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4. Science Application: Correlation between Polar Magnetic Field Strength and Coronal Hole Area

Figure 4: Correlation between magnetic field strength at the Sun's poles (latitude |θ| > 55◦) and area of polar CHs (fraction of pixels that were labeled as CHs in the same time 
window). (a) Magnetic field strength from the Wilcox Solar Observatory (WSO). (b) Area of polar CHs computed using K-means. (c) Area of polar CHs computed using the W-net. 
For each pole, the lower curve assumes that there are no CHs where data is unavailable (lower limit) and the upper curve assumes that all unavailable data belong to CHs (upper limit).
Conclusion: CH size measurements appear to be a good proxy for long-term changes in polar fields, but more work is needed to causally link the two phenomena.
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CH detection methods are limited to existing catalogues and methods as there is no 
objective way to define CH boundaries. The intersection over union metric (IoU) and the 
structural similarity index (SSIM) were used to measure the accuracy and the similarity of 
unsupervised learning with respect to existing CH detections.

Figure 3: Comparisons of three CH detection methods using single-wavelength 
synchronic maps from the Predictive Science Inc. (PSI) database (colored background). 
CHs are shown in yellow and magnetically active regions (ARs) in magenta.

(a) PSI CH detections using the EZSEG region-growing-style method (not machine 
learning!) [8]. Reference to evaluate IoU and SSIM of unsupervised learning methods. 

(b) K-means clustering technique trained to identify 6 clusters, i.e. the optimal number 
computed by the Elbow method [9]. Average SSIM=0.96, IoU=0.60.

(c) W-net convolutional neural network [10, 11], with a fully-connected conditional 
random field (CRF) mask to smooth the segmentation maps. Input images and reference 
CH masks were downsampled by a factor of 10 in each spatial dimension for memory 
considerations. No optimization was performed. Average SSIM=0.95, IoU=0.53.

Figure 2: (a) Position of the Solar and Heliospheric Observatory (SoHO) and Solar Terrestrial Relations Observatory Ahead (STEREO-A) & Behind (STEREO-B) satellites on 
2010-05-10. (b) Synchronic maps: The combination of simultaneous multi-stereoscopic EUV images of the Sun (captured at 195Å by SoHO, and STEREO-A & -B). The white 
spaces at the two ends of the map show the regions of the Sun that were not covered by any instrument at the time of observation. 

● Solar coronal holes (CH) are dark regions observed in images of the Sun taken in 
extreme ultraviolet (EUV) and soft X-ray wavelengths (Figure 1). CHs correspond to 
magnetic field lines (represented with white lines in Figure 1) that originate at the Sun 
and extend to interplanetary space (open field).

● Polar regions of the Sun are of special interest for space weather because they are the 
sources of high speed solar wind towards the Earth and other planets [1, 2, 3], but they 
remain elusive to the current constraints of solar imagery. Indirect methods are 
needed for understanding the polar environment, including polar CHs. Polar 
magnetic fields are used to forecast upcoming solar magnetic activity cycles [4, 5].

● The identification of CHs has been done traditionally with intensity-based 
thresholding methods applied to Sun images. Recent advances include supervised 
machine learning (ML) methods [6, 7]. 

● In  this work, we use EUV data from the three vantage points (e.g., Figure 2a) 
combined into full-Sun synchronic maps (e.g., Figure 2b) to segment polar CHs 
(Figure 3).  We address the identification of CHs using unsupervised learning 
(clustering and convolutional neural networks), i.e. without the use of models or 
databases and the biases they may have. 

● Through unsupervised learning, we also identified active regions (ARs; Figure 1), 
typically associated with closed, confined magnetic field lines. Solar flares and 
coronal mass ejections, the main drivers of space weather, originate in ARs.
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● Solar coronal holes (CH) are dark regions in sun images taken in extreme ultraviolet 
(EUV) and soft X-ray wavelengths (Figure 1). They correspond to magnetic field lines 
(represented with white lines in Figure 1) that originate at the sun and extend to 
interplanetary space (open field).

