

The NI4OS-Europe project is funded by the European Commission under the Horizon
2020 European research infrastructures grant agreement no. 857645.

H2020-INFRAEOSC-2018-3

NI4OS-Europe
National Initiatives for Open Science in Europe

Deliverable D3.3

Recommendations for HPC centres on-boarding

Lead beneficiary(s): IICT (editor)

Author(s): IICT, KIFU, IPB, GRNET partners

Status –Version: Final – f

Date: February 26, 2021

Dissemination Level: Public

Abstract: Deliverable D3.3 deals with the analysis of requirements and with the initial design of
potential on-boarding approaches for HPC centres to EOSC, taking into account developments within
EDI (European Data Infrastructure) and avoiding any potential duplications or misalignments.
Operational and technical requirements and recommendations for the HPC centres are suggested,
enabling the HPC centres to measure their EOSC readiness. Suggestions regarding the required
policies are provided.

© Copyright by the NI4OS-Europe Consortium

D3.3 - Recommendations for HPC centres on-boarding Page 2 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

The NI4OS-Europe Consortium consists of:

GRNET SA Coordinator Greece

ATHENA RC Beneficiary Greece

CYI Beneficiary Cyprus

UCY Beneficiary Cyprus

IICT Beneficiary Bulgaria

SRCE Beneficiary Croatia

RBI Beneficiary Croatia

KIFU Beneficiary Hungary

DE Beneficiary Hungary

ICI BUCURESTI Beneficiary Romania

UEFISCDI Beneficiary Romania

ARNES Beneficiary Slovenia

UMUKM Beneficiary Slovenia

IPB Beneficiary Serbia

UOB Beneficiary Serbia

RASH Beneficiary Albania

UNI BL Beneficiary Bosnia-Herzegovina

UKIM Beneficiary North Macedonia

UOM Beneficiary Montenegro

RENAM Beneficiary Moldova (Republic of)

IIAP NAS RA Beneficiary Armenia

GRENA Beneficiary Georgia

COPYRIGHT NOTICE

This work by Parties of the NI4OS-Europe Consortium is licensed under a Creative
Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

The NI4OS-Europe project is co-funded by the European Union Horizon 2020 programme
under grant number 857645.

The information herein does not express the opinion of the European Commission. The
European Commission is not responsible for any use that might be made of data appearing
herein. The NI4OS-Europe beneficiaries do not warrant that the information contained
herein is capable of use, or that use of the information is free from risk, and accept no
liability for loss or damage suffered by any person using this information.

D3.3 - Recommendations for HPC centres on-boarding Page 3 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Document Revision History

Date Issue Author/Editor/Contributor Summary of main changes

September 25,
2020

a E. Atanassov and T. Gurov Initial ToC

November 6,
2020 b

E.Atanassov, T. Gurov, D.
Vudragovic, T. Maray First draft

January 10, 2021 b Partners Remarks and partners’
contributions

January 25, 2021 c E. Atanassov et al. Major revision

February 7, 2021 d A. Mishev, T. Kazinczy, E.
Imamagic, K. Koumantaros,
D. Vudragovic, N. Liampotis

Major revision, moved content to
appendixes

February 18,
2021

e E. Atanassov et al. Minor revision, resolution of
comments, editing

February 26,
2021

f E. Atanassov et al. Minor revision, additional inputs,
QC

D3.3 - Recommendations for HPC centres on-boarding Page 4 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Table of contents

1 Introduction .. 11

2 Analysis of HPC resources in the region... 12

2.1 AVAILABLE HPC SYSTEMS IN THE NI4OS-EUROPE PARTNERSHIP 12
2.2 OVERVIEW OF THE MAIN HARDWARE AND SOFTWARE FEATURES OF THE HPC SYSTEMS 17
2.3 MAIN OPERATIONAL AND ADMINISTRATIVE REQUIREMENTS ... 18
2.4 ANALYSIS OF THE REQUIREMENTS, STEMMING FROM EOSC .. 19

3 Technical recommendations for provision of direct HPC access 20

3.1 TECHNICAL APPROACHES FOR PROVISIONING OF DIRECT ACCESS TO THE UNDERLYING HPC
INFRASTRUCTURE ... 20
3.2 SIMPLIFIED ACCESS TO THE HPC INFRASTRUCTURE ... 20
3.3 OPERATIONAL RECOMMENDATIONS FOR ADVANCED PROVISIONING OF DIRECT ACCESS TO THE
UNDERLYING HPC INFRASTRUCTURE ... 21
3.4 APPROACHES RELATED TO THE DATA PROVISIONING ... 22

4 Initial design for technical and operational integration in EOSC 24

4.1 INITIAL DESIGN FOR TECHNICAL INTEGRATION OF HPC SYSTEMS WITH THE NI4OS-EUROPE
CORE SERVICES AS A GENERIC SERVICE .. 24
4.2 POLICIES FOR ACCESS TO HPC ... 24
4.3 APPROACHES FOR PROVISIONING ACCESS TO HPC SERVICES PACKAGED AS A THEMATIC SERVICE
 ... 26
4.4 ON-BOARDING THE HPC RESOURCES THROUGH THE AGORA SERVICE CATALOGUE 27

4.4.1 Requirements for service providers ... 27
4.4.2 Requirements for HPC as generic services.. 27

4.5 OPERATIONAL REQUIREMENTS TO SUPPORT THE INTEGRATION OF AN HPC SYSTEM 28

5 Conclusions ... 30

6 Appendix A: Options for provisioning of HPC access through virtualization
and containerization ... 31

6.1 RECOMMENDATIONS FOR PROVISIONING OF HPC ACCESS IN EOSC THROUGH VIRTUALIZATION .
 ... 31
6.2 OPTIONS FOR USE OF CONTAINERS AND SYSTEMS FOR AUTOMATED MANAGEMENT OF
CONTAINERIZED APPLICATIONS. .. 40

D3.3 - Recommendations for HPC centres on-boarding Page 5 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

References

[1] Project NI4OS-Europe-857645 - Annex I - Description of the Action

[2] Ansible, https://github.com/ansible/ansible/releases

[3] Azab, Enabling Docker Containers for High-Performance and Many-Task
Computing, 2017 IEEE International Conference on Cloud Engineering (IC2E),
Vancouver, BC, 2017, pp. 279-285, doi: 10.1109/IC2E.2017.52

[4] EOSC-hub, https://www.eosc-hub.eu/

[5] FAIR Principles, https://www.go-fair.org/fair-principles/

[6] Gerhardt, L., Bhimji, W., Canon, S., Fasel, M., Jacobsen, D., Mustafa, M., Porter,
J., Tsulaia, V., Shifter: Containers for HPC, (2017) Journal of Physics: Conference
Series, 898 (8), DOI: 10.1088/1742-6596/898/8/082021

[7] Kubernetes, https://kubernetes.io/

[8] Kubespray, https://kubernetes.io/docs/setup/production-
environment/tools/kubespray/

[9] Kurtzer GM, Sochat V, Bauer MW (2017) Singularity: Scientific containers for
mobility of compute. PLoS ONE 12(5): e0177459.
https://doi.org/10.1371/journal.pone.0177459

[10] Lustre® file system, https://www.lustre.org/

[11] Merkel, D., 2014. Docker: lightweight linux containers for consistent development
and deployment. Linux journal, 2014(239), p.2

[12] NVIDIA GRID, https://www.nvidia.com/fr-fr/design-visualization/technologies/grid-
technology/

[13] NVIDIA, Vingelmann, P. & Fitzek, F.H.P., 2020. CUDA, release: 10.2.89, Available
at: https://developer.nvidia.com/cuda-toolkit

[14] OpenStack: Open source software for building private and public clouds,
http://www.openstack.org/ Open Nebula, https://opennebula.io/

[15] Shifter, https://github.com/NERSC/shifter

[16] Singularity, https://www.sylabs.io/singularity/

[17] TOP500 Supercomputer Sites, https://www.top500.org/

[18] EOSC Profiles, version 3.00, https://eosc-portal.eu/providers-documentation/eosc-
provider-portal-resource-profile

[19] NI4OS-Europe, D5.2 First report on provider and repository integration, 2021

[20] EGI Federation EC3, https://servproject.i3m.upv.es/ec3/

[21] NI4OS-Europe, D5.1 Provider landscape analysis and provider categorization, 2020

D3.3 - Recommendations for HPC centres on-boarding Page 6 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

List of Figures

FIGURE 1: AVITOHOL………………………………………………………………………………………………………..13
FIGURE 2: ARIS……….14
FIGURE 3: NIFF UV CLUSTER…………………………………………………………………………………………….15
FIGURE 4: CYCLONE…….15
FIGURE 5: PARADOX…….16
FIGURE 6: ISABELLA ………………………………………………………………………………………………………16
FIGURE 7: OVERVIEW OF THE HPC USER ACCOUNT PROCUREMENT SCHEME………………22
FIGURE 8: SYSTEM ARCHITECTURE DIAGRAM………………………………………………………………..32
FIGURE 9: DEPLOYMENT SCHEME USING KUBERNETES…………………………………………………43

D3.3 - Recommendations for HPC centres on-boarding Page 7 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

List of Tables

TABLE 1: NETWORKING SETUP…………………………………………………………………………………………32

D3.3 - Recommendations for HPC centres on-boarding Page 8 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

List of Acronyms

AAI Authentication and Authorization Infrastructure

API Application Program Interface

CIDR Classless Inter-Domain Routing

CPU Central Processing Unit

EOSC European Open Science Cloud

FAIR Findability, Accessibility, Interoperability, Reusability

GPU Graphics Processing Unit

HPC High-Performance Computing

KVM Kernel Virtual Machine

LVM Logical Volume Manager

MPI Message Passing Interface

RAM Random-access memory

SEE South-East Europe

SLA Service Level Agreement

VLAN Virtual Local Area Network

VM Virtual Machine

D3.3 - Recommendations for HPC centres on-boarding Page 9 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Executive summary

What is the focus of this Deliverable?

