PURPOSE

Compare methods for selecting M, L, Tdwarfs in deep spectroscopic surveys

Ultracool Dwarfs (UCDs) are objects with masses (<0.1 Msun, Kirkpatrick et al. 2005), which includes low-mass stars and brown dwaris

WISP \& 3D-HST SURVEYS

The WFC3 Infrared Spectroscopic Parallel Survey (WISPS, Atek et al. 2010) and 3D-HST survey (Momcheva et al. 2016) look for high-z galaxies using low-resolution ($R \sim 200$) near-infrared (1.1-1.7 microns) for more than 250,000 objects

SPECTRAL INDICES \& TRAINING SETS

We define spectral indices to identify and classify UCDs by measuring the ratio of median fluxes in two different regions tracing water and methane features
We defined selection criteria using a sample of 2029 low resolution M5-T9 spectra from the SpexPrism Library (SPL, Burgasser 2014). To these, we add set of known Galaxies in both surveys to be used as sample of contaminants

METHOD 1: INDEX-INDEX SPACE SELECTION

We measure these indices for all sources in 3D-HST \& WISPS, and our training set. To select UCDs, we enclose the training set into rectangular boxes with vertices defined to maximize completeness (see evaluation metrics). We pick the boxes with lowest contamination as selection regions

Fig 1: spectral standards showing regions used to defined indices

Fig 2: Demonstration of the index-selection method used to select L0-L5 dwarfs

METHOD 2: RANDOM FOREST

Labels: we trained a random forest model to identify objects into subgrouping: Galaxies, early M dwarfs (<M7), M7-LO, L and T Features: in addition to spectral indices we added the S / N ratio measured in the J and H bands, the spectra type and goodness of fit statistics comparing each spectrum to a UCD spectral standard and a line Main model parameters: 474 trees Performance in training: we achieve a precision metrics of $\sim 98 \%$ on the test set NETWORK
Labels \& Features: we used the same labels and features as the random forest method Architectures: we explored two different architectures: a deep fully connected deer neural network (DNN) and a convolutional neural network (CNN). We optimized the number of parameters for these models using a random search
Main model parameters: 5 hidden layers fo DNN, 1 convolutional layer and 3 hidden layer for CNN
Performance in training: precision of $\sim 96 \%$ for the DNN and $\sim 95 \%$ for the CNN

ig 3: Confusion matrix for the test se showing the number of true positivists false positive Fig 4: Feature importance

Fig 5: DNN performance metrics during training, using a batch size of 300

Fig 6: CNN performance metrics during training, using a batch size of 300

RESULTS: COMPARISON BETWEEN METHODS

Method	\# UCDs	\# Contaminants
Indices	152	1061
Random Forest	181	45
DNN	176	568
CNN	129	3070

The random forest outperforms traditional index selection and neural networks in the number of correctly identified UCDs and the least amount of contaminants, using the same features

EXAMPLE SPECTRA OF SELECTED UCDs

Fig 7: Spectrum of an L dwarf in the WISP Survey, next to brighter objects
Top: F160W image and 2D G141 spectrum
Bottom: ID spectrum (black) compared to the best-fit spectral standard (yellow). The bands show regions used to define spectral indices

Atek, H. et al. 2010, ApJ, 723, 104
Momcheva, I. et al. 2016, ApJS, 225, 27

Burgasser, A. J. 2014 , in ASICS, Vol. 11, 7-16
Kirkpatrick, J. 2005, ARAA, 43, 195

