Magnetic Braking of Accreting T Tauri Stars: Effects of Mass Accretion Rate, Rotation, and Dipolar Field Strength

Lewis G. Ireland^{a,*}; Claudio Zanni^b; Sean P. Matt^a; George Pantolmos^c ^aUniversity of Exeter, ^bINAF-Osservatorio Astrofisico di Torino, ^cUniv. Grenoble Alpes *L.G.Ireland@exeter.ac.uk, (ii) https://orcid.org/0000-0002-8833-1204

1. Introduction

Classical T Tauri stars undergo gravitational contraction, and observations suggest they actively accrete from disks^[1,2,3]. However, observations also suggest ~const. spin distributions over $\sim Myr^{[4,5,6]}$; many rotate \ll break-up velocity^[4,6].

How does the star remove angular momentum (AM) during its PMS phase?

- Rotational evolution of accreting PMS stars is theorized to be influenced by magnetic interaction with its accretion disk^[7,8].
- We simulate 2.5D MHD, axisymmetric star-disk interaction (SDI)—with an initial dipolar field and a viscous/resistive accretion disk—and investigate how the following parameters affect the net stellar torque:
 - Stellar magnetic field strength B_{\star} ;
 - Mass accretion rate $\dot{M}_{\rm acc}$ (via initial disk density $\rho_{\rm d}$ \star);
 - \circ Stellar break-up fraction f.
- We fit semi-analytic functions to predict the net stellar torque for our regime, as well as the possibility of investigating spin evolution using 1D stellar evolution codes.

2. Stellar Torque Contributions

3 mechanisms exchange AM with star (Fig 1): Region (1): Stellar Wind

Ejected along open field lines anchored to the star → spin-down

Region (2): Magnetospheric Ejections (MEs)

- Star-disk differential rotation "twists" field → periodic inflation and reconnection events.
- MEs extract disk AM, reducing disk velocity $\Omega_{\rm disk}$. Some is ejected out the domain, but some is exchanged with star.
- Sub-Keplerian disk has lower differential rotation, so $\Omega_{\rm disk} = \Omega_{\bigstar}$ at $R_{\rm co,m}$ (< $R_{\rm co}$ the Keplerian corotation radius), where Ω_{\perp} is the stellar rotation rate.
 - $R_t \le R_{\text{co.m}}: \Omega_{\text{disk}} > \Omega_{\star} \to \text{spin-up}$
 - $R_{\mathsf{t}} \geq R_{\mathsf{co,m}} : \Omega_{\mathsf{disk}} < \Omega_{\star} \rightarrow \mathsf{spin-down}$

Region (3): Accretion

Disk truncates at R_{t} , where disk/magnetic pressure balance - adds angular momentum onto star \rightarrow spin-up torque.

Figure 1: Snapshot density colormap for SDI domain.

3. Parameter Regime

Stellar magnetic field strength $B_{\bigstar} \approx 0.5 - 2 \text{ kG}$:

• $\downarrow B_{+} \rightarrow \downarrow R_{t}$ (decreased magnetic pressure) (Fig 2b)

Mass accretion rate $\dot{M}_{\rm acc} \approx 10^{-9} - 10^{-8} \, M_{\odot} \, \rm yr^{-1}$: • $\uparrow \dot{M}_{\rm acc} \rightarrow \downarrow R_t$ (increased disk pressure) (Fig 2c)

Stellar break-up fraction f = 0.001 - 0.0625:

• $\uparrow f \rightarrow \downarrow R_t$ (decreased star-disk differential rotation/twist \rightarrow decreased magnetic pressure) (Fig 2d)

Smaller $R_t \rightarrow$ field lines connect at lower latitudes, opening up larger area on the star for wind ejection (Fig 2 zoom panels).

Figure 2: (a) Representative model, (b) $B_{\bigstar}/2$ model, (c) $2\rho_{\rm d}$ model, (d) 5f model.

4. SDI Net Torque Formulation

$$\dot{J}_{\star} = \dot{J}_{
m acc} + \dot{J}_{
m ME,\star} + \dot{J}_{
m wind}$$

4. Conclusions

Accretion

$$\dot{J}_{
m acc}=\dot{M}_{
m acc}\Omega(R_{
m t})R_{
m t}^2$$
 Sub-Keplerian disk, due to MEs, reduces accretion torque relative to Keplerian solution:

$$\Omega(R_{\mathrm{t}}) pprox 0.64 \Omega_{\mathrm{Kep}}(R_{\mathrm{t}})$$
 (ignoring small R_{t} dependence).