The main focus of this deliverable is to analyze the requirements and to provide initial
design for the potential on-boarding of HPC centres to EOSC, taking into account both the
specifics of EOSC and the established best practices in running HPC. The approaches
provided should serve to facilitate the practical on-boarding of the HPC centres in the
region, while also summarizing expertise and ideas that can be usable to wider audience,
as the typical European supercomputing centres are not consistently integrated in EOSC
at the moment, and the entire topic will be analyzed in the next 3 years in the wider
European landscape by different initiatives. In order to accommodate the differences in
both HPC hardware and types of available services, the deliverable provides different
possible routes for opening access to the HPC services through EOSC, so as to enable
centres with different levels of support and deployed services to become open for EOSC
access. As the activity itself is defined as having a certain research component, the results
and conclusions from testing certain deployment scenarios are also presented and
discussed.

What is next in the process to deliver the NI4OS-Europe results?

This deliverable summarized the output of the task. Based on the conclusions and
recommendations from this deliverable and the experience acquired throughout its
preparation, the HPC centers which are interested can proceed to registering their
resources in NI4OS-Europe service catalogue, choosing one or more of the provided
options. Thus the results of this activity will support the refinement of the on-boarding
approach that will be further described in D3.4 – Best practices for on-boarding and related
policies 2nd version.

What are the deliverable contents?

The deliverable starts with analysis of the specifics of the available hardware in order to
establish requirements and limitations for EOSC integration. Starting from there, we
systematize the operational and administrative requirements that are to be satisfied. Two
different routes for satisfying these requirements are presented in the next two sections
– provisioning direct user-level access as is typical in HPC/supercomputing and
provisioning access through virtualization and containerization. In the next section we
explain the specifics about how to integrate HPC services as a type of NI4OS-Europe
generic service, which should be the main way to achieve EOSC integration, while some
other possibilities are also discussed. Due to the importance of dealing with data in EOSC,
we also discuss various approaches and recommendations to facilitate easier access to
data for users of HPC services. Considerations with regards to the policies that accompany
EOSC services are provided. The deliverable conclusions summarize the most important
considerations and conclusions obtained during this initial design phase.

D3.3 - Recommendations for HPC centres on-boarding Page 10 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Conclusions and recommendations

We present a comprehensive set of options in order to allow HPC centers to select their
approach based on their operational organization and the expected usage. As a
straightforward and highest performance option we recommend to provide direct access
to the services, although access through virtualization or containerization is also a good
option for more mature centres. The deliverable summarizes operational requirements,
policy considerations and gives ideas about improving access to related research data
following FAIR principles.

D3.3 - Recommendations for HPC centres on-boarding Page 11 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

1 Introduction

Although there has been significant focus on the ensuring of access to research data in
Europe, the data is meaningless without the capability to analyze it and attain new
knowledge, using powerful computational resources. That is why it was important to allow
HPC centers to expose their resources to researchers through the EOSC. It has to be noted
that there is substantial “cultural” gap between the HPC world, led by powerful
supercomputers with hardware that is tightly coupled, highly optimised to solve the
envisaged scientific problems, and the world of distributed computing, where the goal is
to minimize communication between largely independent tasks (jobs), with far more open
data access patterns and protocols. That is why opening up the relatively closed HPC
centers, especially supercomputers, for access through EOSC, presents unique challenges
in different areas, like operations, policy, software, support.

Nevertheless, there are many technologies that allow for resolving these difficulties and
the particular approach chosen by the HPC center will be determined by their level of
maturity and availability of technical expertise and support, as well as the type of users
that they expect to attract via EOSC. Our proposed approaches are motivated by the
analysis of the hardware and software setups of the HPC centres in the region, where we
notice substantial diversity. Representative resources and analysis of their setup is
provided.

As the main option for offering HPC resources through EOSC, we consider providing direct
access, as it safely allows the maximum performance of the system to become available
to the end users. The usage of virtualization or even conteinerization technologies is also
described in the Apendix A, as a possibility for HPC centers that have appropriate levels
of support and expertise, as well as the desire to provide more flexibility and to support
certain workloads that map naturally to such kind of environments. Notably, many HPC
applications consist of single or multiple executions that use single powerful server (e.g.,
one that has advanced GPU), that can compensate for the introduced overhead on the
account of ease of access and user friendliness.

We also tackle the question of data provisioning as part of the HPC services, mainly from
technical point of view, with the main goal to ensure smooth experience for the user.
Various options are provided, from simpler to more advanced approaches.

The operational requirements that are specifically resulting from ensuring EOSC access
are also considered and suggestions and recommendations are provided. We expect that
the HPC centre would integrate support of EOSC users as part of their regular operations,
while some integration with outside services, e.g., monitoring, accounting, helpdesk,
authentication, as provided by the NI4OS-Europe project, will be beneficial to lower the
burden on the centre.

By providing comprehensive list of options, requirements and recommendations to the
centres we hope to help especially the smaller HPC clusters to open-up towards EOSC
users and research groups, thus allowing larger groups of scientists to obtain access to
state-of-the-art equipment backed up by mature software and operations environment
and adequate support.

D3.3 - Recommendations for HPC centres on-boarding Page 12 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

2 Analysis of HPC resources in the region

We start by presenting a brief analysis of the available HPC systems in the region in order
to establish the motivation and basis for the recommendations of the deliverable.

It is important to note the contradiction between the desire to open the systems for wide
access by diverse user communities and to ensure security and preservation of not only
data but also privacy in general, especially since some of these systems are unique at
their national level and thus may perform research tasks that are sensitive in various
aspects. Another area of contingency that is also discussed in detail is the importance of
achieving the highest available performance, which typically is obtained by having direct
access to the hardware, while ease of use is usually attained by providing some sort of
standardized access, using technologies like virtualization or containerization.

These complex interactions are present not only in the region, but also in Europe in general
and have been a significant hindrance to adoption of HPC technologies by researchers and
in general.

2.1 Available HPC systems in the NI4OS-Europe partnership

There is substantial heterogeneity in the types of systems available in the region, their
sizes and setups. As the aim of this deliverable is to deliver approaches and
recommendations, we only present several systems that are representative of the type of
resources and the challenges present when trying to expose them through EOSC.

First of all, we have supercomputers, defined as systems that have been present in the
Top500 list of supercomputers [17]. Then we mention specifically one large system with
shared memory. The rest of the systems can be considered as HPC clusters, sometimes
equipped with InfiniBand and/or accelerators, for which systems we present some
examples instead of exhaustive list.

Provider System Architecture Cores Interconnection Memory Storage Accelerators

IICT-BAS AVITOHOL Intel 20700
(total)

FDR InfiniBand 9600 GB 96TB Intel Xeon Phi
7120P

GRNET ARIS thin Intel 8520 FDR InfiniBand - 1200TB

ARIS fat Intel 1760 22TB

ARIS GPU Intel 880
(CPU)

 2816GB NVidia K40 GPU

ARIS Phi Intel 360
(CPU)

 1152GB Xeon Phi 7120P

ARIS ML Intel 40 (CPU) 512GB NVIDIA V100

KIFU Debrecen 2
(Leo)

Intel 1344
(CPU)

FDR InfiniBand 10TB Nvidia K20x and
K40x

Debrecen 3
(Apollo)

Intel 1056
(CPU)

FDR InfiniBand Xeon Phi 7120P

Budapest Intel 768
(CPU)

FDR InfiniBand 2TB

Miskolc UV Intel, ccNUMA 352
(CPU)

NUMALink 1.4TB

CyI CYCLONE Intel 680
(CPU) +
640 GPU

HDR-100 6.5 TB 5 PB disk

+ 150TTB
nvme

64 NVIDIA V100
GPU

EPYC AMD EPYC (Rome) 1024 HDR-100 2 TB As above

IPB PARADOX-IV Intel 1696
(CPU)

QDR InfiniBand NVIDIA Tesla
M2090

SRCE ISABELLA 3100
(CPU)

FDR InfiniBand 16 TB 756TB NVIDA Tesla
V100

D3.3 - Recommendations for HPC centres on-boarding Page 13 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

AVITOHOL (Bulgaria)

AVITOHOL consists of 150 HP Cluster Platform SL250S GEN8 servers with 2 Intel Xeon E
2650 v2 CPUs and 2 Intel Xeon Phi 7120P coprocessors.

Site: IICT-BAS/Avitohol

Manufacturer: Hewlett-Packard

Cores: 20700

Interconnection: FDR InfiniBand

Theoretical Peak Performance: 412.3 TFlop/s

RMAX Performance: 264.2 TFlop/s

Memory: 9600 GB

Operating System: Red Hat Enterprise Linux for HPC

Compiler: Intel Composer XE 2015

Storage systems: 96 TB storage (currently)

Top500 entry: https://www.top500.org/system/178609/

Additional resources: 8 thick nodes with 3TB RAM, 4 CPUs Intel Intel Xeon Gold 6238L
2,1GHz, 22 cores each, 12 GPU-based servers Fujitsu Primergy RX 2540 M4, NVIDIA
Tesla V100 32GB 128 GB RAM, CPU 2x Intel Xeon Gold 5118 2.30GHz 24 cores,
2x800GB SSD, 3*12TB HDD
Interconnected with non-blocking FDR and now HDR InfiniBand (200Gbps linespeed).

Figure 1: AVITOHOL

ARIS (Greece)

The ARIS infrastructure consists of a total of five computing islands based on Intel x86
architecture interconnected into a single non-blocking InfiniBand FDR14 network that
offers multiple processing capabilities and architectures.

 A thin node is based on the IBM NeXtScale platform and Intel Xeon E5-2680v2
Ivy Bridge processors. It has 426 computing nodes and offers a total of 8,520
cores (CPU cores).

