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Abstract

The aim of this thesis is to analyze climate time series for abrupt changes.
The time series are based on data provided by simulations of the Earth
System Model GFDL ESM2M and consist of a historical period and
a Representative Concentration Pathway (RCP8.5) period, where high
emissions of greenhouse gases are assumed. The annual means of the
four ocean variables sea surface temperature, sea ice concentration, net
primary production of phytoplankton, and surface partial CO2 pressure
are analyzed for abrupt changes. The analysis is based on the R package
EnvCpt, which is designed to detect structural changes in climate and
environment time series. Using post-processing R scripts, the EnvCpt
output is filtered and presented in three different spatial plots. Several re-
gions showing abrupt changes either caused by long-term shifts through-
out the historical period or caused by changes due to the RCP8.5 period
could be identified. The results are compared to the ones obtained by
Drijfhout et al. (2015), who also analyzed climate time series for abrupt
changes. With toy data, some limitations of EnvCpt are recognized and
some recommendations for the use of EnvCpt are given.
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1 Introduction

1.1 Motivation

All physical quantities describing the state of the atmosphere or the oceans are subjected
to natural changes. These changes can progress slowly, but they can also exceed a thresh-
old that causes a sudden and strong change, possibly leading to a new climate state. These
abrupt changes in one variable can have a large impact on other variables, resulting in
drastic consequences for ecosystems and societies [Drijfhout et al., 2015]. Therefore, it is
important to analyze and understand processes that lead to such changes in order to be
able to recognize them in the future. In the analysis, the definition of such abrupt changes
is essential for the detection of the time when the changes occur.

Drijfhout et al. (2015) have already analyzed abrupt shifts in climate time series. They fo-
cused on model data simulated by the Coupled Model Intercomparison Project 5 (CMIP5)
[Taylor et al., 2012]. The CMIP5 models include modules for the oceans, atmosphere,
land surface, and cryosphere. They analyzed time series covering the historical 1861-2005
period and a future period over 2006-2100 that assumes high emissions of greenhouse
gases (Representative Concentration Pathway - RCP8.5). Since they analyzed many vari-
ables on a global scale, Drijfhout et al. (2015) introduced several categories in order to
distinguish and compare the occurring changes. The four categories are switch, forced
transition to switch, rapid change into new state, and gradual change to new state. All
of the categories additionally contain different types concerning the different ecosystems.

In order to identify regions with potential abrupt shifts, Drijfhout et al. (2015) calculated
three different quantities from the annual mean of each grid cell. These quantities include
the difference between the mean states of the first and the last 10 years of the time series,
the standard deviation of the 10-year running mean and the maximum absolute change
within the 10-year running mean. They analyzed spatial maps of these three quantities,
and if two of the three quantities indicated an abrupt change, the region was studied using
additional criteria. For forced shifts such a criterion is that the maximum absolute 10-
year change is larger than four-times the standard deviation of the preindustrial period.
Overall, they detected 37 events of forced changes in all ecosystems after a certain increase
of the global temperature. The results of Drijfhout et al. (2015) are presented in more
detail in the discussion section 4.1.

In this thesis, a different approach is used to identify abrupt changes in ocean time
series. The fundament of the approach taken here is again the definition of points in time
when the sudden changes happen. Unlike in the analysis of Drijfhout et al. (2015), the
position of change is defined as the point where the statistical properties of the time series
change. In order to identify these so called changepoints, different statistical models are
compared with the time series. Making use of the concept of information criteria, the
model delivering the best fit to the data compared to the others is determined.

This approach is implemented in the R package EnvCpt developed by R. Killick and C.
Beaulieu (2018). With EnvCpt, structural changes in climate and environment time series
can be detected.
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1.2 Aim

As will be described in the method section 2.3, the time series used in this thesis are based
on simulations produced by the Earth System Model (ESM) GFDL-ESM2M. The annual-
mean time series of the four variables sea surface temperature (SST), sea ice concentration
(SIC), net primary production (NPP) of phytoplankton, and surface partial CO2 pressure
(pCO2) are analyzed. The analysis with EnvCpt has the following goals:

• The first goal is to study the overall changes in the variables, so that the change-
points detected by EnvCpt can be interpreted. To do so, the evolution of the global
mean, as well as the mean states of the first and the last 20 years of the time series
are analyzed.

• The second aim is to identify the regions, where EnvCpt detects changes in the
statistical properties of the time series. Moreover, the relation between the changes
of the different variables is studied and then also compared to the results obtained
by Drijfhout et al. (2015).

• Since there are several parameters which can be adjusted when using EnvCpt, we
examined whether the choice of certain parameters is justified or not. Therefore the
statistical concepts implemented in EnvCpt are analyzed in detail and the changes
in the results that arise from parameter choices within EnvCpt and from decisions
in the experimental design are studied.

• In a last step, the limitations of EnvCpt are examined. In order to do so, toy data
with a specific behavior is generated and the performance of EnvCpt is analyzed.
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2 Methods

2.1 Goal of the Analysis

Consider a dataset that contains a time series of a variable, as for instance sea surface
temperature (SST), at different locations. Observation-based estimations and climate
models projections suggest that under anthropogenic warming, sea surface temperature
will increase. These changes won’t be of the same kind in the Arctic Ocean as near
the equator. This difference arises from a variety of processes that differ between these
regions, such as the formation and melting of sea ice. The goal of the analysis is to
identify changes in the properties of these time series. This is done by finding appropriate
statistical models that describe these time series and by identifying changepoints, where
these statistical models undergo changes in their parameters. There are different concepts
to determine if a model delivers substantial support for a time series or not. One way to
do such analyses is implemented in the EnvCpt package, an R package for the detection of
structural changes in climate and environment time series [Beaulieu C., Killick R., 2018].

In order to understand what the functions implemented in EnvCpt are computing, the
used statistical concepts, as well as the data that is analyzed, are shortly introduced.
Afterwards, the output of EnvCpt and the post-processing procedures will be explained.

2.2 Statistical Background

2.2.1 Log-Likelihood Estimation

Consider a set of independent observations x1, ..., xn of a random variable x from a density
function family f(·|ϑ), where ϑ is a set of parameters used to describe the distribution.
The likelihood to observe the values x1, ..., xn is given by the likelihood function:

L(ϑ) =
n!

i=1

f(xi|ϑ) (1)

The best parameter choice will result in the largest value of equation (1). Instead of
considering the likelihood function directly one can use the log of the likelihood function.
In that case, the log-likelihood function can be rewritten as

l(ϑ) = log L(ϑ) = log
n!

i=1

f(xi|ϑ) =
n"

i=1

log f(xi|ϑ). (2)

Maximizing this equation again leads to the best set of parameters ϑ̂ for a given density
function familiy f . Assuming that the distribution of the observations x1, ..., xn follows a
normal distribution

f(x|µ, σ2) =
1√
2πσ2

e
−
(x− µ)2

2σ2 , (3)
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the log-likelihood function can easily be derived:

l(µ, σ2) = −n

2
log (2π)− n

2
log

#
σ2
$
−

n"

i=1

(xi − µ)2

2σ2
(4)

The result of maximizing this equation is equivalent to getting a measure of fitness for a
constant mean model fitted on a set of observations. The same procedure can be applied
to fit a linear regression. Here, the assumption is made that the means of the observations
yi linearly depend on the observations xi.

yi ∼ N (F (xi|θ), σ2) (5)

with F (xi|θ) = F (xi|a, b) = a+xib. This leads to the normal distribution of the residuals
yi − F (xi|θ). This is the same assumption as made before for the mean model. Using
equation (3) the log-likelihood function can be derived:

l(a, b, σ2) = −n

2
log (2π)− n

2
log

#
σ2
$
−

n"

i=1

(yi − a− b · xi)
2

2σ2
. (6)

When using this method to fit different models to a time series, the log-likelihood function
of these models, each with optimal parameter choice, sheds light on the adequacy of the
models. The model with the highest log-likelihood has the lowest missmatch with respect
to the time series. However, given similar log-likelihood, one should consider a model
with fewer parameters to be more adequate than one with more parameters. This aspect
is discussed in the next section on information.
Finally, to determine if a model is actually a good fit for the observed data, the distribution
of the residuals has to be investigated. When the model delivers a substantial support, the
residuals should follow the assumed distribution (here, the normal distribution is used)
and they should be independent.

2.2.2 Information Criteria

As seen in the section before, the log-likelihood function can be used as a measure of
how well a model fits the observations. In order to get the largest value, the adjustable
parameters of the assumed distribution have to be estimated. In a model considering a
constant mean the number of these parameters k is 2 and in a model based on a linear
trend k is 3. Since all parameters are estimated, the more parameters are needed to be
estimated the bigger the error.
In order to find the model with the best fit, the log-likelihood value has to be balanced
with a penalty term counteracting the number of estimated parameters. This leads to the
concept of information criteria.

Aikake Information Criterion:

The Aikake Information Criterion (AIC) is based on the log-likelihood function (2) and
is defined as [H. Aikake, 1974]:

AIC(ϑ̂) = −2l(ϑ̂) + 2k = −2
n"

i=1

log f(xi|ϑ) + 2k, (7)
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where ϑ̂ is the best parameter choice and k is the number of freely adjustable parameters
to get ϑ̂. Since the AIC contains the negative maximized log-likelihood and we aim at
minimizing the number of parameters k, it has to be minimized for the best fit.