 R_{t} can be parameterized as the ratio of the accretion flow's magnetic and kinetic energies, i.e.,

$$\frac{R_{\mathrm{t}}}{R_{\star}} \sim \left(\frac{B_{\star}^2}{\dot{M}_{\mathrm{acc}}}\right)^{0.34}$$

Steeper scaling than analytical case $(2/7 \approx 0.286)$, as accretion disk perturbs the magnetosphere.

MEs

The ME torque scales with the star-disk differential rotation, poloidal

field strength, and
$$R_{
m t}$$
: $\dot{J}_{
m ME,\star} \propto \left[\left(\frac{R_{
m t}}{R_{
m co,m}} \right)^{3/2} - 1 \right] B_{\star}^2 R_{\star}^3 \left(\frac{R_{
m t}}{R_{\star}} \right)^{-2.5}$

Stellar Wind

$$\dot{J}_{
m wind} = \dot{M}_{
m wind} \Omega_{\star} \langle r_{
m A} \rangle^2$$

where $\dot{M}_{\rm wind}$ is the mass loss rate and $\langle r_{\rm A} \rangle$ is the Alfvén radius, i.e., the "effective magnetic lever arm". $\langle r_{\rm A} \rangle$ can be parameterized as the ratio of the wind's magnetic and kinetic energies, i.e.,

$$rac{\langle r_{
m A}
angle}{R_{\star}} \sim \left(rac{\Phi_{
m wind}^2}{\dot{M}_{
m wind}}
ight)^{0.373}$$

where Φ_{wind} is the open magnetic flux. (neglecting wind centrifugal correction term for rapidly rotating cases).

When $\dot{M}_{\rm wind} \ll \dot{M}_{\rm acc}$, open flux increases with $\dot{M}_{\rm acc}$ (decreases with $R_{\rm t}$): where Φ_{\bigstar} is the total stellar magnetic flux.

$$rac{\Phi_{
m wind}}{\Phi_{\star}} \sim \left(rac{R_{
m t}}{R_{\star}}
ight)^{-1.34}$$

(ignoring small f dependence).

SDI geometry opens up larger area for stellar wind ejection → increases open flux, compared to isolated wind simulations (where Φ_{wind} largely determined by \dot{M}_{wind}).

- All our simulations are **net spin-up**.
- MEs appear to reduce the efficiency of the accretion torque, but in our parameter regime, the MEs also spin up the star further.
- Accretion disks appear to increase the efficiency of the stellar wind torque (when $\dot{M}_{\rm wind} \ll \dot{M}_{\rm acc}$), because SDI opens more of the stellar magnetic flux, compared to isolated wind simulations, resulting in increased spin-down torque.
- A net spin-down regime could be achieved by:
 - Entering the "propeller" regime, where accretion is inhibited (by increasing B_{\bigstar} or decreasing $\dot{M}_{\rm acc}$), and where MEs could provide a spin-down torque (currently being explored in new parameter study).
 - \circ More massive stellar winds (higher coronal T).
 - 3D simulations/more realistic magnetic topologies.

References

- Edwards, S., Hartigan, P., Ghandour, L., & Andrulis, C. 1994, AJ, 108, 1056 Gullbring, E., Hartmann, L., Briceño, C., & Calvet, N. 1998, ApJ, 492, 323 Hartmann, L., Calvet, N., Gullbring, E., & D'Alessio, P. 1998, ApJ, 495, 385
- Bouvier, J., Cabrit, S., Fernandez, M., Martin, E. L., & Matthews, J. M. 1993, A&A, 272, 176
- Edwards, S., Strom, S. E., Hartigan, P., et al. 1993, AJ, 106, 372 Rebull, L. M., Wolff, S. C., & Strom, S. E. 2004, AJ, 127, 1029 Camenzind, M. 1990, RvMA, 3, 234 Koenigl, A. 1991, ApJL, 370, L39

Related article:

Ireland, L. G., Zanni, C., Matt, S. P., & Pantolmas, G. (2020). ApJ, 906(1), 4

L.G.I. and S.P.M.: ERC grant agreement No. 682393; AWESoMeStars: Accretion, Winds, and Evolution of Spins and **Magnetism of Stars** G.P.: ERC grant agreement No. 742095;

SPIDI: Star-Planet-Inner Disk Interactions