 An island of large memory nodes (fat nodes) consisting of 44 Dell PowerEdge
R820 servers. Each server offers 4 Intel Xeon E5-4650v2 Ivy Bridge processors
and 512 GB of central memory

 An island of GPU accelerator nodes consisting of 44 Dell PowerEdge R730 servers.
Each server contains 2 Intel Xeon E5-2660v3 Haswell processors, 64 GB of
memory and 2 NVidia K40 GPU cards, and

D3.3 - Recommendations for HPC centres on-boarding Page 14 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 An island of Xeon Phi accelerator nodes consisting of 18 Dell PowerEdge R730
servers, each containing 2 Intel Xeon E5-2660v3 Haswell processors, 64 GB of
memory and 2 Intel Xeon Phi 7120P co-processors

 A machine learning node island consisting of 1 server, which contains 2 Intel E5-
2698v4 Broadwell processors, 512 GB of central memory and 8 NVIDIA V100
GPU cards

 Top500 entry: https://www.top500.org/system/178545/

Figure 2: ARIS

NIFF(KIFU) (Hungary)

The priority for NIIF Institute is to keep their systems using the most advanced
technologies available to serve the widest range of the scientific community. This can only
be achieved by joining projects aiming to integrate or develop our systems. Some of the
NIFF clusters are:

 Debrecen 2 (Leo) - GPU cluster - The cluster have 1344 Sandy Bridge CPU cores,
accelerated with 252 Nvidia K20x and K40x GPGPUs adding 3576 more (real) cores.
The machine has more than 10Tbytes of RAM.

 Debrecen 3 (Apollo) - Phi cluster - The cluster has 1056 Sandy Bridge CPU core,
accelerated by 90 Xeon Phi coprocessor, adding 5490 more cores to be available
for computations. The machine has nearly 6Tbytes of RAM.

 Budapest cluster - The machine has 768 db Opteron CPU cores, and more than
2Tbytes of RAM.

 Miskolc - UV machine - This is a UV 2000 machine from SGI, which provides
similar technology to regular shared memory architectures, called ccNUMA. The
difference between UVs and clusters is that jobs can use all CPUs and full memory
capacity for the same computation on the same OS on UVs.

 The machine has 352 Sandy Bridge CPU and 1.4Tbytes of RAM (which can be fully
utilized by a single job, if needed). Despite the machine being visible as a single
server, there is a batch system that manages the execution.

D3.3 - Recommendations for HPC centres on-boarding Page 15 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Figure 3: NIFF UV cluster

CYCLONE (Cyprus)

CYCLONE – 17 forty-core compute nodes, 16 forty-core compute nodes, each with 4 Nvidia
V100 GPUs, 2 twenty-core sockets per node, each is Intel Xeon Gold 6248, 96 GB memory
per CPU node, 192 GB memory per compute node, Aproximately 5 TB, 135 TB NVMe
Storage, 3.2 PB Storage, HDR 100 interconnect, GPUs accelerator, CentOS, 600 TFlop/s

CYICLOUD – Based on OpenStack (Stein), 20 physical servers (24 cores, 128 GB RAM),
CEPH storage backend with 200 TB.

EPYC Server – Based on AMD EPYC (Rome). 8 Servers x 128 cores x 2 threads.

Figure 4: CYCLONE

PARADOX (Serbia)

PARADOX Cluster at the Scientific Computing Laboratory of Institute of Physics Belgrade
consists of 106 compute nodes (2 x 8 core Sandy Bridge Xeon 2.6GHz processors with
32GB of RAM + NVIDIA® Tesla™ M2090) interconnected by the QDR InfiniBand network.

PARADOX is an HP Proliant SL250s based cluster with the following components:

 Compute nodes: HP Proliant SL250s
 Processors Type: Intel® Xeon® Processor E5-2670 (Sandy Bridge, 8 Core, 20M

Cache, 2.60 GHz)
 Number of nodes: 106
 Number of CPU cores: 1696

D3.3 - Recommendations for HPC centres on-boarding Page 16 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 Number of GPUs: 106 NVIDIA® Tesla™ M2090 (5375MB of RAM, 512 CUDA cores
at 1.3GHz, Compute capability 2.0)

 RAM: 32 GB/node (4x8GB) DRR3 1600MHz
 Network infrastructure: InfiniBand QDR

Operating system:

The operating system on PARADOX cluster is Scientific Linux 6.4

Figure 5: PARADOX

ISABELLA (Croatia)

Isabella consists of 135 worker nodes with 3100 processor cores, 12 GPUs and 756 TiB
data space. As a shared resource of all scientists in Croatia, it allows using significant
computational resources in demanding data processing of scientific and research projects.

A total of 135 computer nodes provide users with:

 270 Intel CPUs
 3,100 CPU processor cores
 12 NVIDA Tesla V100 with 16 GB
 16 TB of RAM
 756 TB of shared data space
 InfiniBand FDR

Cluster middleware used:

 Son of Grid Engine batching system
 BeeGFS parallel file system
 ScaleMP vSMP fat node with 160 cores and 2 TB RAM
 Singularity
 Ganglia monitoring system
 CentOS 7.

D3.3 - Recommendations for HPC centres on-boarding Page 17 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Figure 6: ISABELLA

2.2 Overview of the main hardware and software features of
the HPC systems

On the basis of the systems that are present in the partnership, as outlined in the previous
section, we can summarize their hardware and software features as follows:

Processors: Mostly Intel or compatible AMD. Options like ARM or IBM Power are not
widespread in the region.

Co-processors and accelerators: Most of the time these are NVIDIA CUDA GPUs [13], while
substantial amount of compute power is present in Avitohol via Intel Xeon PHI.

Memory: mostly distributed memory systems (clusters), at least one shared memory
machine (single system image).

Interconnect: InfiniBand is the most popular interconnect for the larger installations. Pure
Ethernet-based smaller clusters are also present.

Operating system: Different versions of Redhat Enterprise Linux, including RHEL for HPC
or compatible (like CentOS), rarely SUSE or others.

Shared Storage: Lustre, NFS, others

Virtualization solutions: OpenStack, OpenNebula, NVIDIA Grid (commercial software
specific for virtualizing access to NVIDIA GPUs [12]).

Batch systems: PBS/Torque, SLURM, others.

Although there is substantial diversity in hardware, it is encouraging that the operating
systems are mostly compatible. The batch systems are also very similar in their

D3.3 - Recommendations for HPC centres on-boarding Page 18 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

functionality. Most popular middleware for managing virtualization seems to be
OpenStack. We do not deal here with application software and libraries, but usually they
are deployed under a shared filesystem and their compatibility depends on the usage of
the same operating system and type of library for support of accelerators (e.g. CUDA
version) rather than anything else.

2.3 Main operational and administrative requirements

When provisioning access to certain HPC resources to outside users, the corresponding
HPC centre has to take into account its own governance rules and technical limitations.
Here we list the main points that have to be taken into consideration.

Security

The HPC resources are expensive facilities, usually unique at the national level for
the respective country and as such should be properly protected from unauthorized
access. The constant ongoing attacks that are easily observed for any system that
is even partially visible on the Internet dictate that the HPC systems should be
closely guarded and monitored. In most cases firewalls limit access to the system
and certain services may be available only locally.

Traceability

Stemming from the above points, for each system it is important to be able to
trace each action to the specific user that initiated it. Sometimes the reason this is
desirable is that the execution of certain codes leads to various kinds of technical
problems. The increased complexity of the HPC systems increases the difficulty of
understanding and solving such problems and also creates situations where
undesirable interactions between workloads from different users happen. Apart
from traceability towards different users, it is also important to be able to tell which
applications are active and to which projects their use has to be attributed.

Availability

Due to the complexity of HPC systems and their high resource use (e.g., electricity)
and dependence on the proper functioning of several systems like cooling, fire
detection/prevention, etc. their constant availability cannot be guaranteed.
Complex maintenance works may require sometimes extended downtime periods.
While large-scale commercial providers may be able to design their centres with
high availability in mind, typical HPC and especially supercomputer systems for
research are designed mostly for performance and cost-effectiveness. That is why
applications that absolutely require 24x7 availability with very low downtimes
cannot rely on a single centre 100%. Another consideration in this area is that
some high-profile applications require the use of the whole system or a substantial
part of it. Thus even if the whole system is fully operational, it can be tied-up in
certain workload for substantial periods of time. This is an issue for applications
that work in online or quasi-online regime.

D3.3 - Recommendations for HPC centres on-boarding Page 19 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

2.4 Analysis of the requirements, stemming from EOSC

In order to expose HPC services through EOSC, one has to ensure the requirements that
are specific to EOSC are satisfied. Although to some extent they overlap with these
previously mentioned, we try to focus on those that are specific to EOSC and the possible
gaps.

Policies

A comprehensive set of policies should be clearly outlined. Although most centres
already have these, they have to be updated and in some cases translated. The
templates provided from NI4OS-Europe can be useful in this respect. Some issues
that are specific to HPC and have both technical and administrative aspect, are
considered in Chapter 5.2.

Availability

The services should be made available to an audience that is wider than the current
user-base. Geographically this means to extend beyond national borders. There
should be clear understanding of the limitations of the offering, for example
whether and how business/commercial use is allowed.

Accounting

It is important to be able to distinguish EOSC users from other users. It is also
necessary to ensure correct and comprehensive measuring of their use of
resources. Usually certain limits to the resource usage are established, like 5% or
10% from the available CPU core hours.

Pricing

A comprehensive pricing scheme should be established. It is customary to measure
the resource utilization in terms of CPU core hours and the data usage in TB/month.
As different types of storage may be available, it is acceptable to have different
prices for the different types. Additional services that are offered will also
necessitate their own pricing model. For some more advanced types of services
the measurement can be in number of queries per month. It is advisable to avoid
complex and difficult to understand measures.

Monitoring

The availability of the service and its operational state should be constantly
monitored. It is advisable to make the results of the monitoring visible to users.