● In  this work, we combine EUV data from the three vantage points offered by the 
SoHO, STEREO-A and STEREO-B satellites to produce the synchronic maps used to 
segment CHs.  We address the identification of CHs in an unsupervised (clustering 
and convolutional neural networks) learning setting , i.e.without the use of models or 
databases and the biases they may have. 

● Sun’s polar regions are of special interest for space weather because they are the 
sources of high speed solar wind towards the Earth and other planets [1-3], but they 
remain elusive to the current constraints of solar imagery. Indirect methods are needed 
for understanding the polar environment. 

● Magnetic fields at the poles are used to forecast upcoming solar magnetic activity 
cycles [4-7].

● The identification of CHs has been done traditionally with intensity-based 
thresholding methods applied to sun images or to sun synoptic maps []. 

● Recent advances in their identification include supervised machine learning (ML) 
methods []. 

● Our methods also identify active regions (Figure 1).

Figure 1: Full-disk image of the Sun captured at a EUV wavelength of 193Å by the 
Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO).
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The polar regions of the Sun remain elusive to the current constraints of solar imagery. No 
spacecraft has yet left the ecliptic plane by more than a few degrees from a heliographic 
view.  This lack of direct measurement of solar poles has necessitated indirect methods for 
understanding the polar environment.  Magnetic fields at the poles are notably used to 
forecast upcoming solar magnetic activity cycles (Schatten et al., 1978; Schatten, 2005; 
Svalgaard et al., 2005; Pesnell and Schatten,2018). Additionally, the influence of polar 
CHs extends well beyond the immediate solar atmosphere. For instance, high-speed solar 
wind streams have long been known to originate from CHs (Nolteet al., 1976; Harvey and 
Sheeley, 1978; Wang and Sheeley, 1990). The polar region is of special interest in the 
context of space weather because of their magnetic topology, the magnetic field lines 
originating from the solar poles curve up, and then back down to near the Sun's equatorial 
plane, which is close to the orbital plane of Earth and other planets in our solar system, 
driving solar wind towards the Earth and other planets.  
● Solar coronal holes: dark regions in sun images at extreme ultraviolet (EUV) and soft 

X-ray wavelengths []. They correspond to magnetic field lines that originate at the sun 
and extend to interplanetary space.  

● The identification of CHs has been done traditionally with intensity-based 
thresholding methods applied to sun images or to sun synoptic maps []. 

● Recent advances in their identification include supervised machine learning (ML) 
methods []. 

● In  this work, we address the identification of CHs in an unsupervised learning setting, 
i.e.without the use of models or databases and the biases they may have. 

CH detection methods are limited to existing catalogues and methods as there is no 
objective way to define CH boundaries. The intersection over union metric (IoU) and the 
structural similarity index (SSIM) were used to measure the accuracy and the similarity of 
unsupervised learning with respect to existing CH detections.

Figure 3: Comparisons of three CH detection methods using single-wavelength 
synchronic maps from the Predictive Science Inc. (PSI) database (background). CHs are 
shown in yellow and magnetically active regions (ARs) in magenta.

(a) PSI CH detections using the EZSEG region-growing-style method (not machine 
learning!) [7]. Reference to evaluate IoU and SSIM of unsupervised learning methods. 

(b) K-means clustering technique trained to identify 6 clusters, i.e. the optimal number 
computed by the Elbow method [8]. Average SSIM=0.96, IoU=0.60.

(c) W-net convolutional neural network [9, 10], with a fully-connected conditional 
random field (CRF) mask to smooth the segmentation maps. Input images and reference 
CH masks were downsampled by a factor of 10 in each spatial dimension for memory 
considerations. No optimization was performed. Average SSIM=0.95, IoU=0.53.

Figure 3: Comparisons are limited to existing catalogues and methods as there is no 
objective way to define CH boundaries. The unsupervised learning methods included in 
SEARCH are implemented and tested using single-wavelength synchronic maps from the 
Predictive Science Inc. (PSI) database. The intersection over union metric (IoU) and the 
structural similarity index (SSIM) were used to measure the accuracy and the similarity of 
unsupervised learning with respect to the existing PSI CH detections. CHs are segmented 
in yellow, in addition to magnetically active regions (ARs) in magenta.

