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Abstract— Last decade has been characterized by a huge 
advancement in the field of automated and connected transport. 
However, fully autonomous systems still need a lot of effort in 
order to be applied in transportation. Meanwhile, mixed traffic 
environments with semi-autonomous vehicles is becoming a 
norm. In such conditions, vehicles are passing the dynamic 
driving task back to the human by sending to drivers Requests 
to Intervene (RtI). At the same time, there is a need to evolve 
driver’s training in order to be able to safely use semi-
automated vehicles, whereas driver intervention performance 
has to be made an integral part of both driver and technology 
assessment. Furthermore, the ethical implications of automated 
decision-making need to be properly assessed, giving rise to 
novel risk and liability analysis models. In this conceptual paper 
we present our vision to maximise the safety, trust and 
acceptance of automated vehicles. To achieve that, we propose 
an assessment framework to evaluate different technologies 
involved in Automated Driving Systems (ADS).   

Keywords—trust, autonomous vehicles, semi-autonomous 
vehicles, mixed traffic environments 

I. INTRODUCTION 
This decade has brought into our daily lives autonomous 

vehicles [1], while most of the well-known automakers have 
already began executing their plans to commercially release 
autonomous vehicles by 2020-2021 [2]. However, current 
projections of market analysts, including Blackrock [3] and 
UBS [4], indicate that broad adoption of fully autonomous 
vehicles might be decades away. This in turn suggests that the 
human factor will remain essential for the safety and 
performance of road transport in the forthcoming decades, 
mainly for two reasons: a) due to the necessary driver-vehicle 
interaction in cases where the boundaries of the Operational 
Design Domain (ODD) of an Automated Driving System 
(ADS) are being reached, and b) because of the co-existence 
of fully-, semi- and non- autonomous vehicles, which is likely 
to be raising unexpected challenges. 

Central to the human role in the Connected Automated 
Driving (CAD) is the transition from automated to manual 
driving mode. This might be system-initiated, whereby the 
ADS issue a Request to Intervene (RtI), i.e. notifies the human 
driver that he should promptly take-over control and perform 
the Dynamic Driving Task (DDT) fallback [5]. This can 
happen when the ADS detects a system limit, e.g. because of 
sensor malfunction, extreme weather conditions, appearance 
of evolving accident scenes, unexpected road blocks, 
hazardous traffic code violation from another vehicle, falling 

of goods, etc. However, the transition can also be user-
initiated, e.g. to provide a corridor for emergency vehicle 
access, or follow hand signals given by a traffic enforcement 
officer [6]. 

Evidently, in such a dynamic driver-vehicle interaction 
scheme, several challenges arise. First, in parallel to the 
detection of system limits, the driver’s availability to intervene 
has to be evaluated, through continuous Driver State 
Monitoring (DSM). Second, the transition’s success has to be 
ensured by proactively allowing sufficient lead time and 
utilising appropriate and comprehensible Human-Machine 
Interfaces (HMIs) that maximise situation awareness and 
intervention performance. Third, driver training has to evolve 
to meet the safety challenges of “driving” an automated 
vehicle. Fourth, measuring of the driver intervention 
performance as well as of ADS user acceptance, depending on 
different levels of automation, take-over requests, etc., 
becomes essential. Moreover, the implications of automated 
decision-making from a legal or ethics perspective have to be 
examined, and risk models (e.g. addressing liability issues) for 
the co-existence of various automation levels have to be 
developed. Notably, there is a lack of standards, pilot results 
and established practices in the aforementioned fields, such as 
for HMIs in automated driving and for takeover performance 
assessment. Running parallel to these challenges is the 
dimension of trust: not interpersonal trust but trust in 
technology and, specifically, in automation. 

In this paper we present the vision of Trustonomy (a 
neologism from the combination of trust and autonomy) 
which is to raise the safety, trust and acceptance of automated 
vehicles by helping to address the aforementioned challenges 
through a well-integrated and inter-disciplinary approach. The 
rest of the paper is organised as follows: in Section II we 
present the Trustonomy objectives and related work; Section 
III includes our proposed approach; the system architecture is 
presented in Section IV, while Section V concludes the paper.   

II. TRUSTONOMY OBJECTIVES AND RELATED WORK 
In order to address the challenges mentioned in the 

previous section, we have identified six specific objectives 
which are depicted in Fig. 1. 

A more detailed description of the envisioned objectives is 
presented below: 

• Develop a Methodological Framework for the 
operational assessment of different DSM systems: DSM 
plays a crucial role especially for L3 vehicles, in which 



humans are in the loop, being involved in driving operations. 
The most critical scenario is represented by the RtI, in which 
the human driver has to take control of the vehicle. The DSM 
has to establish the driver status and his ability to safely 
accomplish it. Relevant research [7] has pointed out that, when 
humans do not pay attention at all when the vehicle is driving 
itself, they could not shift attention quickly enough to safely 
take control of the vehicle. Continuous monitoring of the 
driver is a possible solution able to mitigate this problem, 
adapting the RtI procedures, in particular during the takeover 
phase. The monitoring can be achieved by various 
methodologies, such us by monitoring the eye movement of 
the driver [8] or by monitoring driver’s blood pressure [9].  
The DSM can trigger the appropriate notifications and 
warnings to the driver, when he decides to resume the manual 
control. In [10] the researchers agree that in the next few years, 
there will be manual driven vehicles with several autonomous 
features requiring a short notice intervention of the driver, 
therefore, a DSM system is necessary to support time-efficient 
transition of control. 