D3.3 - Recommendations for HPC centres on-boarding Page 20 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

3 Technical recommendations for provision of direct
HPC access

3.1 Technical approaches for provisioning of direct access to
the underlying HPC infrastructure

The EOSC environment is more conducive to provision of access to the HPC infrastructure
using one of the virtualization or containerisation options or packaging the desired
workloads as a thematic service or function-as-a-service. However, the highest
performance and the biggest flexibility when using HPC is obtained via unencumbered
direct access. That is why the direct option should be the first to consider.

In this subsection we discuss some high-level considerations that determine the technical
solution, while more concrete steps are described later.

Note that once the issue of how exactly to provide the user account to the system is solved
(see next subsection), there are very few technical changes that are to be implemented.

The usage accounting should be ensured to provide enough information in order to
properly measure and attribute the use of resources (usually CPU-core-hours) to EOSC.

The level of availability of resources should be decided. It is advisable to create a different
queue or queues for EOSC users. Some batch systems have the option to manage
accounts separately, which gives good high-level information about the distribution of
usage among projects, communities or applications. If such an option is enabled, it should
be clearly described in the usage manual so that its use is consistent.

Since HPC resources are usually closely guarded, it is expected that users are to obtain
access for login through ssh only. Some batch systems allow web interface for job
submission, in which case users may have access to that too. It is desirable to discourage
and even disable the use of passwords for access with preference to public/private keys.

The management of access to data is discussed much more in detail in another section.

3.2 Simplified access to the HPC infrastructure

The NI4OS-Europe AAI allows users to associate their public SSH key(s) to their profile
using the User & VO/Group Membership Registry (COmanage Registry) at
https://aai.ni4os.eu/registry. The keys can then be made available to connected services.
Specifically, SSH keys are released through the sshPublicKey
(urn:oid:1.3.6.1.4.1.24552.500.1.1.1.13) in the case of SAML services and the
ssh_public_key claim in the case of OpenID Connect clients.

It should also be possible for the NI4OS-Europe AAI to provision the user's SSH keys to
Unix based systems. There is no requirement for custom SSH clients or servers, though
tight integration with the VO/group which can access these systems is implied.
Specifically, the user identifier, VO/group information and SSH keys maintained in the
NI4OS-Europe Membership Registry can be provisioned to LDAP (or another suitable
location), and the Unix servers would need to be configured to read their account and

D3.3 - Recommendations for HPC centres on-boarding Page 21 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

authentication data from LDAP using standard PAM, NSS, SSSD, and/or SSHD
configuration. In this manner, accounts may be provisioned and configured on the fly.

An alternative approach would require the installation of a non-standard PAM module
implementation (e.g. https://github.com/stfc/pam_oauth2_device) that would allow users
to log in via SSH using OpenID Connect/OAuth2, instead of SSH Keys. Such PAM
implementations use the OAuth2 Device Flow (https://oauth.net/2/device-flow/), which is
already supported by the NI4OS-Europe AAI OpenID Connect Provider. Specifically, upon
SSH login, users will be presented with a URL which they can open in a web browser and
authenticate using their preferred academic/social credentials registered with RCIAM.
Upon successful authentication, the PAM module can check if the user is in the right
VO/group(s) or have a specified username and allow or deny access.

3.3 Operational recommendations for advanced provisioning
of direct access to the underlying HPC infrastructure

There are at least two general approaches that HPC systems take to the management of
user accounts. One is to manage accounts using standard system tools, probably with
some degree of automation. The other is that they implement a form of Single-Sign-On
(SSO), usually using an LDAP directory as the backend for authentication.

The procedures around the procurement of user accounts can vary from site to site
depending on local policies and configuration of storage systems, batch systems, etc.

Certain degree of automation is beneficial to increase the take-up of HPC services via
EOSC. However, a heavyweight implementation may impose undesirable unification
requirements on the individual centres and clash with local policies and setups. Thus the
next procedure is an option that some centres could implement, depending on how many
users they expect to handle. In the Figure 7 we see a schematic description of the process,
presuming that the user management system is essentially a web application/front end,
which interacts with the User management system/back end. It is acceptable and probably
advisable in such a setting to have also a manual step where the requests are accepted
by the support staff individually. The users can submit their signed forms to the HPC
Account procurement service and, once their request is accepted, they can also receive
their SSH keys. Alternatively, a manual procedure (using email) can be utilized by some
centres. We consider that it is more important to establish contact with the user and
enable secure and easy submission of the required forms.

D3.3 - Recommendations for HPC centres on-boarding Page 22 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Figure 7: Overview of the HPC user account procurement scheme

3.4 Approaches related to the data provisioning

This section describes the various issues related to the provision of local data access,
interplay with other data services, backup, repositories, etc. and provides approaches to
deal with these.

The provisioning of data is strongly intertwined with the provisioning of access to HPC
services. In view of the usual tight security profiles of HPC systems, this presents certain
challenge for smooth integration of HPC to EOSC. In this chapter we consider the relevant
issues and approaches for dealing with them.

First of all, HPC users that obtain access through EOSC should obtain adequate access to
the fast local storage. Since this storage is usually a limited and highly contested resource,
it is advisable to establish and enforce quotas, so that the EOSC users have automatically
limited access to this resource. Certain amount of space can be provided automatically
and higher allowances should be subject to additional negotiations/SLAs, etc.
Group/project quotas are recommended, whichever is applicable.
In general, standard quota management tools can be used to setup/enforce quotas.
Note that for Lustre file systems quota enforcement can be enabled on a per-filesystem
basis. Sites should take into consideration also some privacy issues. They are advised to
use numeric user names and to make sure that access for different projects/users should
be clearly separated by ownership and ACLs, using the available technical means.
Additionally, for sensitive data caching should generally be disabled.

Usually this kind of storage was provided via NFS and this is still the case for smaller
clusters without specialized low-latency interconnection. However, larger production
installations use high-performance parallel filesystems.

D3.3 - Recommendations for HPC centres on-boarding Page 23 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

One popular solution for this question, also in the research community, is the Lustre
filesystem [10]. The Lustre filesystem serves local storage through several dedicated
nodes, divided into two types. The management type nodes that deal mostly with
metadata are MDS/MDT, while the OST nodes serve the actual data. It is advisable to
enable the high-availability features of Lustre, if there is enough hardware for this. Using
active-active HA server pairs and multi-path storage connections certainly improve
expected availability and minimize possible downtimes. Large centers like Avitohol already
have this types of installation. However, enabling quotas is another optional step during
installation that is well-described in the Lustre manual and should be performed. It is also
advisable to enable the management of additional user groups as this is helpful in
managing access to software with restricted rights (e.g., if certain commercial software
should be accessible only by certain users).

Due to the vastly higher performance of flash storage vs HDD and the decreasing cost,
having a flash storage layer becomes preferred and essential option for provision of local
storage. There are other filesystems that have varying performance features and give
additional flexibility.

In the context of EOSC the important questions are related to other access protocols that
can be available, long-term storage (essentially object storage as opposed to the usual
block storage provided by Lustre/NFS, etc.), automatic backups and so on.

For most applications having POSIX-compliant filesystem is a necessity, so we definitely
discourage consideration of options that are not POSIX-compliant.

Fortunately, NFS for small clusters and Lustre for large installations are POSIX compliant.
Other possible option that deserves consideration is the WekaIO filesystem, which has a
POSIX interface to MatrixFS with optimal performance, intended as the primary ingest and
operational interface for clients. The recommended cluster design also incorporates a
sample on- or off-premises S3-compatible object storage interface, which enables to
potentially provide snapshot to cloud. As most of the research HPC centers will have only
on-premises object storage, they could use dense storage servers, coupled with on-
premises object storage software like Scality RING or SUSE Enterprise Storage. Although
WEKA Matrix is not considered as a replacement for traditional NFS or SMB solutions, it
does to support these protocols. Non-POSIX clients share a common namespace with
POSIX clients, and provide best possible performance within the limitations of SMB and/or
NFS protocols.

D3.3 - Recommendations for HPC centres on-boarding Page 24 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

4 Initial design for technical and operational
integration in EOSC

4.1 Initial design for technical integration of HPC systems
with the NI4OS-Europe core services as a generic service

In order to integrate an HPC system as NI4OS-Europe generic service, there are two
technical integration steps to be made. Some centers may provide an endpoint for a
partially or fully automated HPC account provisioning service, as described before. Other
centers will provide a web page, which allows for requesting the service and establishing
contact between the user and support staff in order to complete the whole account
creation process.

The second technical step is to install the accounting data export scripts that will extract
usage data relevant for the NI4OS-Europe projects. This is a python script that will have
a minimal number of dependencies (possibly none), which will upload the data to a NI4OS-
Europe service endpoint. Its invocation should be handled by the cron service. The already
provided accounting publisher code can be used as a template for this. Sites are advised
to do also storage space accounting. The frequency of data collection is up to each site
but publishing shall be done periodically. The method used by the site must be consistent,
e.g. daily average or maximum. Usage data may be aggregated for months. Again, the
NI4OS-Europe accounting service has templates for publishing such data.

The process for provisioning of user accounts is well researched and effectively solved at
each of the high-performance resource centers. For the purpose of streamlining the
process in the case when the user requests and obtains access through EOSC, we consider
several useful options. First of all, it is advisable to maintain pre-configured user accounts,
dedicated for EOSC users, and hand them out as the users requests are accepted. Since
due to GDPR requirements these accounts should not contain user’s names or other
specific information, this will be easy to follow.

Until the process is very well tested in production, we assume that manual review of the
requests will be performed and that is why we do not propose full automation.

What could be done, however, is for the resource center to maintain a web page where
the users can log-in using Single Sign-On (SSO) credentials, possibly upload signed forms
or input other technical or administrative information that is needed, and download access
credentials (i.e., ssh public/private key pairs) when their request is granted. This process
could work also with the NI4OS-Europe authentication system, since the issue how to
enable this authentication to work for a web-based application is already used in
production.