Bayesian Information Criterion:

Like the AIC, the Bayesian Information Criterion (BIC) is based on the log-likelihood
function (2) and is defined as [Killick et al., 2012]

BIC(ϑ̂) = −2l(ϑ̂) + k · log(n) = −2
n"

i=1

log f(xi|ϑ) + k · log(n), (8)

where ϑ̂ is again the best parameter choice and k is the number of freely adjustable
parameters to get ϑ̂. Unlike the AIC, the BIC depends on the number of observations n.
This means that especially if n is large, a model with a lot of adjusted parameters k gets
more penalized.

2.2.3 Changepoints

So far, we analyzed the fitness of models over the whole time series. However, separating
the time series into different intervals and fitting the models on every interval, however
may result in a better fit. This leads to the concept of changepoints [Killick et al., 2012].
A changepoint is a point in a time series, where the statistical properties change. Since
a mean model and a trend model don’t have the same statistical properties, the type of
changepoint is not the same. Assume that kmod is the number of parameters needed to
fit a model on the whole time series. If it has m changepoints, it consists of m+ 1 pieces
with differing fit parameters. So the total number of parameters used to describe the fit
is

k = (m+ 1)kmod +m. (9)

Adding a lot of changepoints to a time series gets penalized in both information criteria.
The next step is to find the best number of changepoints.

Optimal Partioning Algorithm:

Consider a set of observations x1:n = (x1, ..., xn) ordered in time [Killick et al., 2012]. Let’s
assume that the fitted model has m changepoints with the position τ1:m = (τ1, ..., τm), also
ordered in time. Moreover, the first and the last observation are defined as τ0 = 0 and
τm + 1 = n. The result are m + 1 parts of observations where the mth segment contains
the observations x(τ−1+1):τm .
Like before, the aim is to minimize a function consisting of a cost function (cost for a
segment) and a penalty term for the separation of the time series. The Optimal Partioning
Algorithm (OP) minimizes

m+1"

i=1

%
C(x(τi−1+1):τi)

&
+ βf(m), (10)

where C is a cost function and βf(m) is a penalty term. Often, twice the negative log-
likelihood is used as a cost function and the penalty term β is dependent on the number
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of adjusted parameters, similarly to the information criteria. Since the cost function
gets minimized by adding a lot of changepoints, the penalty term f(m) is added to
avoid overfitting [Haynes et al., 2015]. With the simple choice f(m) = m, equation (10)
becomes

m+1"

i=1

%
C(x(τi−1+1):τi) + β

&
. (11)

The goal is now to find the partioning which minimizes equation (11) for the data set. To
do so, the OP algorithm relates the optimal partitioning over the interval until the last
changepoint and the segment from the last changepoint to the end of the interval. This
leads to the following expression, where F (s) is the minimization of equation (11) of the
segment x1:s with changepoints Ts = {τ : 0 = τ0 < τ1 < · · · < τm < τm+1 = s}.

F (s) = min
τ∈Ts

'
m+1"

i=1

%
C(x(τi−1+1):τi) + β

&
(

(12)

Setting F (0) = −β leads to

F (s) = min
t

'
min
τ∈Tt

m"

i=1

%
C(x(τi−1+1):τi) + β

&
+ C(x(t+1):s) + β

(

= min
t

)
F (t) + C(x(t+1):s) + β

*
,

(13)

where the minimal costs of the segment x1:s get expressed in terms of the minimal cost for
the segment x1:t for t < s. From that, a recursion in s results. Starting with F (0) = −β,
one loops over s from 1 to n and choses t in every step such that F (s) is minimal. F (t) is
always known from the previous iteration steps. The computational costs are proportional
to n2.

The OP can be optimized by neglecting the points that can never be a change point, at
every recursion. This algorithm is called PELT (Pruned Exact Linear Time) which has
computational costs linear in the size of the time series n.

2.3 Simulated Data and Variables

The data used in this study was simulated with the Earth System Model GFDL-ESM2M,
an Earth System Model (ESM) developed at NOAA’s Geophysical Fluid Dynamics Lab-
oratory (GFDL) [ESM GFDL, accessed 16.05.2020]. Within ESM2M, modules for atmo-
sphere, ocean (-biochemistry), land, and sea ice are coupled [Dunne et al., 2012]. The
ocean module MOM4p1 has a nominal horizontal resolution of 1◦, which increases merid-
ionally at the equator to 1/3◦. North of 65◦, the grid is tripolar [Burger et al., 2020]. This
leads to a total of 360 by 200 grid cells.
The simulation consists of a historical period from 1861 to 2005 and a period from 2006
to 2100 following a high-emission greenhouse gas scenario (Representative Concentration
Pathway 8.5: RCP8.5) [Burger et al., 2020].
A total of four variables were analyzed at each grid cell. First, the sea surface tempera-
ture (SST) at the center of the top 10 m ocean layer. Second, the sea ice concentration
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describing the fraction of the grid cell that is covered with sea ice. Third, the net primary
production (NPP) of phytoplankton integrated over the top 100 m of the ocean. NPP
describes how much phytoplankton nitrogen per unit time and unit area is produced. As
a fourth variable the surface partial CO2 pressure (pCO2) is analyzed. ESM2M simulates
pCO2 pressure in the atmosphere as well as in the ocean, where in this thesis the pCO2 of
the top layer of the ocean is studied. The variables got extracted in daily steps, of which
the annual means were used for the analysis.

2.4 The EnvCpt Package

The introduced statistical concepts in section 2.2 were collected in the R package EnvCpt
[Beaulieu C., Killick R., 2018]. The next sub-sections describe the used models for com-
parison, the output of the functions implemented in the R package, and how the output
gets post-processed with additional R scripts.

2.4.1 Changepoint Detection in EnvCpt

The algorithm for changepoint detection used in EnvCpt is based on the PELT algorithm
with linear computational costs, described in section 2.2.3. As a penalty term, a modified
version of the BIC is used [Zhang N., Siegmund D., 2007]. Like the BIC, the modified
Bayesian Information Criterion (mBIC) uses the log-likelihood function. The main dif-
ference is that the penalty term differs from the one used in the BIC, since it regards the
size of the data set and the spacing of the changepoints,

mBIC(ϑ̂) = −2l(ϑ̂) +
1

2

+
3m log(n) +

m+1"

i=1

log(ri − ri−1)

,
, (14)

where ri is the position of the changepoint τi divided by the size of the dataset n. With
the mBIC, equally spaced changepoints over the observations are penalized.

2.4.2 Models in EnvCpt

EnvCpt considers basically two types of models with different modifications. In the first
category are models based on a constant mean [Beaulieu C., Killick R., 2018]. So the
simplest of all models consists of a constant mean µ together with a term for the noise
error et.

yt = µ+ et (15)

The noise errors are assumed to be independent and identically distributed with mean
value of zero and a variance of σ2. In the second model, the equation for the first one
gets modified with a first-order autocorrelation (AR1) term.

yt = µ+ ϕyt−1 + et (16)
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This term considers correlation between the observation n and n− 1. Similarly, one can
consider second-order autocorrelation (AR2), which additionally takes correlation between
the observations n and n− 2 into account.

yt = µ+ ϕ1yt−1 + ϕ2yt−2 + et (17)

In the second category the same considerations can be done for models based on a linear
trend instead of a constant mean, leading to the following three equations:

yt = λ+ βt+ et (18)
yt = λ+ βt+ ϕyt−1 + et (19)
yt = λ+ βt+ ϕ1yt−1 + ϕ2yt−2 + et (20)

As described in section 2.2.3, the time series can be separated at the points where the
statistical properties change. The following equation shows the mean model fitted on a
dataset separated into m+ 1 pieces (equivalent to m changepoints).

yt =

-
.../

...0

µ1 + et, t ≤ c1
µ2 + et, c1 < t ≤ c2

...
...

µm+1 + et, cm < t ≤ n

(21)

The positions of the changepoints are cm. These considerations lead to a total of 12
different models compared in EnvCpt.
Every model has its specific number of parameters k required to be adjusted for the fit.
Since the variance σ is used in the noise error term, one obtains for example k = 2 for
the mean model. Table 1 shows k for every model without changepoints.

Table 1: Number of parameters k for every model without changepoints.

mean meanar1 meanar2 trend trendar1 trendar2

2 3 4 3 4 5

For the models considering changepoints, k can be derived from equation (9) by using the
values from Table 1 as kmod and the number of changepoints m.

2.4.3 Output of EnvCpt

envcpt(): This is the main function of the EnvCpt package. For each of the 12 de-
scribed models, the maximum of the log-likelihood function and the number of adjusted
parameters are calculated. The following attributes can be adjusted in the envcpt()
function:

• Model selection: The models considered in the execution of envcpt() can be ad-
justed. This can be useful for error handling or reducing the computation time.

• Minimal segment length: This is the minimal distance between two changepoints.
The envcpt() function uses a default value of 5 time steps (equivalent to 5 years
in our analysis).
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AIC(), BIC(): The functions for calculating the Aikake and Bayesian information cri-
teria.

AICweight: Beaulieu and Killick (2018) suggest a method to weight the AIC/BIC values
against each other. With the implemented AICweight function, the weights

wi =
exp(−0.5∆i)

121
r=i

exp(−0.5∆r)

(22)

can be calculated for every model, where ∆i is given by

∆i = AICi − AICmin. (23)

If only a selection of the 12 default models is considered the weights of the models changes
because the denominator of the weight’s definition is adjusted. The weights are always
between 0 (no support) and 1 (highest support) and can therefore be interpreted as a
likelihood for a model to be the most appropriate compared to the other ones. In the
same way, a function for the BIC weights has been created, since it is not implemented
in EnvCpt.

