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We report on the detection of bot CO, in the O-rich AGB star R Leo based on bigh spectral resolution observations in the range 12.8 — 14.3 um carried out with the Echelon-cross-Echelle Spectrograph (EXES)
mounted on the Stratospberic Observatory for Infrared Astronomy (SOFIA). We bave found ~ 240 CO, emission lines in several vibrational bands. These detections were possible thanks to a favorable Doppler shift
that allowed us to avoid contamination by telluric CO, features. The highest excitation lines involve levels at an energy of ~ 7000 K. The detected lines are narrow (average deconvolved width ~ 2.5 km s=') and weak

(< 10% the continuum). A ro-vibrational diagram shows three different populations, warm, bot, and very bot, with rotational temperatures of =~ 550, 1150, and 1600 K, respectively. We derive a lower limit for the
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column density of ~ 2.2 x 10'° em™=. Furtber calculations based on a model of the R Leo envelope suggest that the total column density can be as large as 7 x 10'" cm™* and the abundance with respect to H,
~ 2.5 x 107°. The detected lines are probably formed due to de-excitation of CO, molecules from bigh energy vibrational states, which are essentially populated by the strong R Leo continuum at 2.7 and 4.2 jum.

OBSERVATIONS

Observations were carried out with SOFIA/EXES on 0 Nov 2018 (UT) in the High—Low mode while SOFIA flew at an altitude of 13.1 km. The slit length for both settings was ~ 2’0 long and 2”4 wide. A EXES

data were reduced using the Redux pipeline (Clarke et al. 2015). The median spectral resolving power, R = A/ A\ ~ 70,000 (determined from telluric ozone lines). The resulting spectral resolution is ~ 4.3 km s
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Figure .- Spectrum of R Leo in the rest frequency, i.e., corrected of its radial velocity. The COj lines of the bands (notation: v, Vivs ) at the top of the Figure that are clearly detected are plotted in different colors. The branches are not indicated for the sake of clarity. The red synthetic
spectrum is a model to the CO, emission and the gray spectrum is the atmospheric transmission (ATRAN; Lord 1992). The radial velocity of R Leo with respect to Earth during the observing flight was —22.4km s™! (~ 0.055 cm™'/0.001 pm at 740 cm™'/13.514 pim).
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e About 240 lines from 7 ro-vibrational bands of CO are detected only in emission with a maximum intensity of 10% above the continuum (Figure I). 1.2 = 65) £ (8 + (x8) -
They are usually found in the blue-shifted wings of stronger telluric CO, features, always in absorption. Lines of the fundamental band with J 2 70 and 1.1 E -+ -+ =
of the hot and combination bands with J > 5 can be identified in the spectrum. The highest excitation ro-vibrational level involved is at ~ 7000 K. 1 E — Porf 1
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e The detected lines are single-peaked features centered at the systemic velocity and delimited by the terminal gas expansion velocity (Figure 2). The average 1.3 & 110, 10°0,R(24) & 10°0,01'0,Ry(45) —F- E
deconvolved FWHM is ~ 2.5 km s~'. Most of the lines are formed at the beginning of the acceleration region. The low-J lines of band 11'0; — 10°0, ¢ 12 £ ) £ =S E
seem to comprise a very narrow peak and a flat-topped contribution, which probably comes from already accelerated gas. =4 E e E E
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e The continuum emission can be described as a compact black-body at ~ 2400 K (central star) and a more extended one at ~ 850 K (dust; Figure 3). : + + ]
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g 1 —(‘b)‘ — ‘O' O‘ — I‘ ) -~ i i - N " : Figure 2.- Lines of the R, branches of bands 11'0; — 1004, 10°0; — 0110,
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Figure 3.- (Upper left) These observations have been complemented with photometric data of the IRAS, WISE, DIRBE, d 1111 0 11 0+ (Fi 3. F L d Ny . ° % e " T..=460+30 K : N__,'=(2.2+0.2)x10" -]
2MASS, GaiaDR2, and HIPPARCOS catalogs. Additional measures acquired with Johnson filters have also been used. (Lower 0 2 1 < petiC ) urther de-excitations pop- I ° 1

left) CO; absorption at 1500 K. (Right) Vibrational energy diagram of CO, with the most relevant transitions. ulate the vibrational states ]_0001 , 1 0002 , 11 1()1 A and 11 1 0s.