4.2 Policies for access to HPC

When preparing the policies for the services that expose HPC resources, the resource
owners may use the generic policy templates that have been provided by the NI4OS-

D3.3 - Recommendations for HPC centres on-boarding Page 25 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Europe project. Here we discuss several issues that are specific for the HPC resources and
combine technical and administrative considerations. Our recommendations are not
mandatory, but we try to summarize best practices and to give an idea about the minimum
that has to be done in order to ensure proper use of the otherwise highly valuable HPC
resources. Most of these issues are the same for both local and EOSC users.

1. Forbidding multiple accounts and also account sharing. For cases when a group
needs to share data between themselves, appropriate shared directory should be
provided by the center instead.

2. Ensuring possibility to contact the user in case of urgency, e.g., technical or
security incident. Such data should be kept strictly confidential, but usually is
necessary in case when user workload causes disturbance in the operations of the
center.

3. Multi-factor authentication if there is a case of highly sensitive data or usage.
Nevertheless, such situations should be resolved on case by case basis, since the
usual technical means of ensuring security in the HPC center may not be adequate
for higher security requirements.

4. Consider forbidding unencrypted data exchange in/out of the centre. Especially
forbid as a minimum the unencrypted data exchange of sensitive data.

5. Forbid explicitly storing of any dubious kind of data. As an example, credit card
information, as wells as medical data and similar should not be allowed except in
very limited circumstances. Offensive content should also be clearly banned.

6. Forbid explicitly certain kinds of mostly illegal activity or activity that can lead to
reputational damage to the data center. As an example, usage of HPC facilities for
breaking encryption should be forbidden in most cases.

7. Commercial usage of the HPC facilities in most cases is not accepted.
8. In most cases users cannot run services from inside the data centre, because of

firewall configuration. However, there may be situations when such use is
acceptable and required. For such kind of use there should be separate rules,
explaining the responsibilities of the users, e.g., with regards to security of the
underlying system providing the service.

9. User’s responsibilities in case of security incident should be clearly stated.
10. Forbid security testing. There have been cases of users running software that tests

system security automatically. Without explicit written permission running such
kinds of tests is undesirable and should be prohibited.

11. Forbid evasion of resource utilization controls. Although technical measures are
usually in place to ensure that users do not login to random nodes that are not
part of their jobs, it is useful to explicitly forbid such attempts. Users shall not
purposely engage in activities to circumvent computer security or system
administrative measures (for example batch queue control settings).

12. Certain nodes are usually available for development/testing purposes. These are
usually the login nodes. It should be clearly stated what kind of usage is acceptable
on these nodes and what is not.

13. Users should not expose information that they obtained accidentally through the
use of the system. For example, if they came across data from other users’ files,
they are not allowed to share it.

D3.3 - Recommendations for HPC centres on-boarding Page 26 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

14. Usage of the system for political purposes is highly undesirable and should be
forbidden.

15. Proper acknowledgement of the use of the centre’s resources should be ensured.
16. In some cases a technical report of the results of the use should also be requested.
17. Use of unlicensed software should be prohibited.
18. Users should understand that the use of the system is a privilege and not a right.

As such, it can be revoked at any time. Access to the system is not guaranteed
and should not be assumed.

19. The HPC resources should not be used for activities with high operational
requirements that cannot be guaranteed. For example, usage of the system for
management of nuclear plants, air traffic controls, medical procedures.

20. Collection of accounting and monitoring data – users should be aware that such
collection is being made. It should also be stated that the HPC center adheres to
the GDPR and the relevant legislation and does not sell personal data to 3rd parties.

21. FAIR principles [5] – reflect the adherence to the FAIR principles for the research
data (this issue is not discussed here because it is more relevant for data-oriented
services and is tackled in different work packages of the project).

4.3 Approaches for provisioning access to HPC services
packaged as a thematic service

The main focus of the deliverable is the provision of access to “raw” HPC services, i.e.
users to be able to launch their workloads directly on the underlying hardware
infrastructure. However, some kinds of application workloads are sufficiently popular so
as to make it worthy to expose them as thematic services that hide the complexity of the
execution and improve the user experience. On the other hand, in order for such services
to be considered as proper HPC services, they have to be resource intensive enough. The
partnership that is currently in NI4OS-Europe has vast experience in using certain generic
portals in the Grid environment, like P-GRADE and its descendant technologies. Other job
execution schemes that are community-agnostic, achieved certain popularity. However,
with the maturing of the user communities, at certain point they achieve the capability to
use HPC services that are available through ssh-based user access only, by developing
the corresponding codes/scripts and hooking them up with their own community-specific
portals. In such case it is not necessary for the HPC provider to develop a thematic service.
The most high-probability situation where such a thematic service would be usable is when
there is a sizable cluster of local users that utilize an internationally recognized open-
source application. In such case the HPC service could be developed mainly for them and
then exposed through EOSC to gain additional international users. An example of such
workloads can be the calculation of meteorological prognosis or longer term climate
modelling. Since such computations also generate significant amount of output data, it is
important to ensure good accessibility of these data. From point of view of integration to
EOSC such thematic services follow the usual route for thematic services, with added
consideration for proper accounting of the usage, since it may happen that different
queries use different amounts of computing resources and thus the measurement will not
be based on number of queries, but most probably on number of CPU hours and TB/month
of data. It is also important to evaluate the expected network utilization in order to be

D3.3 - Recommendations for HPC centres on-boarding Page 27 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

sure that network usage does not lead to network overload, for the countries that have
more limited network connectivity.

4.4 On-boarding the HPC resources through the AGORA
service catalogue

4.4.1 Requirements for service providers

The provider is defined [18] as an EOSC system user responsible for the provisioning of
one or more resources to the EOSC. Since some partners within the NI4OS-Europe
consortium are resource providers, including the providers of HPC resource, they are
registered within the Agora. In this case, the on-boarding team aims to fully describe, in
terms of EOSC profiles mandatory information, providers which resources are also on-
boarded. The details for on-boarding of the providers are described in the deliverable D5.2
First report on provider and repository integration [19].

4.4.2 Requirements for HPC as generic services

As described in the NI4OS-Europe deliverable D5.1 Provider landscape analysis and
provider categorization [21], the following details are collected in the EOSC profiles
regarding the HPC resources:

 Basic information

o Peak performance [TFlops] - Theoretical peak performance of the service
in TFlops, including CPUs and Accelerators

o Server specification – Vendor specific information about servers

o Number of servers

 CPU details

o CPU Specification – Vendor and model of CPU

o CPUs per server

o Cores per CPU

o RAM per server [GB]

o RAM per core [GB]

o Total number of CPU-cores – Total number of CPU cores for the entire system

o Max number of parallel processes – maximum number of parallel processes
allowed for end users

o CPU peak performance [Tflops] - CPU theoretical peak performance of the
system

 Accelerator details

o Accelerator specification – Vendor and model of the accelerator

o Total number of accelerators

o Accelerators per server

D3.3 - Recommendations for HPC centres on-boarding Page 28 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

o Maximal number of accelerators per server

o Accelerators peak performance [Tflops] - Accelerators theoretical peak
perfomance of the system

 Interconnection

o Interconnect type – Interconnection technology between servers

o Interconnect latency [μs]

o Interconnect bandwidth [Gbps] - Interconnection bandwidth between nodes

 Filesystem details

o Local filesystem type – Shared Filesystem used for interconnecting nodes

o Total storage [TB]

 Software details

o Operating system

o Batch system/scheduler

o Development tools

o Libraries

o Applications

The metadata is organized in six groups for more clarity as well as to provide users with
more structured information and help them select the most suitable HPC resource to their
processing needs.

4.5 Operational requirements to support the integration of
an HPC system

The provisioning of HPC access to EOSC users imposes additional requirements to the
operations of the HPC data centre. Once the question of user account provisioning is solved
as outlined in the previous section, we have several other points of purely operational
nature that need to be solved.

A support ticket queue should be opened for the system on the HelpDesk service and
support accounts should be opened for the service provider’s support staff. By leveraging
NI4OS-Europe helpdesk we can save ourselves the trouble of maintaining a dedicated
helpdesk instance when the HPC center does not already run one.

The HPC system should have a short user guide available and a link to it should be
provided in the EOSC page.

The system availability in general is already tackled by the staff, but with relation to EOSC
the staff needs to ensure that adequate resources are available for actual execution of
workloads. In the various batch systems there are well established ways to solve this
problem, e.g., by ensuring dedicated resources available or quotas. The most desirable
solution is to define certain percentage of the resources as available for EOSC and then

D3.3 - Recommendations for HPC centres on-boarding Page 29 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

ensuring that this percentage is available on the average, along certain period of time.
Such a solution is better than full dedication of resources, because HPC resources are
typically oversubscribed and should not be left in idle state without good reason.

The one exception to this approach is if an SLA is negotiated with a user/user community
where the dedication of resources is guaranteed.

In most cases of HPC systems some queue with shorter wait times and limited execution
time is available (i.e., for short jobs). It is advisable to make this queue available also to
EOSC users.

D3.3 - Recommendations for HPC centres on-boarding Page 30 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

5 Conclusions

We described several viable options for how to expose HPC resources in EOSC. The NI4OS-
Europe core services are useful to facilitate the process. Some of the options like
virtualization, containerization, and packaging as a thematic services, are more complex
and require more effort, while actually by definition they cannot offer the same
performance attainable through direct access. On the other hand, provisioning of direct
access to the HPC facilities is relatively straightforward to implement and well supported
operationally, via the services like helpdesk or accounting. Thus it is to be the first option
under consideration for production implementation, while the other possibilities are
dependent on the maturity of the data center operations and the needs of potential user
communities that can come to use the resources from EOSC. Some datacenters that
already have implemented e.g., OpenStack, can proceed to offer HPC services also from
there.