2.4.4 Post-Processing

Evaluation of the functions implemented in EnvCpt:

In order to execute the functions provided by EnvCpt at every grid cell, an R script has
been developed. It returns a list with the following entries:

• Coordinates of the grid cell related to the underlying raster.

• Longitude and latitude of the grid cell.

• A list with informations about every considered model, containing the value of the
information criterion, the difference from the best model ∆, and the related weight
for both AIC and BIC.

• The positions of the changepoints of the best AIC and the best BIC model.

• A list with the changepoints detected in every model with the respective weight.

Informations about the models which are not considering changepoints are not stored in
the list.

Filtering the changepoint data:

The created list consisting of the EnvCpt output at every grid cell contains a lot of
informations about all detected changepoints, which needs to be filtered. There are two
different R scripts for filtering either by the best AIC/BIC model or by the list containing
all changepoints.
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• Filter method I:

The filtering method based on the best AIC/BIC model can be used to determine the
type of changepoint detected in a grid cell suggested by the model with the lowest
AIC/BIC value. The R script for this filter method can be found in appendix in
listing 2. Besides the choice of information criterion, one can also set a minimal
AIC/BIC weight needed for a changepoint model to be regarded as justified. The
default value for this weight condition is 0.95. The resulting list contains only
information about the grid cells fulfilling this condition.

• Filter method II:

In this method, the list containing all detected changepoints is filtered. As in method
I, a condition on the weight (same default value of 0.95) and the considered infor-
mation criterion can be entered. Here, the weight condition also helps to reduce the
large amount of changepoints with a relatively low support.

If two models deliver similar support for a time series, their AIC/BIC weight will be
in the same range. Since the sum of all weights is equal to 1 (see equation (22)), the
models must share the weights and neither will probably fulfill the weight condition
anymore. In order to solve this problem, the weight of the models with changepoints
at similar positions are added and therefore, changepoints that are detected by more
than one model, where the models together have a high weight but neither of the
models alone would have, are not neglected. The interval used in this clustering
process can be adjusted and has a default value of plus/minus one year. To get the
most probable year of the changepoint, the iteration starts with the changepoints
of the best AIC/BIC model and continues with the remaining models ordered by
their AIC/BIC weights. The R script of this filtering method can be found in the
appendix in listing 3.

Neglecting changepoints at the end of the time series:

According to C. Beaulieu, EnvCpt tends to detect changepoints at the end of a time
series. Therefore, changepoints in a certain interval at the end were neglected. A time
period of 4 time steps is set as the default option, which can be adjusted.
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3 Results

3.1 Changes in the Variables

As mentioned before, the time series from 1861 to 2100 consists of the historical period
and the future period following the RCP8.5 scenario. All analyzed variables undergo
changes over the period, in particular during the future period. Since in some variables
these changes are relatively high also relative to the fluctuations in the historical period,
we expect that EnvCpt will probably detect changepoints. In order to interpret these
changepoints, the overall behavior of the variables over time has to be studied.

For each variable three different plots have been created. The first plot shows the time
series of the global mean from 1861 to 2100. As mentioned in section 2.3, the grid cells
are not spaced evenly on the Earth’s surface. The resolution of the ocean model increases
especially towards the equator, resulting in smaller grid cells there. Therefore, the value
of the variable in every grid cell has to be weighted with the size of the grid cell for the
calculations of the global mean. The second plot shows the mean state of the period 1861-
1880. This spatial plot shows the state of the variables at the start of the simulation. In
the third plot the difference between the mean states of the periods 1861-1880 and 2081-
2100 is shown. With this plot, the overall changes can be determined and it is especially
useful for the interpretation of the changepoints regarding whether the variables increase
or decrease.

In figures 1 - 4, the three plots for SST, SIC, NPP, and pCO2 are shown. We now discuss
the main characteristics of the changes for each variable.

Sea surface temperature:

In the time series of the global mean (shown in 1(a)), the first pronounced increase of SST
can be observed around 1975. After 2010, the increase follows almost a linear trend. In
high latitudes SST remains approximately at preindustrial levels, as can be seen in figure
1(c). In the Southern Ocean and in the Labrador Sea south of Greenland the SST is
projected to decreases, whereas in remaining regions a substantial increase is simulated.

Sea ice concentration:

The global mean of SIC shows almost the reversed curve of the global mean SST (see
plot 2(a)). In 1975 a first decrease can be observed. After a short increase in the 1990s,
SIC declines distinctly. Looking at plot 2(c), the largest decrease of SIC is simulated in
the Arctic Ocean. In one region SIC increases, namely in the Weddell Sea southeast of
Argentina.

Net primary production:

There is also a visible change in NPP at the beginning of the RCP8.5 period, but not as
distinct as in the previous two variables (see plot 3(a)). The biggest changes in the NPP
are projected to tropical and subtropical regions expanding up to about ± 40◦, whereby
the changes contain increases and decreases.
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Changes in sea surface temperature

(a) global mean 1861-2100

(b) mean state 1861-1880 (c) difference in the mean states between the peri-
ods 1861-1880 and 2081-2100

Figure 1: Visualization of the change of the SST; (a) global annual mean from 1861 to 2100;
(b) mean state of the period 1861-1880; (c) difference between the mean states of the periods
1861-1880 and 2081-2100.

Changes in sea ice concentration

(a) global mean 1861-2100

(b) mean state 1861-1880 (c) difference in the mean states between the peri-
ods 1861-1880 and 2081-2100

Figure 2: Visualization of the change of the sea ice concentration; (a) global annual mean from
1861 to 2100; (b) mean state of the period 1861-1880; (c) difference between the mean states of
the periods 1861-1880 and 2081-2100.
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Changes in net primary production

(a) global mean 1861-2100

(b) mean state 1861-1880 (c) difference in the mean states between the peri-
ods 1861-1880 and 2081-2100

Figure 3: Visualization of the change of the net primary production; (a) global annual mean
from 1861 to 2100; (b) mean state of the period 1861-1880; (c) difference between the mean
states of the periods 1861-1880 and 2081-2100.

Changes in partial CO2 pressure

(a) global mean 1861-2100

(b) mean state 1861-1880 (c) difference in the mean states between the peri-
ods 1861-1880 and 2081-2100

Figure 4: Visualization of the change of the partial CO2 pressure; (a) global annual mean from
1861 to 2100; (b) mean state of the period 1861-1880; (c) difference between the mean states of
the periods 1861-1880 and 2081-2100.
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Partial CO2 pressure:

The largest relative change of all variables is simulated in partial CO2 pressure. From
1861 until 1975 the global mean of pCO2 shown in figure 4(a) follows a nearly linear trend.
After 1975, the increase is no longer linear, but follows more exponential behavior. This
can also be observed in the change of the mean state in figure 4(c), where no regions with
a decrease in pCO2 can be found.

3.2 Visualization of Filtered EnvCpt Output

3.2.1 The Types of Plots used for the Analysis of Changepoints

Using the post-processing R scripts, the informations provided by the EnvCpt package
are filtered. Depending on the different input parameters, large lists of data are resulting.
In order to visualize the data, three types of plots are shown:

• Type 1: The first plot type shows the total number of changepoints detected in
every grid cell. While the plot doesn’t contain any information about the exact
positions in time of the changepoints, regions with a high rate of changepoints can
be identified. This plot is based on the filtered data where the changepoints are
clustered (method II).

• Type 2: The second type shows the nature of changepoints detected in every
grid cell. As mentioned in the method section (2.2.3), there are different types
of changepoints. Changepoints can either separate segments of a time series with
different mean values or with different trends from each other. Their segments
can additionally incorporate first or second-order autocorrelation. Hence, EnvCpt
considers six types of changepoints in total. This plot is based on data filtered by
method I (section 2.4.4) and therefore shows which of the changepoint models has
the largest support.

• Type 3: In a third plot type the year of the first changepoint is shown. For visu-
alization, the years were grouped in decades. This plot is also based on the filtered
data with clustered changepoints. Since the iteration of adding up the weights of
the changepoints starts with the changepoint positions of the best AIC/BIC model,
the most probable year is shown in the plot.

While such plots can be used for the spatial analysis of the post-processed EnvCpt output,
they contain no information about the positions of the changepoints in general, except
of the first changepoint. In order to identify regions where simultaneous changepoints
occur in a large area, a plot for every time step was created. These plots are based on
the filtered data with clustered changepoints and are additionally showing one of the six
types of changepoint, as specified for the type 2 plot. Moreover, with these plots one can
analyze if there are changepoints occurring simultaneously in more than one variable.
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3.2.2 Main Characteristics of the Plots with Default Parameter Choice

In a first step, the plots based on the default parameters are analyzed. As a reminder,
the default parameters are AIC information criterion, weight condition of 0.95, interval
for changepoint clustering of ± 1 year, and minimal segment length of 5 years. In the
following the detected changepoints of the different variables are discussed.

Type 1: Total number of detected changepoints

(a) sea surface temperature (b) sea ice concentration

(c) net primary production (d) partial CO2

Figure 5: The number of changepoints for the four analyzed variables based on the default
parameters and the time series containing the historical as well as the RCP8.5 period.

Changes in the Southern Ocean:

All variables have detected changepoints in the Southern Ocean. A hotspot of changes is
located in the Weddell Sea at about 65◦S and 23◦E. For SST, NPP, and pCO2 the total
number of detected changepoints is about 10 and for SIC about 25. This can be seen
in the type 1 plot of each variable in figure 5. This region also stands out in terms of
the changes between 1861-1880 and 2081-2100 (figures 1-4(c)): A decrease in the SST
and in the NPP and an increase in the SIC are simulated. Expect for pCO2, where the
changes occur in a linear trend, the nature of change in the other variables is generally
not following a clear pattern. This result will be discussed later in the robustness study.

