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We test the performance of our network by applying it to the spectra calculated 
from a state-of-the-art MHD photospheric simulation as well as to a 
spectropolarimetric map of the quiet Sun observed by HINODE/SP. We find the 
optimal compression for network with “bottleneck” of 7. This means that the 
spectra is compressed to 7 numbers, down from 112 wavelength points. We 
assess the quality of the compression by calculating the chi-squared metric 
between the original spectra and the one obtained from the sparse 
representation. Average agreement between the original and compressed 
spectra is of the order of 1%.  

Introduction 
A fundamental problem in solar spectropolarimetry is relating 
observed spectra and their polarization to the physical parameters 
of the underlying atmosphere. One of the difficulties in this process 
is the fact that the spectra usually can be represented with a much 
smaller number of hyperparameters than what is suggested by the 
number of wavelength points used for sampling (e.g. [1]). Said 
differently, spectra can usually be compressed or described in a 
sparser basis. In this work, we use the neural networks to 
investigate the dimensionality of photospheric spectra, and to 
compare the compressed spectra with the maps of physical 
parameters used to generate the said spectra.  

Spectra Compression and CNN training

We train our network on a set of 80000 atmospheres generated by 
applying random perturbations to a simulated 3D atmosphere. We 
calculated the spectra of neutral iron lines at 6300 angstrom. These are 
the lines observed by the HINODE spectropolarimeter and are commonly 
used to diagnose photospheric temperatures, velocities, and magnetic 
fields. We spectrally smeared the spectra and added Gaussian noise, to 
mimic instrumental effects. We then devised an encoder-decoder neural 
network to compress this data. The network takes spectra as the input 
and should, in principle, output the same spectra. The layer of smallest 
width (dense 3 in Fig 1) represents the “most sparse” or “most 
compressed” version of our spectra.

All training was done in Keras [2] using default MSQE loss, and the built-in 
ADAM optimizer. The network was trained through 1000 epochs for all 
trials, and each took on average 30-45 minutes.  Training was done on a 
machine with enthusiast hardware, including an i7-10700k CPU at 4.7Ghz, 
32GB DDR4 RAM, and an SSD. Since the code was set up to utilize only a 
CPU, it’s reasonable to assume that training speeds could be improved by 
reconfiguring it to utilize a recent-generation GPU instead.

After applying the encoder part of the network to the data, 
we end up with the spectra compressed down to 7 
hyperparameters. The maps of the hyperparameters from 
the synthetic spectra can be compared to the maps of the 
physical parameters at depths relevant to the line formation. 
We calculated correlation coefficients between the maps of 
sparse parameters and the maps of temperature and velocity 
at log optical depths -2, -1, and 0. 

The logical next step in our research is to create a simple, but robust neural 
network that will match compressed spectra to atmospheric parameters and thus 
enable CNN-based inversion. We expect the main advantage of this inversion to 
be the capability to reproduce input spectra well (this is something CNN 
inversions are struggling with). Namely, the relationship between compressed 
spectra and the parameters should be very simple, and can be inverted. 

Stay tuned!
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Figure 1: Architecture of the encoder-decoder neural network used in this work.

Figure 2: Example comparison of the original and compressed spectra (left) and 
histograms of chi-squared values between the original and compressed spectra (right). Up: 

simulated data; Down: observed HINODE data.

Figure 3: Left: Correlation between the maps of hyperparameters 
(C0-C6), the maps of temperature (T-2.0, T-1.0,T+0.0), and the 

line-of-sight velocity (V-2.0, V-1.0, V+0.0). Right: Examples of some 
highly correlated maps. 
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It seems that the 
compressed spectra 

correspond very well to 
specific physical 

parameters. Perhaps the 
network can extract the 

physical parameters 
through compression?
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