In all cases HPC services are coupled with appropriate data access. Some data centers
that are in the process of expansion can consider upgrading their technology for offering
shared storage with the aim of achieving better performance and more flexibility in view
of the FAIR principles.

Overall there are sufficient applicable options for offering HPC services and the data
centers should start doing this, leveraging the capabilities of NI4OS-Europe core services
on one hand and operational teams on the other.

However the actual availability of HPC capacity through EOSC will have to be resolved at
the later stage when long-term cross-border reimbursement schemes are established at
the pan-European level, in collaboration with EuroHPC, PRACE and similar large HPC
initiatives.

D3.3 - Recommendations for HPC centres on-boarding Page 31 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

6 Appendix A: Options for provisioning of HPC
access through virtualization and containerization

6.1 Recommendations for provisioning of HPC access in
EOSC through virtualization

For many years now virtualization is integrated in the data centres, including in the HPC
facilities for research. It has many advantages, especially in the context of EOSC. Some
of the disadvantages are related to possible drop in performance or lack of access to
advanced HPC features that are available natively. The most important examples for the
latter are the access to low-latency networks like InfiniBand, which have been notoriously
difficult to virtualize, or the access to all the performance of the available accelerators like
GPUs or Xeon Phi. Especially the Xeon Phi have been a hindrance to adoption of
virtualization in our experience running the Avitohol supercomputer.

Traditionally in SEE region and also in Europe in general, Openstack has become the
dominant way of provisioning virtualized resources for researchers. When the servers at
certain datacenter are equipped with powerful accelerators or are otherwise well endowed
for computations (thick nodes), they can be provisioned as single virtual machines with
some appropriate designation. Provisioning this type of resources is well researched and
practically in use, for example, in EGI Federation, and thus does not need special
investigation.

The other important option that we need to consider for the purpose of this deliverable is
the provisioning of interconnected machines (virtual cluster). In HPC such kinds of
resources are usually utilized for execution of MPI applications.

One example of such architecture is EGI Federation EC3 [20], which enables simple
deployment of HPC clusters on OpenStack.

The MPI standard remains the most used framework in the world of the High-Performance
Computer Systems but enabling a virtualization platform to run such workloads is not a
trivial task especially when it comes to “As a Service” offerings.

Having a user catalog to provision an on-demand MPI Cluster with specific configuration
for the exact workload is something that falls under the domain of Infrastructure
Management Solutions. OpenStack, while being among the most adopted platforms
providing higher-level resources abstraction, also provides enough granularity to be tuned
for specific use cases. As is the case with such middleware types, it reduces user
complexity in favor of operational complexity. Fortunately, the deployment work got
significantly reduced by projects like RDO Project, providing a packaged and tested
OpenStack platform for CentOS. Reducing the setup time and effort combined with the
support of diverse hardware positions such a platform as the natural choice to building an
MPI Cluster offering.

The proposed OpenStack deployment architecture follows the best practices defined by
the RDO Project for medium size infrastructure assets. The suggested environment
consists of two management nodes, at least one storage node and 8 or more worker
nodes.

D3.3 - Recommendations for HPC centres on-boarding Page 32 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Figure 8: System architecture diagram

All nodes are connected to a standard L2 segment enabled for port trunking with five
VLANs segmenting the traffic by purpose usage.

VLAN Name VLAN Description CIDR

Management Carrier for management traffic, the link
between the management nodes and the
worker and storage nodes.

172.26.236.0/22

Storage Carrier for storage traffic, the link between
worker nodes consuming a block storage
and images from the storage node.

172.26.244.0/22

VXLAN Carrier for on-demand user defined
networks, stretch between the worker
nodes.

172.26.240.0/22

VLAN Carrier for physical and external networks,
stretch between the worker nodes.

N/A

Public Carrier for public traffic to and from the
internet, stretch between the worker
nodes.

194.***** (example, in practice
depending on the available
external IPs)

Table 1: Networking setup

D3.3 - Recommendations for HPC centres on-boarding Page 33 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

The storage system for this template installation consists of a single storage node
connected with a fiber-channel to a storage array system. Both Cinder (block storage)
configured with LVM driver and Glance (imaging) services are running on this host. It is
advisable to expand into using more storage nodes for a larger installation. In such case
dedicated nodes will be necessary for Cinder and Glance.

The compute system is the heart of the installation. In the template proposed there are
eight worker nodes hosting KVM and QEMU, forming the compute virtual infrastructure
required to run the OpenStack workloads. A production installation should have at least
20 worker nodes.

All regular HPC users are accessing the platform from the internet via HA Reverse proxy
configured with a publicly trusted certificate.

The north-south firewall is configured to expose only Identity, Dashboard and Orchestrator
services, blocking the internet interaction with the rest of the OpenStack Service’s
ecosystem.

The east-west management traffic is secured by purpose with services port communication
limits and VLAN segmentation.

The east-west workload traffic is isolated by the boundaries of the OpenStack
environment, not enforcing any default firewall profiles. The security of the individual
workloads needs to be secured by the users.

For the purpose of this investigation, the OpenStack infrastructure management platform
is used mainly for High-Performance Computing Workloads, exclusively for MPI workloads
or combined MPI/OpenMP.

In order to address the demands of these workloads and the individual requirements we
exposed the MPI Cluster as a Service via Heat Template. The template engine allows to
combine the description of the MPI master and worker machines, their network
communication, and security in a single human-readable textual form. It also makes it
possible to dynamically select the size of the MPI Cluster depending on the workload
requirements.

Example MPI Cluster Heat Template:

BAS::IICT::MPIClusterService
heat_template_version: 2016-10-14

description: MPI & OpenMP Cluster as a Service

parameters:

 name_prefix:

 type: string

 label: The name prefix for MPI machines

 image_id:

 type: string

 label: The ID of the MPI Node Image

D3.3 - Recommendations for HPC centres on-boarding Page 34 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 flavor:

 type: string

 default: m1.small

 constraints:

 - allowed_values:

 - m1.small

 - m1.large

 description: The MPI Node Flavor

 workers_count:

 description: The number of MPI Worker Nodes

 type: number

 default: 9

 internal_network_id:

 type: string

 label: Internal Network ID

 description: The ID of the internal network

 external_network_id:

 type: string

 label: External Network ID

 description: The ID of the external network

 known_keys:

 type: string

 description: The list of user/known keys for SSH

 default: []

 hidden: true

resources:

 workers:

 type: OS::Heat::ResourceGroup

 properties:

 count: { get_param: workers_count }

 resource_def:

 type: BAS::IICT::MPIWorker

 properties:

 name:

 str_replace:

 template:

D3.3 - Recommendations for HPC centres on-boarding Page 35 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 $name-$count

 params:

 $name: { get_param: name_prefix }

 $count: "%count%"

 image_id: { get_param: image_id }

 flavor: { get_param: flavor }

 internal_network_id: { get_param: internal_network_id }

 known_keys: { get_attr: [known_keys] }

 master:

 type: BAS::IICT::MPIMaster

 depends_on: workers

 properties:

 name: { get_param: name }

 image_id: { get_param: image_id }

 flavor: { get_param: flavor }

 internal_network_id: { get_param: internal_network_id }

 external_

network_id: { get_param: external_network_id }

 known_keys: { get_attr: [known_keys] }

 workers: { get_attr: [workers, ip] }

outputs:

 external_ip:

 description: The external IP address for MPI Master

 value: { get_attr: [master, ip] }

Example of definition of MPI Cluster Resources in a heat template:

BAS::IICT::MPIWorker

heat_template_version: 2016-10-14

description: MPI & OpenMP Worker Node

parameters:

 name:

 type: string

 label: The name of MPI machine

D3.3 - Recommendations for HPC centres on-boarding Page 36 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 image_id:

 type: string

 label: The ID of the MPI Node Image

 flavor:

 type: string

 default: m1.small

 constraints:

 - allowed_values:

 - m1.small

 - m1.large

 description: The MPI Node Flavor

 internal_network_id:

 type: string

 label: Internal Network ID

 description: The ID of the internal network

 known_keys:

 type: string

 description: The list of user/known keys for SSH

 default: []

 hidden: true

resources:

 wait_condition:

 type: OS::Heat::WaitCondition

 properties:

 handle: { get_resource: wait_handle }

 count: 1

 timeout: 360

 wait_handle:

 type: OS::Heat::WaitConditionHandle

 security_group:

 type: OS::Neutron::SecurityGroup

 properties:

 name: security_group

 rules:

 - protocol: tcp

 port_range_min: 22

 port_range_max: 22

D3.3 - Recommendations for HPC centres on-boarding Page 37 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 - protocol: tcp

 port_range_min: 1024

 port_range_max: 65535

 port:

 type: OS::Neutron::Port

 properties:

 network: { get_param: internal_network_id }

 security_groups:

 - { get_resource: security_group }

 worker:

 type: OS::Nova::Server

 properties:

 name: { get_param: name }

 image: { get_param: image_id }

 flavor: { get_param: flavor }

 networks:

 - port: { get_resource: port }

 user_data_format: RAW

 user_data:

 str_replace:

 params:

 template: |

 #!/bin/bash

 # MPI Worker installation script here ...

outputs:

 ip:

 description: The internal IP address for MPI Worker

 value: { get_attr: [worker, first_address] }

BAS::IICT::MPIMaster

heat_template_version: 2016-10-14

description: MPI & OpenMP Master Node

parameters:

 name:

D3.3 - Recommendations for HPC centres on-boarding Page 38 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 type: string

 label: The name of MPI machine

 image_id:

 type: string

 label: The ID of the MPI Node Image

 flavor:

 type: string

 default: m1.small

 constraints:

 - allowed_values:

 - m1.small

 - m1.large

 description: The MPI Node Flavor

 internal_network_id:

 type: string

 label: Internal Network ID

 description: The ID of the internal network

 external_network_id:

 type: string

 label: External Network ID

 description: The ID of the external network

 known_keys:

 type: string

 description: The list of user/known keys for SSH

 default: []

 hidden: true

resources:

 wait_condition:

 type: OS::Heat::WaitCondition

 properties:

 handle: { get_resource: wait_handle }

 count: 1

 timeout: 360

 wait_handle:

 type: OS::Heat::WaitConditionHandle

 security_group:

 type: OS::Neutron::SecurityGroup

D3.3 - Recommendations for HPC centres on-boarding Page 39 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 properties:

 name: security_group

 rules:

 - protocol: tcp

 port_range_min: 22

 port_range_max: 22

 - protocol: tcp

 port_range_min: 1024

 port_range_max: 65535

 internal_port:

 type: OS::Neutron::Port

 properties:

 network: { get_param: internal_network_id }

 security_groups:

 - { get_resource: security_group }

 external_ip:

 type: OS::Neutron::FloatingIP

 properties:

 floating_network: { get_param: external_network_id }

 external_ip_assoc:

 type: OS::Neutron::FloatingIPAssociation

 properties:

 floatingip_id: { get_resource: external_ip }

 port_id: { get_resource: internal_port }

 master:

 type: OS::Nova::Server

 properties:

 name: { get_param: name }

 image: { get_param: image_id }

 flavor: { get_param: flavor }

 networks:

 - port: { get_resource: port }

 metadata:

 workers: { get_param: workers }

 user_data_format: RAW

D3.3 - Recommendations for HPC centres on-boarding Page 40 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 user_data:

 str_replace:

 params:

 template: |

 #!/bin/bash

 # MPI Master installation script here ...

outputs:

 ip:

 description: The external IP address for MPI Worker

 value: { get_attr: [external_ip, floating_ip_address] }

6.2 Options for use of containers and systems for automated
management of containerized applications.

Containerization of applications on Linux has made tremendous breakthroughs in enabling
portability of programs by packaging them and their network of dependencies in an
environment similar to a virtual machine. However, unlike a virtual machine, it does not
impose the performance penalty of emulating hardware or running another operating
system on top of the host system. Containers use features of Linux (LXC and cgroups) to
create an isolated root file system for an image that can hold all the necessary parts of a
Linux distribution, above the kernel level, that are required by the target application. This
image together with the application runs on top of the existing system kernel.

The most popular software that brought containers into the spotlight is Docker [11]. It is
the defacto standard for specifying containerized images of applications, and it is used in
many production deployments. For more complex deployments, i.e. execution of multiple
containerized applications in a coordinated way, Docker Swarm and Kubernetes [7] are
available, but these systems are not very suitable for HPC environments. They integrate
poorly with existing job scheduling platforms and their scheduling subsystem is not as
flexible and could not coexist with jobs scheduled on these platforms.
Regardless of that, the increasing popularity of Kubernetes in the IT industry motivates
us to strongly consider Kubernetes-based provisioning of HPC services. Some approaches
to that will be outlined later on.

Docker's model of deployment implies that the container image must be run and managed
as a superuser, which is not a viable option for HPC use cases. The main focus of the
community that has developed Docker was on advancing DevOps approaches to easier
application deployment, and security management and portability across different
systems were not primary goals.

Several solutions are more or less compatible with Docker and avoid the aforementioned
pitfalls. In the rest of this section we will consider the following:

D3.3 - Recommendations for HPC centres on-boarding Page 41 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 Socker (Azab 2017) [3] is a lightweight wrapper around Docker which allows
images to be run by unprivileged users. It also integrates the container control
with Slurm. This is a small project from University of Oslo, and besides the github
project page and the accompanying paper, the project does not seem to have wide
deployment or community. This maturity level makes it less than ideal solution for
NI4OS-Europe project.

 Shifter (Gerhardt et al. 2017) [6] is a system from the National Energy Research
Scientific Computing Center (NERSC). It is a containerization system specifically
developed for HPC use cases. It is not based on Docker but it supports import and
conversion of Docker images to its custom format. Besides Docker, it can also
import virtual machines and CHOS images. It has been used in production on HPC
clusters at NERSC, but its user base is still smaller than the option we cover next.

 Singularity (Kurtzer, Sochat, and Bauer 2017) [9] is a container platform
developed by Sylabs (https://sylabs.io). It has been designed from the beginning
to address all the pain points that are preventing Docker from wider adoption on
HPC systems. Among the options described in this section, this one is the most
widely deployed in production HPC systems. It focuses on verifiable reproducibility
of experiments, easier integration with the host system (i.e. use of GPUs or high
speed networks), portability of compute with its single file images, and a simpler
security model. Unlike Docker, the user that executes a container is the same user
within the container so no additional privileges are exposed. Like Docker it has its
SingularityHub which is a central repository for sharing container images. Also,
Singularity can import, shell, run and exec standard Docker images.

When considering Kubernetes specifically, we note that one of its main advantages is that
it accepts the possibility at any moment a component of the application to fail and thus
the need to be automatically reconciled, abstracting the application management activities
and letting the owners to concentrate on the business logic. When Kubernetes
orchestration is merged into the world of HPC, it makes it possible to utilize a single
platform for hybrid workloads with flexibility and ease of use.

The most interesting HPC workloads that can benefit from Kubernetes use applications
like TensorFlow, Apache Spark, Hadoop as part of their operation. One of the biggest
challenges they face is the upgrade and scalability of these components, as there was no
commonly adopted standard for orchestration until the Kubernates got traction. Today
most of the application software vendors are creating Helm Charts, a Kubernetes resource
packages that are easy to maintain, secure, scale and upgrade across compatible
platforms. Such flexibility motivates the idea to incorporate Kubernetes into HPC by
forming the next generation of HPC Infrastructure, one has to consider the following
requirements:

Application Friendly - ability to host a wide range of applications with minimal effort.

API First - provide programmatic access to the infrastructure configuration and runtime
orchestration

Feedback Aware - actively monitor infrastructure and runtime components, provide
immediate feedback and perform proactive reconciliation

Workload Reactive - monitor the use of platform components and reactively apply scale-
in or scale-out operations

D3.3 - Recommendations for HPC centres on-boarding Page 42 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Cloud Agnostic - workload independence of cloud provider

Repeatable - easy workload recreation on platforms with similar interface

In order to fulfill these requirements we outline the following approaches:

Application Friendly - Linux Containers is the most widely adopted applications packaging
and runtime solution, and Kubernetes is the framework providing the best orchestration
for container workloads.

API First - every aspect from infrastructure configuration to application orchestration is
handled by Kubernetes API constructs.

Feedback Aware - is in the nature of desired state configuration and the enforcement of
this state at any time.

Workload Reactive - the auto scaling is as an extension of Feedback Awareness of
Kubernetes resources that automatically scales-in or scales-out resource instances based
on usage.

Cloud Agnostic - majority of public cloud providers and private cloud management
products provide a Kubernetes Cluster support with its standard API.

Repeatable - as Kubernetes API enforces a desired state on managed resources and it is
common across compatible platforms, the workload migration is seamless.

Applying these approaches, we obtain an architecture for Kubernetes-based HPC services
as follows:

The traditional Kubernetes infrastructure consists of a cluster including a number of hosts
each exposing certain hardware and software capabilities via labels, where a certain
number of the hosts acts as management nodes and the rest as workload nodes.

The management set of the cluster runs the vital Kubernetes services such as Etcd, Kube
API, Kube Scheduler and Controller, which are common across all implementations serving
the operation of the built-in resources. In addition to the standard resource types
Kubernetes offers powerful extensibility hooks in the face of the Custom Resources and
the Operator Pattern.

A Custom Resource is an extension of the Kubernetes API representing a customization of
a particular Kubernetes installation bringing capabilities like virtual infrastructure
resources, HPC datasets or jobs under centralized management, where an operator is a
software extension to Kubernetes that makes use of these Custom Resources following
Kubernetes principles, notably the control loop.

Utilizing these two principles makes it possible to represent any Application or HPC
resource as a Kubernetes resource, leveraging a standard API for its state transition, and
implementing a control loop (identify, apply, feedback) for the enforcement of the state.

This is represented in the following scheme:

D3.3 - Recommendations for HPC centres on-boarding Page 43 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Figure 9: Deployment scheme using Kubernetes

The adoption of Kubernetes brought a dozen solutions for provisioning cluster lifecycle
automation, but Kubespray [8] surfaced above the others for this wide range of supported
infrastructure providers in face of GCE, Azure, OpenStack, AWS, vSphere, Packet (bare
metal), Oracle Cloud Infrastructure (Experimental) or Bare Metal (HPC). That is why it
forms the basis of our proposed setup strategy.

The underlying basic infrastructure for the installation consists of a number of workload
nodes and at least three management nodes all pre-installed with CentOS 7.x (or
equivalent like RHEL 7).

Depending on the available infrastructure the initial provisioning can be achieved via PXE
following Install CentOS via PXE guide.

Kubespray is utilizing Ansible [2] as configuration management technology to assign the
appropriate Kubernetes role to each node part of the infrastructure inventory.

The target servers must have access to the Internet in order to pull docker images.

The Ansible public SSH key must be trusted by all of the servers part of the Ansible
inventory.

Generate SSH key

ssh-keygen -t rsa -b 4096

Copy Public Key to all Nodes, where X represents the node index

ssh-copy-id root@nodeX

The following script will fulfill the bare minimum of requirements for creating the proper
Ansible tasks.