The first changepoints in all variables have been detected at the end of the 19th century
(see figure 7). By analyzing the positions of all detected changepoints, large pattern with
changepoints occuring in the same year could be found for all variables. Besides the
common changepoints at around 1890, bigger changes at around 1990 and 2065 could be
detected.
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Type 2: Nature of the changepoints

(a) sea surface temperature (b) sea ice concentration

(c) net primary production (d) partial CO2

Figure 6: The nature of changepoints for the four analyzed variables based on the default
parameters and the time series containing the historical as well as the RCP8.5 period.

Type 3: Year of the first changepoint

(a) sea surface temperature (b) sea ice concentration

(c) net primary production (d) partial CO2

Figure 7: Year of first changepoint for the four analyzed variables based on the default param-
eters and the time series containing the historical as well as the RCP8.5 period.
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Changes in the Arctic Ocean:

Another region with a large amount of detected changepoints is the Arctic Ocean. From
figure 5 we see that this is particularly true for SST which shows large patterns with more
than 10 detected changepoints, while less changepoints are observed for SIC and NPP. By
looking at figure 1(c) one can see that the SST in the high latitudes of the Arctic Ocean
does not change much. A possible explanation is that SST shows fluctuations, which are
already present in the preindustrial period leading to a large amount of changepoints.

Moreover, in the type 2 plot for SST in figure 6(a) it can be seen that the changepoints
detected near the poles are often of the type trend followed by changepoints in the mean
going towards the polar circles. This can also be observed for other variables like SIC and
in other regions, as for example the Southern Ocean. A possible explanation for these
changes in the mean is that there are shifts between periods with more and periods with
less sea ice. This statement is supported by figure 7(b) where one can see that the first
changepoints in these regions with mean shift occur early in the historical period.

Moreover it can be seen that regions in higher-latitudes close to the pole show their first
changepoint in the middle of the RCP8.5 period for both SST and SIC. Considering
the overall changes in SST and in SIC and furthermore taking into account that these
changepoints are of the type trend suggest that there is a decrease in the sea ice starting
at around 2030.

The same can also be observed in the Southern Ocean. As shown in plot 2(b), the SIC
at around 70◦N and 70◦S is lower than in regions further polewards. Through the rise
in SST, the little ice present at around 70 degrees North is melting completely and since
after that the SIC is already zero and no more changes, except of the new formation of sea
ice, can occur, a changepoint in the mean is resulting. Since the sea ice further polewards
is not completely melted and the melting process can happen over the whole time series,
EnvCpt interprets the change as a linear trend. Figure 8 shows the time series of SIC at
coordinates 83.41◦N and 2.54◦E and the result of EnvCpt including the AIC/BIC value.
This grid cell is close to North Pole and troughout the historical period permantely coverd
by sea ice.

Figure 8: Plot of the time series of the SIC at the coordinates 88.46◦N and 2.54◦E with the
output of EnvCpt including the AIC/BIC value. The filled bar indicates the best AIC/BIC
model.
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Following the black curve at the bottom of figure 8, a decrease in the SIC starting at time
step 200 (year 2061) and another detected changepoint at time step 170 (year 2031) can
be observed, already mentioned above. With both information criteria, EnvCpt interprets
the changes as a linear trend with second-order autocorrelation. From that one can see
why EnvCpt detects changes in trend in high-latitudes. The change in the mean in slightly
lower-latitude regions is discussed in section 4.1.

Again, the plots showing only the changepoints detected in one year can be analyzed in
order to see if the changes can be observed in all of the variables simultaneously. In the
years around 1980, 2020 and 2065 larger patterns of changepoints could be detected in
SST and in SIC.

Changes in the region south of Iceland:

Using the plots of type 3 in figure 7, a region with their first detected changepoint only in
the second half of the 21st century can be identified. Located south of Iceland, the region
particularly stands out when analyzing the SST and the NPP. Since the changepoints
are first occurring towards the end of the time series, the total number of changepoints
is not very high and therefore not notable only considering the type 1 plot. By looking
at plot 1(c) one can see that SST decreases over the whole time series. This decline in
water temperature and the related decline in NPP is likely related to the weakening of
the meridional overturning circulation [Drijfhout et al., 2012].

Changes in low-latitude regions:

By looking at figure 7(a), showing the year of the first changepoint for SST, one can see
that in low-latitude regions the first changepoints often occur in the period of 1970-2000.
Again considering the overall changes in SST in figure 1(a), the global mean increase starts
in the same period. Since the low-latitude regions make up a large part of the Earth’s
surface, they have a large influence on the global mean and it is therefore no surprise that
their behavior is similar.

Changes in the partial CO2 pressure:

In figure 6(d) the type of changepoint for pCO2 is shown. It can be clearly seen that
almost in every grid cell the suggested model is considering piecewise linear trends that
are separated by changepoints. The reason for that is based on the large changes in pCO2.
It is discussed in detail later in the discussion section (4.2).

3.3 Robustness of the Results

The plots presented in section 3.2.2 depend on the choice of input parameters. Since
changing only one parameter already can have a significant effect on the results, the
differences have to be studied carefully.
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3.3.1 Varying the Information Criterion

By looking at the definitions of the information criteria in equation (7) and (8) one can see
that the only difference between the information criteria arises from the penalty terms.
More precisely, the factor in front of k, the number of adjustable parameters for the fit,
differs and in case of the BIC additionally depends on the number of observations n. Table
2 shows the penalty term for the full 240-year period and for the RCP8.5 period only.

Table 2: Penalty term for the different time series.

AIC BIC

RCP8.5 2k 4.55k

historical + RCP8.5 2k 5.48k

If BIC is used, models with a large k are penalized more. From equation (9) we see that
a large number of changepoints m leads to a large k. The number of changepoints is
independent of the choice of information criterion used for getting a measure of fitness.
Therefore, kmod and thus k are the same for the analysis with AIC and BIC.

Although the number of changepoints for each changepoint model is the same, the plots
of type 1 are different (compare figure 5(a) and 21(a) in the appendix). This arises from
the fact that the type 1 plot is based on the filtered data with clustered changepoints. A
different value of the information criterion leads to a different weight, and since the plots
are only showing changepoints according to a certain weight condition, the result may
differ. Larger changes than in the plots showing the number of changepoints can be seen
by comparing the type 2 plots, shown in figure 9. We observe two main differences:

(a) AIC (b) BIC

Figure 9: Type 2 plot for SST with default parameters except for the information criterion.

• The best BIC model is not as often a changepoint model:
If the number of changepoints m is large, the models with changepoints are penal-
ized more when the BIC is used. For the BIC to suggest a non-changepoint model,
meaning that the penalty is large enough so that another model gets the highest
support, there has to be at least one changepoint model and one without change-
points with similar log-likelihoods. If this is not fulfilled, the best BIC model is still
considering changepoints.
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This can for example be observed in the Weddell Sea, e.g. at 64.5◦S, 22.5◦W, or
in the region south of Iceland, where a lot of changepoints are detected when using
the AIC. Figure 10 shows the changes in the time series in SST at the coordinates
mentioned above in the Weddell Sea.

Figure 10: Plot of the time series of the SST at the coordinates 64.5◦S and 22.5◦W with the
output of EnvCpt including the AIC/BIC value. The filled bar indicates the best AIC/BIC
model.

The best AIC model in figure 10 is a trend model with changepoints. Since the
number of detected changepoints in every model is quite large (from 6 to 11), they
are more penalized using the BIC. Moreover, there are models with and without
changepoints with a log-likelihood in the same range. As a result, the best BIC
model is a model without changepoints.

• The BIC detects new changepoints:
As described above, the type 2 plot is based on the data filtered by the best AIC/BIC
model (filter method I). Since the default parameters contain a weight condition,
only grid cells where the best model has a weight higher than 0.95 are shown.
Considering the definition of the weight in equation (22), the sum of all weights of
the models for a time series has to be equal to 1. Therefore, if two models have a
similar AIC or BIC, neither of the models has a weight high enough to be considered.
This is the explanation why there are changepoints only detected by the BIC. The
larger penalty term caused by a large number of detected changpoints increases the
BIC of some models sufficiently enough so that one model with a weight over 0.95
remains. By comparing plot 9(b) to the plots in figure 13, one can see that larger
patterns detected by the BIC are also shown in the figures based on AIC with a
weight condition of 0.5, as for example in the equator regions of the Pacific Ocean
or in the region southwest of Africa.

Overall, the detected patterns stay similar when changing the information criterion in
many regions. This can for example be observed in high-latitude regions. In contrast to
the two differences in the results that can occur, the following criteria must be met to
produce the same result. There has to be a model which provides much more support
than any other model and therefore claims almost all of the weight. If the difference in
the log-likelihood is large enough so that even the larger penalty of the BIC does not have
an influence on the distribution of the weights, the result of AIC and BIC will be the
same.
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3.3.2 Varying the Minimal Segment Length

The minimal segment length is used by the OP algorithm (section 2.2.3) and it defines
the minimal period between two changepoints. The default value used in EnvCpt is 5
years. In order to analyze the impact of changing this parameter, the default plots with
a segment length of 10 years have been created. Changes only occur if the data based
on a minimal segment length of 5 years contains changepoints separated by less than 10
years. By comparing the plots of type 1 (figure 11) one can see that there are only minor
changes. Hence, the majority of changepoints are separated by more than 10 years.

