An Interferometric Imaging Survey of Red Supergiant Stars Ryan P. Norris (New Mexico Tech)

Red supergiant stars (RSGs) are an end stage of massive star evolution. Among the notable behaviors of stars during this stage are their irregular and semiregular variability and mass-loss. In order to better understand the sources of these phenomena, we collected high resolution optical interferometric observations of 17 RSGs using the Center for High Angular Resolution Astronomy (CHARA) Array at Mount Wilson between 2015 and 2016. Here, we present stellar diameters derived from these data. We comment on evidence of surface asymmetries on those stars for which we were able to obtain closure phases and present an example image for one of these objects. In addition, we have obtained near-contemporaneous spectroscopy of these stars using SpeX on the NASA InfraRed Telescope Facility (IRTF). We have developed libraries of synthetic spectra derived from spherical MARCS, PHOENIX, and SATLAS stellar atmospheres, and are currently working to derive fundamental stellar parameters with these data.

Diameters						
Star	Sp Type	θ(mas)	$lpha^{ t 1}$	χ^2	Diameter (R^N_{\odot}) ²	We
NR Vul	K3 I (L05)	3.04	0.1	4.12	555^{+55}_{-46}	grid disk
BD+354077	M2.5 I (L05)	3.18	0.13	5.45	542_{-54}^{+67}	effo lobe
BI Cyg	M3-M4 I (L05)	5.16	0.34	9.21	740_{-75}^{+93}	effe
RW Cyg	M3 I (L05)	5.09	0.36	11.8	1103^{+251}_{-177}	
AZ Cyg	M3 lab (M19)	3.74	0.18	8.41	814^{+175}_{-124}	
V424 Lac	M0 I (L05)	3.77	0.08	12.6	257^{+37}_{-29}	2.
V 336 And	M2Ib (KM89)	2.46	0.05	3.08	567^{+215}_{-135}	5. (sem)
AD Per	M2.5 lab (M19)	2.39	0.15	8.39	528^{+70}_{-56}	iameter
BU Per	M3 I (L05)	2.27	0.29	21.0	354^{+54}_{-42}	□ 7. 8.
FZ Per	M1.5 (M19)	1.8	0.24	13.7	413_{-34}^{+40}	9.
KK Per	M2 lab-lb (M19)	2.27	0.10	2.17	394^{+37}_{-31}	
SU Per	M3-M4 I (L 05)	3.20	0.21	10.9	952^{+263}_{-176}	Figu
RS Per	M4 I (L 05)	2.96	0.13	5.13	476^{+70}_{-55}	limb
S Per	M4.5 I (L 05)	4.08	0.36	6.91	1428_{-379}^{+627}	
W Per	M4.5 I (L05)	2.93	0.12	6.14	385^{+45}_{-36}	
XX Per	M4 lb (M19)	2.77	0.16	5.90	604_{-74}^{+97}	(U, V)
6 Gem	M1-M2 Ia-Iab (KM89)	4.11	0.48	49.3	649_{-198}^{+438}	and surf
TV Gem	M1 I (L 05)	3.41	0.53	37.5	992^{+473}_{-266}	Deta
WY Gem	M2 labep+ (M19)	2.68	0.03	3.96	444_{-61}^{+83}	be f
1. Linear limb-darkening coefficent						

2: Using *Gaia* parallaxes as reported in Bailer-Jones et al. 2018

Abstract

1:https://github.com/fabienbaron/squeeze

2019, AJ, 158, 20 (M19)