D3.3 - Recommendations for HPC centres on-boarding Page 44 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Enable the Ansible Engine repository for RHEL 7

sudo subscription-manager repos --enable rhel-7-server-ansible-2.9-rpms

Install Required Packages

sudo yum install ansible

sudo yum install python-netaddr

Sudo yum install python-jinja2

Allow IPv4 forwarding

sysctl -w net.ipv4.ip_forward=1

Disable Firewall during installation

Note, firewall can be enabled and configured baed on the provider needs

Stop the FirewallD service

sudo systemctl stop firewalld

Disable the FirewallD service to start automatically on system boot

sudo systemctl disable firewalld

Mask the FirewallD service which will prevent the firewall from being started by other

services:

sudo systemctl mask --now firewalld

After that one can proceed with the actual Kubernetes on-boarding. First all of, some
prerequisites are to be installed

Setup Python virtual environment

python3 -m venv venv

source venv/bin/activate

Clone Kubespray Git repository

git clone https://github.com/kubernetes-sigs/kubespray.git

cd kubespray

Set active branch

git checkout release-2.14

Install Playbook requirements

pip install -r requirements.txt

D3.3 - Recommendations for HPC centres on-boarding Page 45 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Kubespray Ansible playbook requires an infrastructure inventory file as an input to
initialize the Kubernetes cluster.

File path ${kubespray}/inventory/hpc/hosts.yaml

The node that is not a etcd member do not need to set the value, or can set the empty

string value.

[all]

node1 ansible_host=EX.Y.Z.1 ip=IN.Y.Z.1 etcd_member_name=etcd1

node2 ansible_host=EX.Y.Z.2 ip=IN.Y.Z.2 etcd_member_name=etcd2

node3 ansible_host=EX.Y.Z.3 ip=IN.Y.Z.3 etcd_member_name=etcd3

node4 ansible_host=EX.Y.Z.4 ip=IN.Y.Z.4 etcd_member_name=etcd4

node5 ansible_host=EX.Y.Z.5 ip=IN.Y.Z.5 etcd_member_name=etcd5

node6 ansible_host=EX.Y.Z.6 ip=IN.Y.Z.6 etcd_member_name=etcd6

node7 ansible_host=EX.Y.Z.7 ip=IN.Y.Z.7 etcd_member_name=etcd7

node8 ansible_host=EX.Y.Z.8 ip=IN.Y.Z.8 etcd_member_name=etcd8

node9 ansible_host=EX.Y.Z.9 ip=IN.Y.Z.9 etcd_member_name=etcd9

node11 ansible_host=EX.Y.Z.11 ip=IN.Y.Z.11 etcd_member_name=etcd11

node12 ansible_host=EX.Y.Z.12 ip=IN.Y.Z.12 etcd_member_name=etcd12

Configure a bastion host if nodes are not directly reachable via Ansible Host

bastion ansible_host=x.x.x.x ansible_user=some_user

[kube-master]

node1

node2

node3

[etcd]

node1

node2

node3

[kube-node]

node4

node5

node6

node7

node8

node9

D3.3 - Recommendations for HPC centres on-boarding Page 46 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

[calico-rr]

node11

node12

[k8s-cluster:children]

kube-master

kube-node

calico-rr

After that the actual cluster installation can proceed

Execute Kubernetes Cluster Installation

ansible-playbook -i inventory/hpc/hosts.yaml -u root -b -v --private-key=~/.ssh/id_rsa
cluster.yml

Once the cluster has been installed, one can proceed with a verification of the installation.

Copy permission file from any of the management nodes
scp root@node{1,3}:/etc/kubernetes/admin.conf access.conf

Change the service access IP from the internal to the external in

vi access.conf

Setup Client

export KUBECONFIG=$PWD/access.conf

List cluster nodes

kubectl get nodes

The next step is to initialize a Certificate Manager. An example here of how to deploy a
CA and Issuer resources in order to provide certificate as a service to the Kubernetes users
is provided:

Create CA Spec

cat > ca-csr.json << EOF

{

 "CN": "HPC CA",

 "key": {

 "algo": "rsa",

 "size": 4096

 },

 "names": [

 {

D3.3 - Recommendations for HPC centres on-boarding Page 47 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 "C": "BG",

 "L": "Sofia",

 "O": "BAS",

 "OU": "HPC",

 "ST": "Sofia"

 }

]

}

EOF

Build Docker Image to generate CA

read -r -d '' DOCKERFILE << EOF

FROM photon:3.0

RUN tdnf -y install wget

RUN wget -O /bin/cfssl -q --show-progress --https-only --timestamping
https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 && chmod +x /bin/cfssl

RUN wget -O /bin/cfssljson -q --show-progress --https-only --timestamping
https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 && chmod +x /bin/cfssljson

EOF

echo "${DOCKERFILE}" | docker build --tag cfssl:R1.2 -

docker run --rm -it -v $(pwd):/tmp cfssl:R1.2 sh -c "cd /tmp; cfssl gencert -initca /tmp/ca-
csr.json | cfssljson -bare ca"

kubectl create namespace cert-manager

helm repo add jetstack https://charts.jetstack.io

helm repo update

helm install \

 cert-manager jetstack/cert-manager \

 --version v0.15.0 \

 --set installCRDs=true

Use default

--namespace cert-manager \

Create CA Issuer spec

read -r -d '' CA_ISSUER_SECRET << EOF

apiVersion: v1

kind: Secret

metadata:

 name: hpc-bas-key-pair

data:

 tls.crt: $(cat ca.pem | base64 -w 0)

 tls.key: $(cat ca-key.pem | base64 -w 0)

EOF

echo "${CA_ISSUER_SECRET}" | kubectl apply -f -

read -r -d '' CA_ISSUER << EOF

apiVersion: cert-manager.io/v1alpha2

kind: Issuer

metadata:

D3.3 - Recommendations for HPC centres on-boarding Page 48 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 name: hpc-bas-ca-issuer

spec:

 ca:

 secretName: hpc-bas-key-pair

EOF

echo "${CA_ISSUER}" | kubectl apply -f -

Validate

read -r -d '' TEST_CERTIFICATE << EOF

apiVersion: cert-manager.io/v1alpha2

kind: Certificate

metadata:

 name: example-hpc

spec:

 # Secret names are always required.

 secretName: example-hpc-tls

 duration: 2160h # 90d

 renewBefore: 360h # 15d

 organization:

 - bas

 commonName: example.hpc

 isCA: false

 keySize: 2048

 keyAlgorithm: rsa

 keyEncoding: pkcs1

 usages:

 - server auth

 - client auth

 # At least one of a DNS Name, URI, or IP address is required.

 dnsNames:

 - example.hpc

 - www.example.hpc

 uriSANs:

 - spiffe://cluster.local/ns/sandbox/sa/example

 ipAddresses:

 - 192.168.0.5

 # Issuer references are always required.

 issuerRef:

 name: hpc-bas-ca-issuer

EOF

echo "${TEST_CERTIFICATE}" | kubectl apply -f -

kubectl describe certificates

Create a Load Balancers based on Metal LB to provide Load Balancer as a service capability
to the Kubernetes users.

D3.3 - Recommendations for HPC centres on-boarding Page 49 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

Create separate namespace for load balancers

kubectl create ns metallb-system

Initialize Metal LB

kubectl apply -f
https://raw.githubusercontent.com/google/metallb/v0.9.2/manifests/metallb.yaml -n
metallb-system

Generate Metal LB secret

kubectl create secret generic -n metallb-system memberlist --from-
literal=secretkey="$(openssl rand -base64 128)"

Provide Metal LB IP Range / K8S external IPs

read -r -d '' METALLB_CONFIG_MAP << EOF

apiVersion: v1

kind: ConfigMap

metadata:

 namespace: metallb-system

 name: config

data:

 config: |

 address-pools:

 - name: default

 protocol: layer2

 addresses:

 - 192.168.252.1-192.168.252.252

EOF

Validate

kubectl create deployment echo --image=inanimate/echo-server

kubectl scale deployment echo --replicas=3

kubectl expose deployment echo --port=8080 --type LoadBalancer

Once these steps are completed, one is able to provide services as Custom Resources.
This is an example of how a custom resource definition of type HPC job can be created.
This configuration will enable the users of the Kubernetes clusters to create HPC Job
instances. But in order these instances to be realized an operator needs to be implemented
and deployed to fulfill the control loop. Typically the operator runs as a Kubernetes pod
under system namespace and monitors the resources it has understanding for.

cat > ${CUSTOM_RESOURCE_JOB} << EOF

apiVersion: apiextensions.k8s.io/v1

kind: HPCJob

metadata:

 # name must match the spec fields below, and be in the form: <plural>.<group>

 name: jobs.stable.example.hpc

spec:

 # group name to use for REST API: /apis/<group>/<version>

 group: stable.example.hpc

 # list of versions supported by this HPCJob

D3.3 - Recommendations for HPC centres on-boarding Page 50 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

 versions:

 - name: v1

 # Each version can be enabled/disabled by Served flag.

 served: true

 # One and only one version must be marked as the storage version.

 storage: true

 schema:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

 template:

 type: string

 priority:

 type: number

 runtime:

 type: string

 # either Namespaced or Cluster

 scope: Namespaced

 names:

 # plural name to be used in the URL: /apis/<group>/<version>/<plural>

 plural: jobs

 # singular name to be used as an alias on the CLI and for display

 singular: job

 # kind is normally the CamelCased singular type. Your resource manifests use this.

 kind: Job

 # shortNames allow shorter string to match your resource on the CLI

 shortNames:

 - job

EOF

Create Resource Definition

kubectl apply -f ${CUSTOM_RESOURCE_JOB}

Validate Object Creation

cat > ${MY_JOB} << EOF

apiVersion: "stable.example.hpc/v1"

kind: Job

metadata:

 name: my-job

spec:

 template: "Tenzor"

 priority: "High"

 runtime: "Bare Metal"

EOF

Create Resource

D3.3 - Recommendations for HPC centres on-boarding Page 51 of 51

NI4OS-WP3-IICT-015-D3.3-f-2021-02-25.docx  NI4OS-Europe consortium

kubectl apply -f ${MY_JOB}

We believe that although Kubernetes is not widely used currently in the HPC for research,
due to its high industry support and wide user community it has great potential and can
be used to expose HPC services through EOSC.