(a) minimal segment length of 5 years (b) minimal segment length of 10 years

Figure 11: Type 1 plot for the SST with default parameters and modified minimal segment
length: (a) segment length of 5 years; (b) segment length of 10 years.

3.3.3 Varying the Length of the Time Series

Changing the length of the considered time period can have a major impact on the results.
This can be seen especially by comparing the plots of type 2 of the time period consisting
of the historical and the RCP8.5 part and the period only consisting of the RCP8.5 part.
Both plots are shown in the bottom row of figure 12. There are two possible reasons for
these differences:

1. The changepoint detection is based on the OP algorithm. As described in sec-
tion 2.2.3, the algorithm separates the time series in segments x1:s and minimizes
equation (13) by iteration. By changing the length of the time series, different
changepoints may lead to the minimization of equation (13). Therefore, the change-
points may not be the same, even in the part of the period, where both time series
are based on RCP8.5.

2. Longer time series can contain more changepoints. Following the considerations
above in section 3.3.1, the number of changepoints can have a large impact on
the penalty term and therefore on choice of the model with the highest support.
In the analysis based on the time period containing also the historical part, the
penalty term is higher because there are often changepoints detected before 2006.
As mentioned above, this leads to models without changepoints to be preferred over
models with changepoints, especially when they have a similar log-likelihood.
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(a) based on historical + RCP8.5 (b) based on RCP8.5

(c) based on historical + RCP8.5 (d) based on RCP8.5

Figure 12: Top row: Type 1 plot for SST with default parameters for changepoints occurring
in the years from 2006 to 2100: (a) based on the period historical + RCP8.5; (b) based only on
the RCP8.5 period. Bottom row: Type 2 plot for SST with default parameters for changepoints
occurring in the years from 2006 to 2100: (c) based on the period historical + RCP8.5; (d) based
only on the RCP8.5 period.

The largest differences between the type 2 plots can be observed in the Arctic Ocean.
While EnvCpt detects a lot of changepoints in this region when only the RCP8.5 period
is considered, the plot based on both periods showing only the changepoints after 2005
indicates almost no changes. These differences can be likely explained by the data on
which the type 2 plot is based on (see 2.4.4, filter method I), as well as the second
argument mentioned above. The type 2 plot including the historical and the RCP8.5
period, shows the best AIC/BIC model which are penalized with the total number of
changepoints found in the whole time series. As one can see in the type 1 plot shown
in the top row of figure 12, the number of detected changepoints in many regions of the
Arctic Ocean is the same for both time series. Therefore, following the second argument,
there have to be a relatively large amount of changepoints detected in the historical period
in this region leading to a large penalty term, which in turn leads to a non-changepoint
model delivering the highest support. The type 1 plot for SST in figure 5(a) is indicating
a high rate of changepoints in the Arctic Ocean, consistent with an early first changepoint
shown in the type 3 plot in figure 7(a).

Moreover, a large pattern in the low latitudes of the Pacific Ocean can be observed in the
plots based on both periods, which is not occurring in the plots only based on RCP8.5.
This can likely be explained by the large increase of the SST in the RCP8.5 period. The
changepoints in this region are probably caused by the change in the statistical properties
in the time series based on both periods causing changepoints which are not observable
when only the RCP8.5 period is considered. Again, figure 7(a) showing the year of the
first changepoint for SST supports this explanation.
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3.3.4 Varying the Weight Condition

The weight condition defines the minimal weight a changepoint model (in filter method
I, see section 2.4.4) or a changepoint (in filter method II) must have to be considered.
The type 1 plot with default parameters but different weight conditions can be found
in figure 13. At a minimum weight of 0.5 almost every grid cell contains changepoints.
When the minimum weight is increased, the fraction of grid cells with changepoints is
reduced. However, there are still many grid cells with change points when choosing a
high minimum weight such as 0.99.

(a) weight condition of 0.5 (b) weight condition of 0.99

Figure 13: Type 1 plot for the SST with default parameters and modified weight condition:
(a) weight condition of 0.5; (b) weight condition of 0.99.

3.3.5 Varying the Interval for Changepoint Clustering

The default interval for changepoint clustering is 1, meaning that the weight of the change-
points ±1 year away from the changepoint of the model with the highest AIC/BIC are
added up. Increasing this interval to ±2 years results in the detection of a few more
changepoints. This happens because more weight is added to the same changepoint. If
the added up weight then fulfills the weight condition, additional changepoints are de-
tected. This can be seen in figure 14 where the interval is increased to ± 2 years. Since
there are only a few changes, adding up changepoints in the interval ±1 year is sufficient.
With a larger interval the precision of the detection gets worse.

(a) clustering interval of ± 1 year (b) clustering interval of ± 2 years

Figure 14: Type 1 plot for the SST with default parameters and modified interval for change-
points clustering: (a) interval of ± 1 year; (b) interval of ± 2 years.
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4 Discussion

4.1 Comparing Results to Drijfhout et al.

As mentioned in the introduction, Drijfhout et al. (2015) separated the detected abrupt
shifts in four categories, whereby these categories are further subdivided by region and by
defining types for different variables. Table 3 shows a selection of categories and types,
which are compared to the results obtained with EnvCpt.

Table 3: Selection of categories and types of shifts detected by Drijfhout et al. (2015), which
are compared to the result of the analysis with EnvCpt.

Category Type Region

I: switch 1. sea ice bimodality Southern Ocean

II: forced transition to switch 2. sea ice bimodality Southern Ocean

III: rapid change to new state 4. winter sea ice collapse Arctic Ocean

5. abrupt decrease in sea ice regions of high-latitude oceans

Category I & II - Types 1. and 2.:

Drijfhout et al. (2015) identified four regions in the Southern Ocean showing reversing
abrupt shifts in the sea ice cover. These changes could be observed in the historical period
as well as in the RCP scenarios, whereby in the latter the abrupt shifts were becoming
weaker. They explained these bimodal shifts by the feedback between the open-ocean
convection and the formation of sea ice. During periods when warm water is upwelling,
no permanent sea ice cover is formed. In contrast, once a permanent ice cover has been
formed, the convection decreases, which enhances again the formation of sea ice.

Two of the four regions with bimodal switches identified by Drijfhout et al. (2015) are
located in the Weddell Sea. Looking at figure 5(b), the same region is showing a large
rate of changepoints. Often, changes between mean states are simulated, which extends
to the Antarctic Polar Front, as can be seen in figure 6(b).

These observation lead to the possible conclusion that SIC is switching between different
states in our analysis, whereby according to Drijfhout et al. (2015) longer periods without
sea ice cover can occur. In order to check this statement, a representative grid cell in the
Weddell Sea with a high rate of changepoints in the mean is analyzed. Figure 15 shows
the time series of SIC for that grid cell.

In the time series at the bottom of figure 15 one can see that longer periods with a very
low sea ice concentration are interrupted by periods with an increased fraction of sea ice.
EnvCpt interprets the changes in the time series as changes between different mean states
and therefore delivers similar results as obtained by Drijfhout et al. (2015).

Drijfhout et al. (2015) also found bimodal shifts that occur only after a change in the
climate. Such regions are indicated by a relatively late first changepoint. Looking at figure
7(b) a region in the Ross Sea around 75◦S and 160◦W can be identified with changepoints
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Figure 15: Plot of the time series of the SIC at the coordinates 65.5◦S and 13.5◦W in the
Weddell Sea with the output of EnvCpt including the AIC/BIC value. The filled bar indicates
the best AIC/BIC model.

first occurring around the year 2060. Moreover are these late changepoints mostly of the
type mean (see figure 6(b)). Combining both observations leads to the conclusion that the
changes caused by the RCP8.5 period are leading to a switch in the sea ice concentration.
Figure 16 shows the time series in SIC of a grid cell located at 75.5◦S and 160.5◦W in the
Southern Ocean.

Figure 16: Plot of the time series of the SIC at the coordinates 75.5◦S and 160.5◦W in the
Southern Ocean with the output of EnvCpt including the AIC/BIC value. The filled bar indicates
the best AIC/BIC model.

The time series at the bottom of figure 16 shows a large variability until time step 200
interpreted by EnvCpt as a first-order autocorrelation process followed by decrease in the
SIC interpreted as a switch in the mean. The detected changepoint occurs in the year
2051, a few years before the visible change in the time series. Drijfhout et al. (2015)
found changepoints in the same region, besides shifts of category 3 type 5 discussed in
the next paragraph.

Category III - Type 4:

In the time series considering RCP8.5, Drijfhout et al. (2015) detected an abrupt large-
scale collapse of the winter sea ice in the Arctic Ocean after the year 2100. This collapse
occur in regions where the water temperature in the summer months gets sufficiently high,
so that no new ice layer will form in the winter. In this thesis only time series until the
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year 2100 are considered. Nevertheless, it can be analyzed whether in our analysis a sea
ice collapse before 2100 in the Arctic Ocean can be observed or if the regions identified
by Drijfhout et al. (2015) indicate the probable collapse.

Drijfhout et al. (2015) found 5 cases of large-scale collapses in winter sea ice in the High
Arctic. While figure 5(b) gives no clear indications for large changes, in the type 2 plot for
SIC in figure 6(b) larger patterns of trend changepoints can be identified. In section 3.2.2
a grid cell near the North Pole at coordinates 83.41◦N and 2.54◦E was analyzed (see also
figure 8). As observed before, SIC is close to 1 throughout the historical period and after
time step 200 (year 2061) a strong decrease can be observed. At the end of the time series
in the year 2100 the SIC has a value of 0.75. While in this grid cell no collapse appears,
a strong decreasing trend in SIC can be identified also indicated by EnvCpt using both
information criteria. Moreover, in grid cells located south of the one analyzed in figure 8,
no collapse of the sea ice cover such as those identified by Drijfhout et al. (2015) could
be found.

