Contact: vrijmoet@astro.gsu.edu

## Orbital Architectures of M Dwarf Systems: Building the $P$ vs. $e$ Diagram

Eliot Halley Vrijmoet ${ }^{12}$, Todd Henry ${ }^{1}$, Wei-Chun Jao ${ }^{12}$, Andrei Tokovinin ${ }^{3}$, Serge Dieterich ${ }^{4}$, Jennifer Winters ${ }^{5}$, Elliott Horch ${ }^{6}$, \& the RECONS Team

1 REsearch Consortium On Nearby Stars, 2 Georgia State University,
3 Cerro Tololo Inter-American Observatory, 4 Space Telescope Science Institute,
Small and Moderate Aperture Research Telescope System

M dwarfs host companions spanning a factor of 100,000 in mass (planets $\rightarrow 0.6 \mathrm{M}_{\odot}$ stars) that orbit on sub-AU to $1,000-\mathrm{AU}$ scales. So how do you know where a companion may be lurking? We are mapping $\mathbf{\sim 1 2 0}$ orbiting companions within 25 pc to establish the distributions of their orbital elements, seeking clues to their formation and orbital evolution.

Orbits come from:

- Astrometry
at CTIO $0.9 \mathrm{~m}(22+\mathrm{yr})$
- Speckle interferometry at SOAR 4.1 m ( $2+\mathrm{yr}$ )
- RVs \& imaging
(literature)

Bonus:
we will determine dynamical masses for the systems overlapping on both the astrometry and speckle lists.

## References:

Bate, M. 2015, Living Together: Planets, Host Stars and Binaries, 496, 37 Dupuy \& Liu 2017, ApJS, 231, 15
 (20. Tokovinin, A., Cantarutti, R., Tighe, R., et al 2016, PASP, 128, 125003

5 Center for Astrophysics | Harvard \& Smithsonian, 6 Southern Connecticut State University


The orbits seen today are shaped by their formation configuration and subsequent dynamical evolution. In turn, these outcomes are dictated by primary mass, mass ratio, environment, age, and more (Bate 2015).