• Develop a Methodological Framework for the 
operational assessment of various HMI designs: There is 
still a lack of understanding regarding methods to evaluate 
HMI in CAD vehicles. One perspective argues that CAD 
vehicles could have an HMI design similar to the one used in 
conventional (L0-L2) vehicles. These systems only help the 
driver to make adequate decisions, and the driver is still 
responsible for the decisions he made. Even though L3 
systems still require full-time supervision of the driver, the 
HMI must limit the effects of driver periodical inactivity or 
driver’s fatigue. L4 systems, which allow to drive the vehicle 
mostly in automatic mode, need to support the driver in 
resuming the driving task, by addressing problems like lack of 
attention, low situation awareness and skill reduction. 
According to the HATRIC project [11], there are three 
particular reasons for working with HMI for automation in 
relation to safety: (i) optimizing hand-over of control, (ii) 
minimizing negative effects of automation induced behaviour, 
and (iii) increasing usage by means of improved user 
experience. The fact is that HMI design strongly affects the 
driver’s sense of safety: since perceived safety of the user 
highly correlates with his trust in technology [12], it is crucial 
to develop a framework for HMI assessment and to identify 
major factors affecting driver’s trust in autonomous vehicles. 
From a human factor perspective, the design of automation 
systems so that drivers fully understand the capabilities and 
limitations of the vehicle and maintain situational awareness 

of what the vehicle is doing (and when manual intervention is 
needed) is currently a fundamental issue [13].  

• Develop an ethical automated-decision-support 
framework, covering liability concerns and risk 
assessment: Trustonomy investigates liability concerns, 
compatible insurance models, ethical decision-making and 
auditability mechanisms when ambiguities arise. For instance, 
who is to blame when an RtI is not successfully completed, 
resulting in an accident? What is the (legally and ethically) 
suitable course of action in a situation whereby the ADS is 
about to reach its system limit, but driver state monitoring 
suggests that a driver intervention would also fail? Moreover, 
Trustonomy investigates precursors and forecasting models to 
issue early RtI warnings and provide more time to the human 
driver to intervene. In addition, it generates emergency 
trajectory possibilities in case of ambiguities (i.e. when an 
accident is impossible to avoid but multiple options exist). In 
order to achieve that, there is need for quantitative risk 
assessment of potential threats. Beyond the simple risk 
matrices traditionally used, with well-known defects [14], 
Trustonomy employs risk maps, following a paradigm already 
experimented in aviation, leading to improved safety results 
and costs [15], while a new approach of adversarial risk 
analysis [16] is used to encounter threats related to malicious 
attacks to the systems and algorithms regulating automated 
driving.  

• Develop novel Driver Training Curricula for human 
drivers of ADS: Numerous EU-funded projects have aimed 
at designing real-life/simulation-based training modules 
targeting Advanced Driver Assistance Systems (ADAS) [17] 
and creating new training methodologies to cope with the 
rapid evolution of active safety systems [18], nevertheless, no 
Pan-European actions were made to fully acknowledge and 
include the training on handling these systems into the training 
curricula. This is especially important in the context of the 
OEM driving automation-targeted technological race, which 
is going to end up in deploying L3 vehicles already in 2018 
[19] and building the capacity for L4 systems deployment in 
a 5-year horizon. If this pace is not slowed down by 
international legal restrictions, it will directly influence the 
driving behaviour of people, who were so far used to drive in 
the traditional, non-automated manner. The need for 
reinventing driver training in the ADS context has been 
repeatedly underlined by the EU experts [20, 21]. Different 
research studies show that even the use of basic driving 
assistance systems like Adaptive Cruise Control (ACC) affect 
the driver’s cognitive abilities and overall performance. 
Although it may reduce workload and stress while being on 

 
Fig. 1. Trustonomy Objectives. 
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the road, the situation awareness becomes negatively affected 
at the same time [22]. Drivers have a tendency to over-rely on 
the capabilities of such systems and negatively adapt to the 
new, less demanding conditions.  

• Define a Driver Intervention Performance Assessment 
(DIPA) Framework: It is assumed that driver will become no 
more than a passenger during periods of automated driving 
mode performed by CAD vehicle. While driving needs 
constant monitoring, analysing and decision making to ensure 
safety [23], driver's role during autonomous driving will 
become out-of-the-loop, and he may not have enough 
information to maintain control on operational and tactic level 
of driving [24]. A driver may be under the influence of two 
main effects of disengagement: distraction and fatigue. Both 
may have negative impact on a driver, fatigue might i.e. 
diminish attention capabilities, and distraction might cause i.e. 
sharing attention between two tasks [25]. Furthermore, if the 
driver performs non-driving related task, the effects of its 
influence may last even up to 15s after its cessation [26]. This 
provides evidence that driver monitoring will be crucial in at 
least two phases of take-over: (i) pre-RtI phase when the 
driver will need to gain information of the current road 
situation, planned manoeuvres, etc.; (ii) take-over phase, 
when the driver will start to control the vehicle himself. 

• Measure performance, trust and acceptance 
(simulations and field trials) of human drivers of ADS:  
There are a number of challenges associated with the concept 
of trust, with particular reference to the trust a driver has in an 
ADS. Unlike other “driver states” such as fatigue [27] or high 
workload [28], there exists no reliable physiological measure 
of trust. Lack of trust in ADS may induce anxiety in certain 
situations, resulting in increases in arousal that are able to be 
detected by physiological indicators, but still, it is difficult to 
correlate this observed arousal with reduced trust. The 
challenge is to design ADSs which are trusted appropriately: 
drivers have to trust them enough to glean all the promised 
benefits of, for example, traffic efficiency. