ-32 and MLEV-32
sequences, respectively, when 5#I5 , 5#S5-5"15. One should
be aware that this leakage will limit the accuracy of cross-
relaxation rates measured with these schemes when used sig-
nificantly off resonance !5#I5 , 5#S54 5"15 /2".

The comparison with various pulse sequences typically
employed for decoupling,34,35 homonuclear isotropic
mixing,35 or isotropic spin locking,36 is insightful. The se-
quence HDR XY-32 exhibits large variations in the observ-
able of interest, even very close to resonance, suggesting that
this multiple-refocusing sequence cannot be used for our pur-
poses. Figure 2 shows that although two GARP sequences
simultaneously applied to both nuclei provide a reasonably
effective preservation of all MQ coherences over a broad
range of offsets, small variations in the observable terms
close to resonance make this scheme unreliable. On the other
hand, DIPSI shows a very flat profile near resonance. How-
ever, the behavior further from resonance is not as good as
for the HDR MLEV-32 and HDR WALTZ-32 schemes. The
latter sequences seem to provide the best compromise be-
tween a nearly ideal flat offset profile close to resonance and
a reasonably flat profile further from resonance. The periodic
minima observed in the offset profiles of the HDR MLEV-32
scheme, shown in Figs. 3!b" and 3!c", may be due to recou-
pling conditions that are fulfilled for certain values of the
offsets #I and #S and of the scalar-coupling constant JIS.
This pattern of local minima is altered for larger values of
JIS, as shown in Figs. 5!c" and 5!d". The offset profiles ob-
tained with the HDR WALTZ-32 scheme do not exhibit an
analogous periodic pattern of local minima #see Figs. 4!b"
and 4!c"$, and a continuous deterioration of the profiles was
observed for increasing values of JIS #Figs. 5!a" and 5!b"$.
The tolerance to distributions of rf fields encountered in typi-
cal high-resolution probes, as illustrated in Fig. 6, shows that
these sequences can be used with common equipment. The
HDR MLEV-32 and WALTZ-32 sequences should also be
fairly insensitive to small miscalibrations of the rf
amplitudes.

It may be interesting to compare the expressions of the
second-order average Hamiltonians given in Eqs. !22" and
!27" with the offset profiles shown in Sec. IV. For MLEV-32,
H̃MLEV

!2" depends on the relative sign of the offsets #I and #S
as it is dominated by the term #I#S, while for WALTZ-32,
H̃WALTZ

!2" is dominated by !#I
2+#S

2". Interestingly, the simu-
lated offset profiles of the HDR WALTZ-32 sequence are
symmetric, whereas the offset profiles of the HDR MLEV-32
sequence exhibit different behaviors along the diagonal !#I

=#S" and the antidiagonal !#I=−#S". Similarities between
the expressions of the second-order terms in the average
Hamiltonians and the symmetry properties of the offset pro-
files are intuitively satisfying. They suggest that higher-order
terms in the average Hamiltonian exhibit a structure similar
to second-order terms.

The agreement between experiments and simulations
shown in Fig. 8 !HDR MLEV-32" and in Fig. 9 !HDR
WALTZ-32" is reasonably good. The patterns of the devia-
tions from an ideal preservation of all MQ coherences are
comparable but the amplitudes of such deviations are signifi-

cantly larger in experiments than in simulations. For in-
stance, the small “valleys” that can be seen on the plateau in
Figs. 3!b" and 8!d" #or Figs. 4!b", 9!b", and 9!d"$ are also
found in Fig. 8!c" #or Figs. 9!a" and 9!c"$, where they are
both deeper and wider. These differences may arise because
of coherent processes that have been neglected, imperfec-
tions of the hardware, or relaxation effects. The treatment of
the latter is beyond the scope of this paper and will be dis-
cussed elsewhere. The faster decay of multiple-quantum co-
herences off resonance significantly affects the measurement
of autorelaxation rates. On the other hand, the accuracy of
cross-relaxation rates should be preserved, in particular, if
symmetrical reconversion is employed.37

It is possible that improved rf schemes can be developed
by optimal control approaches.38 Nevertheless, the results
presented here show that the HDR MLEV-32 and HDR
WALTZ-32 schemes seem to fulfill the requirements for MQ
relaxation studies.
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