AMPLITUDE MODULATION OF SHORT-TIMESCALE HOT SPOT VARIABILITY

Lauren Biddle^{1,2}, Joe Llama¹, Andrew Cameron³, Lisa Prato¹, Moira Jardine³, Chris Johns-Krull³

¹ Lowell Observatory, ² Northern Arizona University, ³University of St Andrews, ⁴ Rice University

Motivation

- Young planets are severely underrepresented in the current known exoplanet population finding them is hard!
- Why? Young stars are magnetically active. Magnetic activity can mask or drown out signals of planetary origin
- Characterizing magnetic activity signatures can help distinguish planetary signals
- Here, we characterize small-scale variability of CI Tau b, a classical T Tauri star known to host several young exoplanets

Methods

 Subtracted Gaussian process model from the K2 lightcurve to isolate the small amplitude, short-timescale variability

- Calculated variance of residuals within sliding window to create a time series measure of the amplitude of the ≤ 1d variability
- Performed a Lomb-Scargle period search along variance curve
- Repeated for window sizes between 0.2 and 15 days, represented as a 2D periodogram

Background of CI Tau ·

- Periodogram analysis of CI Tau's K2 lightcurve identifies stellar rotation period at ~6.5 days
- 9 day signal is consistent with a planetary orbit detected by Johns-Krull et al. (2016)
- 9 day period interpreted as young planet affecting mass accretion flow from the disk onto the star (Biddle et al. 2018)
- Brightness of the system is modulated on the timescale of the innermost planet's orbit

 CO detected in atmosphere of orbiting hot Jupiter Flagg et al. (2019) Amplitude of smaller, short-timescale variability shows same periodic signatures as larger, long-timescale variability, indicating that the source of the variability is the same

 Nature of short-timescale variability consistent with accretion shocks

 Hot spots at the foot of accretion streams likely contribute the most to large-scale variability of the system