Category III - Type 5:

Another type of abrupt change observed by Drijfhout et al. (2015) is the local sea ice loss.
In two cases they observed a fast transition from perennial ice cover to a state, where the
ice cover almost disappears throughout the year. These cases are located in the Barents
Sea and in the Pacific sector of the Southern Ocean. These local changes in the sea ice
concentration also have an influence on the net primary production. In general, they
observed a connection between the decrease of the sea ice cover and the rapid increase of
the net primary production. This is most likely due to the increase of available light in
the top layer of the ocean.

Looking at figure 5(c) one can see that in the Barents Sea indeed a region with a higher
rate of changepoints can be identified. Also in the Pacific sector of the Southern Ocean
an area with a lot changes in the NPP can be observed, but since the changes in the
Barents Sea can be better related to the changes in SIC (see figure 5(b)) we will focus on
this region by analyzing a representative grid cell. The two plots in figure 17 are showing
time series of NPP and SIC of a grid cell located at 76.13◦N and 40.37◦E in the Barents
Sea.

Comparing the time series of NPP (top) and SIC (bottom) in figure 17 one can see that
the net primary production highly anticorrelates with sea ice concentration (Pearson cor-
relation coefficient r = −0.9339). Except for a few peaks, the SIC decreases significantly
after time step 150 (year 2011), which is resulting in a permanent increase in NPP. The
fast transitions from perennial sea ice cover to a state where no more sea ice is present,
which were detected by Drijfhout et al. (2015), can also be observed. After the year 2051
the sea ice cover has almost disappeared completely. Since in most time steps after 2051
the SIC is exactly zero, the grid cell is annually ice-free.
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(a) sea ice concentration

(b) net primary production

Figure 17: Plot of the time series at coordinates 76.13◦N and 40.37◦E in the Barents Sea: (a)
for SIC; (b) for NPP. Both plots also show the output of EnvCpt including the AIC/BIC value.
The filled bar indicates the best AIC/BIC model.

4.2 Performance of EnvCpt using Simulated Toy Data

EnvCpt takes into account in general two different types of models, one kind is based on
a constant mean and the other on a linear trend. How does EnvCpt perform if there is
an increase of higher order? In order to analyze such and similar problems the output of
EnvCpt has been studied using toy (i.e. synthetic) data. With this also some limitations
of EnvCpt can be recognized.

The toy data used for the analysis is generated in R using the arima.sim() function.
This function can be used to simulate noise error as well as autocorrelation. In order
to simulate autocorrelation one has to specify the autocorrelation-coefficients ϕi (see for
example equation (17)). They are chosen in a way that the sum of all coefficients is equal
to 0.5 in order to simulate realistic behavior. In order to get an overall behavior like
a linear trend or a quadratic increase, a polynomial function of the respective degree is
added. The R code used for the toy data analysis can be found in the appendix in listings
4 and 5.

In the following, three cases of special time series are studied. These examples show how
EnvCpt performs on toy data with predefined behavior and where the limitations of in
changepoint analysis with EnvCpt are.
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4.2.1 Mean Model with one Changepoint

In this first analysis a time series over 240 time steps with a shift in the mean has been
simulated. To this time series normal distributed noise error with a mean of zero and a
standard deviation of one was added. The shift in the mean is implemented at position
120 and the mean shifts by four standard deviations. The black curve at the bottom of
figure 18 shows the time series.

Figure 18: Result of EnvCpt for a simulated time series based on a mean with a changepoint
at position 120 and added noise error, which is normal distributed with a mean of zero and
a standard deviation of one. The shift in the mean is 4 standard deviations. The filled bar
indicates the best AIC/BIC model.

By looking at the curves of the models produced by EnvCpt one notices that all of the
models considering changepoints have detected the change at the right position. Moreover,
the trend models describe the time series also quite well, what can be seen in the AIC/BIC
of the respective models. Table 4 shows the log-likelihood, the number of estimated
parameters, the number of detected changepoints, and the AIC/BIC for all the models.

Table 4: Log-likelihood, number of estimated parameters, number of changepoints, AIC/BIC
and the AIC/BIC delivered delivered by EnvCpt for the time series shown in figure 18. High-
lighted is the lowest AIC/BIC resp. the best suggested model by EnvCpt.

mean meancpt meanar1 meanar2 meanar1cpt meanar2cpt
log-like 1067.8 681.5 841.2 802.3 679.3 671.8
nr. of par. 2 5 3 4 7 9
nr. of cpts 0 1 0 0 1 1
AIC 1071.8 691.5 847.2 810.3 693.3 689.8
AIC weight 0 0.236 0 0 0.093 0.547
BIC 1078.8 708.9 857.7 824.2 717.7 721.1
BIC weight 0 0.982 0 0 0.012 0.002

trend trendcpt trendar1 trendar2 trendar1cpt trendar2cpt
log-like 848.5 681.4 788.6 769.7 679.3 671.6
nr. of par. 3 7 4 5 9 11
nr. of cpts 0 1 0 0 1 1
AIC 854.5 695.4 796.6 779.7 697.3 693.6
AIC weight 0 0.032 0 0 0.013 0.080
BIC 864.9 719.8 810.5 797.1 728.6 731.9
BIC weight 0 0.004 0 0 0 0
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There is no big difference between the log-likelihood of the models considering a mean
and the respective model based on a linear trend. The slope of the linear increase in the
trend models is close to zero leading to similar log-likelihood values. However, due to
the different number of estimated parameters, the trend models are penalized more. If
EnvCpt would neglect parameters whose estimated value is close to zero, the AIC/BIC
would be equal to one of the mean models.

But since the AIC/BIC of the different models are still in close range, the weights of the
models are also similar. Therefore, the weight of the changepoint only considering the
best AIC/BIC model may not be higher than the default weight condition of 0.95. So
even if the time series is simulated with a distinct changepoint, EnvCpt will not detect
the change under the weight condition. Therefore, adding up the weight of the different
models in case when they detect a similar changepoint is a reasonable approach to solve
this problem.

Moreover, it can be observed that the AIC often tends to interpret the noise error as
autocorrelation. Using the BIC this does happen less frequently, since the penalty term
of the BIC is larger.

4.2.2 Quadratic Increase

The curve of the global mean of the partial CO2 pressure in plot 4(a) shows an increase
of a higher order than linear. As a result, EnvCpt is detecting a lot of changepoints in
the models considering a linear trend, as can be seen in plot 6(d).

In order to analyze this result, toy data with 240 time steps considering a quadratic
increase has been simulated. Again, normal distributed noise error with a mean of zero
and a standard deviation of one was added to the quadratic behavior. The total increase
between the end and the beginning of the time series is equal to 50 standard deviations.
The time series is shown at the bottom of figure 19.

Figure 19: Result of EnvCpt for a simulated time series based on a quadratic increase with
added noise error, which is normal distributed with a mean of zero and a standard deviation of
one. The total increase at the end of the time series is equal to 50 standard deviations. The
filled bar indicates the best AIC/BIC model.
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It can be observed that both information criteria suggest a model based on a linear trend,
what is consistent with the results of EnvCpt for the pCO2 time series. Moreover, the
trend models describe the time series using piecewise linear periods resulting in a high
number of changepoints. This explains why in a lot of regions the number of detected
changepoints in the pCO2 time series is relatively high, as can be seen in figure 5(d).

Another thing that can be observed is that with a bigger difference between the start
and the end point of the quadratic increase, the models considering second-order auto-
correlation (AR2) are not detecting changepoints anymore and the large increase is fully
described with the autocorrelation. However, the support of these AR models for the time
series is relatively bad and EnvCpt will still suggest a trend model with changepoints.

4.2.3 Higher-order Autocorrelation

In a last simulation the behavior of EnvCpt is studied when the data is based on higher-
order autocorrelation. For that, data with different orders of autocorrelation has been
simulated and again, normal distributed noise error with a mean of zero and a standard
deviation of one was added. Since no additional behavior is added to the time series,
the best model suggested by EnvCpt should be the mean model with respective order
autocorrelation.

In order to see if EnvCpt performs well, the best AIC/BIC model was determined and
counted for 1000 repetitions. The results are presented in bar-plots showing the distri-
bution of the suggested models in figure 20. This analysis was done with autocorrelation
of first and second-order, which are also taken into account by Envcpt, and third-order,
which is not included anymore.

First-order autocorrelation:

Using AIC as the information criterion shown in plot 20(a), the trend model with AR2
is the best model in about 850 cases. Since the autocorrelation leads to a dependence
between the time steps, a longer period of an increase or a decrease can occur. EnvCpt
often tends to interpret such behavior as a linear trend, although no underlying trend
was added. Using the BIC, the mean model with AR1 has been the best model in most
of the cases. The difference again lies in the penalty term of the information criterion.
Since the trend models are penalized more because of the larger amount of free adjustable
parameters, the resulting best model is a mean model. As mentioned before, the large
differences between AIC and BIC plots again show that the log-likelihood of some models
are in the same range, meaning that they have similar support.