(a) Reference (6000 images): PSI CH detections using the EZSEG region-growing-style 
(not machine learning!) method [7]. The PSI synchronic map is displayed as background.

(b) K-means clustering technique trained to identify 6 clusters, i.e. the optimal number 
computed by the Elbow method [8]. Average SSIM=0.96, IoU=0.60.

(c) W-net convolutional neural network [9, 10], with a fully-connected conditional 
random field (CRF) mask to smooth the segmentation maps. Input images and reference 
CH masks were downsampled by a factor of 10 in each spatial dimension for memory 
considerations. No optimization was performed. Average SSIM=0.95, IoU=0.53.

Figure 4: Correlation between magnetic field strength at the Sun's poles (latitude |θ| > 55◦) and area of polar CHs (fraction of pixels that were labeled as CHs in the same time 
window). (a) Magnetic field strength from the Wilcox Solar Observatory (WSO). (b) Area of polar CHs computed using K-means. (c) Area of polar CHs computed using the W-net. 
For each pole, the lower curve assumes that there are no CHs where data is unavailable (lower limit) and the upper curve assumes that all unavailable data belong to CHs (upper limit).
Conclusion: CH size measurements appear to be a good proxy for long-term changes in polar fields, but more work is needed to causally link the two phenomena.
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● Solar coronal holes (CH) are dark regions in sun images taken in extreme ultraviolet 
(EUV) and soft X-ray wavelengths (Figure 1). CHs correspond to magnetic field lines 
(represented with white lines in Figure 1) that originate at the Sun and extend to 
interplanetary space (open field).

● In  this work, we combine EUV data from the three vantage points offered by the 
SoHO, STEREO-A and STEREO-B satellites (Figure 2a) to produce the synchronic 
maps (Figure 2b) used to segment CHs (Section 3).  We address the identification of 
CHs using unsupervised learning (clustering and convolutional neural networks), 
i.e. without the use of models or databases and the biases they may have. 

● Sun’s polar regions are of special interest for space weather because they are the 
sources of high speed solar wind towards the Earth and other planets [1-3], but they 
remain elusive to the current constraints of solar imagery. Indirect methods are needed 
for understanding the polar environment. 

● Polar magnetic fields are used to forecast upcoming solar magnetic activity cycles 
[4-7].

● The identification of CHs has been done traditionally with intensity-based 
thresholding methods applied to Sun images or to Sun synoptic maps []. 

● Recent advances in their identification include supervised machine learning (ML) 
methods [cite Illarionov papers]. 

● Through unsupervised learning, we also identified active regions (ARs; Figure 1), 
typically associated with closed, confined magnetic field lines. Solar flares and 
coronal mass ejections, the main drivers of space weather, originate in ARs.

●

Future work:

● Provide a catalogue of multi-wavelength synchronic maps (SoHO + STEREO) and 
use those synchronics map to identify and study coronal hole boundaries.

● Optimize the W-net convolutional neural network for solar images.

● Study the relationship between coronal hole area and geomagnetic activity at L1.

● Explore the relationship between the solar cycle and coronal hole area using EUV 
images captured by SoHO over a full 22- year magnetic cycle.

Figure 4: (a) Measurements of the magnetic field strength at the Sun's poles that were collected by the Wilcox Solar Observatory (WSO) between 2010-2015. Poles are defined where 
the latitude |θ| > 55◦. We estimated the area of polar CHs in the same time window by computing the fraction of pixels that were labeled as CHs by (b) K-means and (c) the W-net. For 
each pole, the lower curve assumes that there are no CHs where data is unavailable (lower limit) and the upper curve assumes that all unavailable data belong to CHs (upper limit).
Conclusion: CH size measurements appear to be a good proxy for long-term changes in polar field strength, but more work is needed to causally link the two phenomena.

In conclusion:

● Unsupervised segmentations provides an unbiased way of identifying coronal holes 
and additionally active regions, two of the most important features for space 
weather applications.

● The coronal holes identified are consistent with the existing detections [8]. 

● Preliminary analysis of the magnetic field strength and the polar coronal hole area 
follows similar trend observed in previous studies [12].   
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