

We detect the most significant local spatial substructures of young stellar objects (YSOs) in 39 star-forming regions. We compare them to the distribution of massive stars and molecular gas to shed light on the star formation (ŠF) process.

Catalog of YSO substructures

ECOGAL

- **1. Consistent, robust substructure retrieval** S2D2 (González+21, available for the community here)
- S2D2 is a clustering tool to search for NESTs (Nested Eleme STructures) based on DBSCAN (Ester+96) and nearest neig statistics (Joncour+ 17, 18).
- NESTs are very small and compact structures in the YSO distrib significant above random expectation, that in pristine region trace the preferential sites of star formation.

- S2D2 was calibrated in synthetic clusters of substructured, homoge and concentrated spatia distributions with robus consistent results.
- The distribution of NES traces the large scale structure: the significa modes of SF.
- We separate the signific modes of SF by pruning branches of the Minimu Spanning Tree of the NI (inter-NEST distance) th larger than 25% the size the region.

Fig1: Example of NESTs and modes retrieved in substructured and concentrated regions

 Concentrated regions have only one significant mode of SF, i. unimodal, while substructured ones are multimodal (Fig. 1).

2. Homogeneous sample MYStIX (Feigelson+13) SFiNCs (Getman+17)

- YSO selection:
 - MID-IR
 - X-ray
 - Catalogued OB stars

SEM Exposing Star Formation through the spatial structure of young stellar objects

Marta González, Isabelle Joncour, Estelle Moraux (Institute de Planétologie et Astrophysique de Grenoble - UGA/CNRS)

	R	elation b	etween Sl	F modes ar	nd the	e gas a	Ind
	• We classify the SF modes, according to whether they can be (Table 1):					Orion (O	NC)
entary hbour	 Embedded in their natal cloud, as traced by the highest Herschel 500 micron emission in the region. Influenced by massive stars in 				20'		
<u>bution,</u> s can	their surroundings. Table 1:Summary of types of modes				25'		
	Herschel data in 33 regions 57 modes		Overlap with gas (0.05% most intense emission)		30'	99.5 per	rcentil
eneous ial			YES: 56.1%	NO: 43.9%	(J2000)	 Signific YSOs in OB star 	ant mo I NEST s
st and	Stars	NO: 54.3%	T1 36.8%	T3 17.5%	Щ 5 ^h 3(6 ^m 00 ^s 35 ⁿ DR21	1 40 s
<u>STs</u>	OB (YES: 45.7%	T2 19.3%	T4 26.4%	42°30'		
<u>nt</u>	 T1 modes seem to trace areas of active 				25'		
cant g the	 <u>SF of low mas stars</u> and are the majority type in unimodal regions (Fig. 3). <u>In T4 modes we expect the massive</u> stars to have contributed to the lack of 				20'		
um ESTs					15'		
nat are e of	gas, hindering SF. T4 are mainly in multimodal regions (Fig. 4).						
	 The interplay between YSOs, gas and massive stars in T2 and T3 modes 				05'	20h40m00s	39m3
e. are	needs to be individually assessed.						

T1

T3

57 %

Multimodal

📕 Unimodal

of YSOs.

9 13 18 22

Fig 4: Structure of the

containing region by mode

No NESTs 5 %

14

Fig 3: Proportion of

types of modes in

unimodal regions

T3

T2

21 %

Unimodal 44 %

massive star distributions

UGA

IPAG

et d'Astrophysique de Grenoble

Université Grenoble Alpe

Cnrs

•NESTs trace the significant modes of SF, making a powerful analysis tool to examine the variety that SF can display within a region. •We have identified the discrete modes of SF and shown how they can be related to other variables in their environment (González+ in prep) •A full, deep understanding of the complexities of SF requires also to study the relationship of modes with kinematical and evolutionary status