Second-order autocorrelation:

By looking at the result of the AIC in plot 20(c) it can be observed that there are only
small differences to the AR1 plot. However, since the time series is based on a AR2
process, AIC tends to pick the correct order of autocorrelation this time. Yet, it still
infers a trend that is not present in the toy data. With the BIC, the best models are often
models considering AR2, and unlike AIC, BIC suggest the correct mean AR2 model in
some cases.
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(a) AIC: first-order autocorrelation (b) BIC: first-order autocorrelation

(c) AIC: second-order autocorrelation (d) BIC: second-order autocorrelation

(e) AIC: third-order autocorrelation (f) BIC: third-order autocorrelation

Figure 20: Distribution of the best model detected with both AIC and BIC for time series based
on autocorrelation of order one, two and three with added normal distributed noise error with a
mean of zero and a standard deviation of one. In all plots the best model has been counted for
1000 repetitions.

Third-order autocorrelation:

With third order autocorrelation, the best model is the trend model considering AR2 in
most cases. In contrast to the first and second orders, the suggestion of non-autocorrelation
models with changepoints is higher.

4.2.4 Limitations of EnvCpt

The performance of EnvCpt with simulated toy data shows that there are some clear
limitations in the detection of changepoints. First of all, EnvCpt is only considering a
selection of statistical models. Changes in the time series following increases higher-than-
linear order or higher order autocorrelation can lead to a misinterpretation of the data.
The study of the quadratic increase showed that such behavior results in the detection
of a lot of changepoints, although the underlying data follows a continuous curve. The
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presence of autocorrelation has been detected correctly in most cases, even at higher
order than considered in EnvCpt. Nevertheless, the use of EnvCpt for the detection of
changepoints is limited to time series, which behavior is included in EnvCpt. Therefore it
is important to know the general changes in the time series before interpreting the results
of the changepoint analysis with EnvCpt.

Using a weight condition to determine how valid the detection of a changepoint is can
lead to the loss of informations. As explained in section 4.2.1, if several models have
similar AIC/BIC, the weight is distributed on these models. This problem can be solved
by adding up the weight of changepoints with similar position.
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5 Conclusions

Analyzing the first results, we noticed that EnvCpt detected changepoints in almost every
grid cell. In order to handle this large amount of data, two different filtering methods have
been introduced. In both methods a condition on the weight of either the changepoint
models or the changepoints themself are defined. On one hand, the weight condition helps
to reduce the amount of changepoints and on the other hand, only changepoint models
or changepoints with a certain support for the time series are considered.

With the results based on the default parameter choice, several regions with a high rate
of changepoints could be identified. Often, the changes occur in the RCP8.5 period
as for example in high-latitude regions, where the decline of the sea ice concentration
could only be observed starting in the middle of the 21st century. However, also bimodal
switches in sea ice concentration as well as in the anticorrelated net primary production
of phytoplankton throughout the historical period could be observed, which have also
been found by Drijfhout et al. (2015). Moreover, Drijfhout et al. (2015) found abrupt
shifts leading to rapid changes to a new state. While this is also simulated in our data
(as for example in the Barents Sea), the used plots gave no clear indication for these kind
of abrupt changes and therefore, they would not have been detected in the analysis with
EnvCpt.

Besides the different methods, the definitions of abrupt changes [Drijfhout et al., 2015]
and changepoints [Beaulieu C., Killick R., 2018] are not the same. While an abrupt
change is related to a time scale and is defined to be occurring faster than the time
scale of the external forcing [Drijfhout et al., 2015], the changepoints detected in EnvCpt
are describing changes in the statistical properties of a time series. EnvCpt, or more
precisely the Optimal Partioning algorithm implemented in EnvCpt, relates the changes
in time series to the periods before and after the change. If the behavior of the change
period differs sufficiently enough (decided by the cost function) from the behavior before
or after, EnvCpt decides that the data is better described by changepoint models. In this
method, the changepoint is not related to an absolute value of the change over a certain
time period (in contrast to Drijfhout et al. (2015)), which leads to the ability of EnvCpt
to detect different types changepoints (mean or trend). Therefore, the concept used in
EnvCpt is more general than the approach by Drijfhout et al. (2015).

However, since the changepoints are not related to an absolute value of change, the fol-
lowing needs to be noted. If a variable changes the same way over an entire time series,
EnvCpt will not detect changepoints, provided the type of change is included in EnvCpt.
EnvCpt only detects changes in the statistical properties and if for example a variable
follows exactly a linear trend, no changepoints would result. So, if for example the type
1 plot does not indicate a high rate of changepoints, it can not be concluded that the
variable does not underlie any changes. This shows again that the results are strongly
influenced by the choice of the segment of the analyzed time series, since changes are only
detected when the statistical properties are changing.

Moreover, it should be mentioned that there is no disadvantage from the fact that EnvCpt
does not combine several models for the fit on one time series. This can be seen by the
following considerations. If a time series consists of two mean periods interrupted by
a linear-trend period, EnvCpt will likely suggest the trend model, whereby the slope in
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the mean periods is set to zero. The same can be applied on a non-autocorrelation time
series, which is divided by a period based on autocorrelation. Since the autocorrelation
coefficients in the respective models can be estimated as zero, EnvCpt will probably
describe the time period by a model of the respective order of the autocorrelation period.
This also shows that if EnvCpt would neglect parameters that are estimated close to zero,
considering mean and non-autocorrelation models would be redundant.

The two filter methods as well as the three plot types based on them processed the
EnvCpt output in such a way that some conclusions could be drawn about changes in
the variables. However, in order to get a deeper understanding of the processes leading
to abrupt changes, further investigations are needed. Especially the plots showing the
changepoints that occurred in a single year are delivering relevant informations about the
correlation between the changes in the analyzed variables.

Moreover, it could be seen that changing the input parameters can have a large influence
on the results. Especially changing the information criterion along with a defined weight
condition can have major impact on the detected changepoints. While by using the
BIC clearer patterns are resulting due to the larger penalty term, in other regions no
changepoints at all are detected, much different from the results obtained with AIC.
Since the AIC is less penalizing and therefore, the effect of information loss resulting
from the combination of the higher penalty term in the BIC and the weight condition (as
observed in the Weddell Sea, see section 3.3.1) is less likely, the AIC is suggested as the
default information criterion. Nevertheless, the BIC can be useful in regions where the
AIC shows no clear pattern.

Using toy data, some limitations of EnvCpt, as for example the falsely detected change-
points when a time series follows a higher-than-linear-order behavior, could be pointed
out. However, another important aspect needs to be studied. As mentioned in the method
section (section 2.2), the residuals obtained by fitting a model to a time series should be
normal distributed and independent. Only after analyzing the residuals it can be deter-
mined whether a model suggested by EnvCpt actually delivers a substantial support for
the time series or not. Nevertheless, since models considering a constant mean or a lin-
ear trend are often sufficient to describe variables representing ocean or atmosphere data
(there are exceptions as for example pCO2), it can be expected that these requirements
are met in the most cases in this analysis.
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A R scripts

Listing 1: Evaluation of envcpt for each grid cell
1 for(x in 1:360) {
2 for(y in 1:200) {
3 data_local <- data[x,y,] #get the time series of the grid cell
4 #check for missing data
5 if (anyNA(data_local)== FALSE && max(data_local)!=0) {
6 data_local_envcpt <- envcpt(data_local) #evaluate envcpt
7 #get all AIC informations
8 aic <- AIC(data_local_envcpt)
9 delta_aic <- aic -min(aic ,na.rm=T)

10 min_aic <- which.min(aic)
11 aic_weight <- AICweights(data_local_envcpt)
12 #collecting informations of the best AIC model (same for the BIC)
13 best_name_aic <- names(min_aic)
14 best_nr_aic <- unname(min_aic)
15 best_aic_weight <- unname(aic_weight[best_nr_aic ])
16 best_cpts_aic <- NA
17 if (best_nr_aic %in% cpts_mod) {
18 best_cpts_aic <- data_local_envcpt [[ best_name_aic ]] @cpts
19 }
20 best_aic_model <- list(model_nr=best_nr_aic , model_name=best_name_aic ,

aic_weight=best_aic_weight , cpts=best_cpts_aic)
21 #collecting informations of all the models
22 info <- NULL
23 for (i in 1:12) {
24 if(i %in% cpts_mod) {
25 change_pnts <- data_local_envcpt [[ model_names[i]]] @cpts
26 nr_of_cpts <- length(change_pnts)
27 } else {
28 nr_of_cpts <- 0
29 }
30 info <- rbind(info , data.frame(i, model_names[i], aic[i], bic[i],delta_aic[i],

delta_bic[i], aic_weight[i], bic_weight[i],nr_of_cpts))
31 }
32 #collecting all the changepoint data
33 ch_pnts_data <- NULL
34 for(i in cpts_mod) {
35 ch_pnts <- data_local_envcpt [[ model_names[i]]] @cpts #get the changepoints
36 nr_cpts <- length(ch_pnts)
37 if(nr_cpts != 0) {
38 for (j in 1: nr_cpts) {
39 ch_pnts_data <- rbind(ch_pnts_data , data.frame(i, model_names[i],

ch_pnts[j], aic_weight[i],
bic_weight[i]))

40 }
41 }
42 }
43 #storing all informations in a list
44 if(!is.null(ch_pnts_data)) {
45 ch_pnts_data <- ch_pnts_data[order(ch_pnts_data$position) ,]
46 nr_cpts <- length(ch_pnts_data$position)
47 longitude <- lon[x,y]
48 latitude <- lat[x,y]
49 #filling list with a list for every grid cell with changepoints
50 result [[cnt]] <- list(grid_cell= c(x,y),coordinates=c(longitude ,latitude),

infos=info ,best_aic_model=best_aic_model ,
best_bic_model=best_bic_model , change_points=ch_pnts_data ,
number_of_cpts=nr_cpts)

51 }
52 }
53 }
54 }
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Listing 2: Filtering the output of EnvCpt by the best AIC/BIC model (method I)
1 for(i in 1: length(result)) {
2 #delete changepoints which are not in the defined time interval (same for the BIC)
3 if(! anyNA(result_fil [[i]][["best_aic_model"]] $cpts)) {
4 del_cpts <- NULL
5 del_cpts_cnt <- 1
6 for(j in 1: length(result_fil [[i]][["best_aic_model"]] $cpts)) {
7 if(result_fil [[i]][["best_aic_model"]] $cpts[j] %nin% search_start:search_end) {
8 del_cpts[del_cpts_cnt] <- j
9 del_cpts_cnt <- del_cpts_cnt +1

10 }
11 if(!is.null(del_cpts)) {
12 result_fil [[i]][["best_aic_model"]] $cpts <- result_fil [[i]][["best_aic_model"

]] $cpts[-del_cpts]
13 }
14 }
15 }
16 #if all changepoints were deleted , cpts is changed to NA
17 if(length(result_fil [[i]][["best_aic_model"]] $cpts)==0) {
18 result_fil [[i]][["best_aic_model"]] $cpts <- NA
19 }
20 #set cpts to NA if the best AIC weight is not large enough (same for the BIC)
21 if(!is.na(result_fil [[i]][["best_aic_model"]][["best_aic_weight"]])) {
22 if(result_fil [[i]][["best_aic_model"]][["aic_weight"]] < min_weight) {
23 result_fil [[i]][["best_aic_weight"]] $cpts <- NA
24 }
25 } else {
26 result_fil [[i]][["best_aic_model"]] $cpts <- NA
27 }
28 #delete grid cells , where the number of changepoints is NA
29 if(anyNA(result_fil [[i]][["best_aic_model"]] $cpts)) {
30 del_grid[del_grid_cnt] <- i
31 del_grid_cnt <- del_grid_cnt +1
32 }
33 }
34 #update the result_fil list
35 if (!is.null(del_grid)) {
36 result_fil <- result_fil[-del_grid]
37 }

Listing 3: Filtering the output of EnvCpt and cluster changepoints (method II)
1 for(i in 1: length(result))
2 #cluster changepoints starting with the best AIC weight model (same for the BIC)
3 if(result_fil [[i]] $number_of_cpts != 0) {
4 del_cpts <- NULL
5 del_cpts_cnt <- 1
6 #sort changepoint list after AIC weight
7 result_fil [[i]] $change_points <- result_fil [[i]] $change_points[order(result_fil [[i]]

$change_points [[ aic_weight ]], decreasing = TRUE) ,]
8 first_cpt_model <- result_fil [[i]] $change_points [1,1]
9 #get list with changepoints of the best AIC model

10 for (j in 1: length(result_fil [[i]] $change_points$position)) {
11 if(result_fil [[i]] $change_points$model_nr[j] != first_cpt_model) {
12 del_cpts[del_cpts_cnt] <- j
13 del_cpts_cnt <- del_cpts_cnt +1
14 }
15 }
16 if (!is.null(del_cpts)) {
17 added_cpts_data <- result_fil [[i]] $change_points[-del_cpts ,]
18 } else {
19 added_cpts_data <- result_fil [[i]] $change_points
20 }
21 #go through the rest of the list , which is already sorted after the AIC weight
22 for(j in 1: length(result_fil [[i]] $change_points$position)) {
23 if(result_fil [[i]] $change_points$model_nr[j] != first_cpt_model) {
24 added <- FALSE
25 for(k in 1: length(added_cpts_data$position)) {
26 if (result_fil [[i]] $change_points$position[j] %in% (added_cpts_data

$position[k]-int_cluster):( added_cpts_data$position[k]+ int_cluster)) {
27 added_cpts_data$aic_weight[k] <- added_cpts_data$aic_weight[k] +

result_fil [[i]] $change_points$aic_weight[j]
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28 added <- TRUE
29 break
30 }
31 }
32 if (added == FALSE) {
33 added_cpts_data <- rbind(added_cpts_data , result_fil [[i]] $change_points[j,])
34 }
35 }
36 }
37 #delete changepoints which don ’t fulfill the total AIC condition (same for the BIC)
38 if(result_fil [[i]] $number_of_cpts !=0) {
39 del_cpts <- NULL
40 del_cpts_cnt <- 1
41 for(j in 1: result_fil [[i]] $number_of_cpts) {
42 if(is.na(result_fil [[i]] $change_points [[ total_aic_weight ]][j]) ||
43 result_fil [[i]] $change_points [[ paste(total_aic_weight ]][j] < min_weight) {
44 del_cpts[del_cpts_cnt] <- j
45 del_cpts_cnt <- del_cpts_cnt +1
46 }
47 }
48 if(!is.null(del_cpts)) {
49 result_fil [[i]] $change_points <- result_fil [[i]] $change_points[-del_cpts ,]
50 result_fil [[i]] $number_of_cpts <- result_fil [[i]] $number_of_cpts -length(del_cpts)
51 }
52 }
53 #delete changepoints which are not in the defined time interval
54 if(result_fil [[i]] $number_of_cpts !=0) {
55 del_cpts <- NULL
56 del_cpts_cnt <- 1
57 for(j in 1: result_fil [[i]] $number_of_cpts) {
58 if(result_fil [[i]] $change_points$position[j] %nin% search_start:search_end) {
59 del_cpts[del_cpts_cnt] <- j
60 del_cpts_cnt <- del_cpts_cnt +1
61 }
62 }
63 if(!is.null(del_cpts)) {
64 result_fil [[i]] $change_points <- result_fil [[i]] $change_points[-del_cpts ,]
65 result_fil [[i]] $number_of_cpts <- result_fil [[i]] $number_of_cpts -length(del_cpts)
66 }
67 }
68 }

Listing 4: Simulating toy data with polynomial behavior and noise error
1 cpts <- TRUE
2 pos <- c(120)
3 ntot <- 240
4 std <- 1
5 #polynomial function (a+bx+cx^2) for every interval
6 a <- c(0,4*std)
7 b <- c(0,0)
8 c <- c(0,0)
9 #create (piecewise) polynomial function

10 if(isTRUE(cpts)) {
11 pos <- c(0,pos ,ntot)
12 y <- NULL
13 for(i in 1:( length(pos) -1)){
14 x <- (pos[i]+1):pos[i+1]
15 y_temp <- a[i]+b[i]*x+c[i]*x^2
16 y <- c(y, y_temp)
17 }
18 } else {
19 x <- 1:ntot
20 y <- a + b*x + c*x^2
21 }
22 noise_error <- arima.sim(list(order = c(0,0,0)), sd=std , n=ntot)
23 toy_data <- y + noise_error
24 data_envcpt <- envcpt(toy_data)
25 layout(matrix(c(1,2,3), 1, 3, byrow = TRUE), widths=c(3,1,1), heights=c(1))
26 plot(data_envcpt , type=c("fit"), cex.axis =1.7)
27 plot(data_envcpt , type=c("aic"), cex.axis =1.7)
28 plot(data_envcpt , type=c("bic"), cex.axis =1.7)
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Listing 5: Determining the distribution of the best AIC/BIC model
1 ntot <- 240
2 std <- 1
3 rep <- 1000
4 ord <- 3
5 #create dataframe to store the counters
6 model_name <- c("mean","meancpt","meanar1","meanar2","meanar1cpt","meanar2cpt",
7 "trend","trendcpt","trendar1","trendar2","trendar1cpt","trendar2cpt")
8 counts <- data.frame(model_name , rep(0, each =12), rep(0, each =12))
9 #define the AR coefficients

10 ar_cof <- rep (0.5/ord , each=ord)
11 for(i in 1:rep) {
12 noise_error <- arima.sim(list(order = c(0,0,0)), sd=std , n=ntot)
13 data <- arima.sim(list(order = c(ord ,0,0), ar=ar_cof), sd=std , n=ntot) + noise_error
14 data_envcpt <- envcpt(data)
15 aic <- AIC(data_envcpt)
16 bic <- BIC(data_envcpt)
17 min_aic <- unname(which.min(aic))
18 min_bic <- unname(which.min(bic))
19 counts$aic_counts[min_aic] <- counts$aic_counts[min_aic] +1
20 counts$bic_counts[min_bic] <- counts$bic_counts[min_bic] +1
21 }

B Additional plots

B.1 Robustsness of the Results

Type 1: Total number of detected changepoints

(a) sea surface temperature (b) sea ice concentration

(c) net primary production (d) partial CO2

Figure 21: The number of changepoints for the four analyzed variables based on the default
parameters with BIC instead of AIC and the time series containing the historical as well as the
RCP8.5 period.

iv



Type 2: Nature of the changepoints

(a) sea surface temperature (b) sea ice concentration

(c) net primary production (d) partial CO2

Figure 22: The nature of changepoints for the four analyzed variables based on the default
parameters with BIC instead of AIC and the time series containing the historical as well as the
RCP8.5 period.

Type 3: Year of the first changepoint

(a) sea surface temperature (b) sea ice concentration

(c) net primary production (d) partial CO2

Figure 23: Year of first changepoint for the four analyzed variables based on the default
parameters with BIC instead of AIC and the time series containing the historical as well as the
RCP8.5 period.
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