state and the latter from 01'0;. The state 0104 is at ~ 1000 K and it is efliciently excited by continuum emission at 15 ;im, which is enhanced at several
radii from the star by the dust emission. This scenario could explain why the T, of bands 11'0, — 02°0, and 11'0; — 100, are lower than that of 100, — 01'0.
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e States 10°0; and 10°0 are expected to be populated closer to the star than 110, and 11'0; because the former are populated from the vibrational ground ia
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e A CO; column density of ~ 5 x 10" cm 2 canbe adopted as typical for AGBs and SRs with a high dispersion of a factor 0f 20 (e.g., Markwick et al. 2000; i
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Cami et al. 2000; Baylis-Aguirre et al. 2020). Assuming a kinetic temperature of 2750(1R./r)"" K, a steeper vibrational temperature (oc r~"%), rotational T
LTE, and a CO, abundance with respect to H, of ~ 2.5 x 10~°, we estimate the column density for R Leo to be ~ 7 x 10'" em ™. Up to 80% of CO, 0 0004000 6000
molecules may be in vibrationally excited (Figure I). rot,up
Figure 4.- Ro-vibrational diagram of the strongest observed CO, bands.
e SOFIA/EXES has a incomparable ability to observe the infrared spectrum of molecules in space, even if they are abundant in the atmospbere. N = Noyio (020/020c) [(07 + @2n0) /(07 + 62,)].

The research leading to these results has received funding support from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement n. 610256 NANOCOSMOS. EJM acknowledges
financial support for this work through award #06_0144 which was issued by USRA and provided by NASA. MJR and EXES observations are supported by NASA cooperative agreement 80NSSCI9KI701. Based on observations made with the NASA/DLR
Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DST) under DLR contract 50 OK
0901 to the University of Stuttgart.


https://ui.adsabs.harvard.edu/search/fq=%7B!type%3Daqp%20v%3D%24fq_database%7D&fq_database=database%3A%20astronomy&q=author%3A(%22fonfria%2C%20j.%20p.%22%20or%20%22fonfria%20exposito%2C%20j.%20p.%22)&sort=date%20desc%2C%20bibcode%20desc&p_=0
https://orcid.org/0000-0002-6556-6692
https://ui.adsabs.harvard.edu/search/q=author%3A%22Montiel%2C%20E.%20J.%22&sort=date%20desc%2C%20bibcode%20desc&p_=0
https://orcid.org/0000-0003-2553-4474
https://ui.adsabs.harvard.edu/search/q=author%3A%22Cernicharo%2C%20J.%22&sort=date%20desc%2C%20bibcode%20desc&p_=0
https://orcid.org/0000-0002-3518-2524
https://ui.adsabs.harvard.edu/search/q=author%3A%22DeWitt%2C%20C.%20N.%22&sort=date%20desc%2C%20bibcode%20desc&p_=0
https://orcid.org/0000-0002-6528-3836
https://ui.adsabs.harvard.edu/search/filter_database_fq_database=AND&filter_database_fq_database=database%3A%22astronomy%22&fl=identifier%2C%5Bcitations%5D%2Cabstract%2Cauthor%2Cbibcode%2Ccitation_count%2Ccomment%2Cdoi%2Cid%2Ckeyword%2Cpage%2Cproperty%2Cpub%2Cpub_raw%2Cpubdate%2Cpubnote%2Cread_count%2Ctitle%2Cvolume%2Clinks_data%2Cesources%2Cdata%2Ccitation_count_norm%2Cemail%2Cdoctype&fq=%7B!type%3Daqp%20v%3D%24fq_database%7D&fq_database=database%3A%22astronomy%22&q=author%3A(%22Richter%2C%20M.%20J.%22%20or%20%22richter%2C%20matthew%22)%20pubdate%3A%5B1990-01%20TO%209999-12%5D&rows=25&sort=date%20desc%2C%20bibcode%20desc&start=0&p_=0
https://orcid.org/0000-0002-8594-2122
https://www.aanda.org/articles/aa/pdf/2020/11/aa39547-20.pdf

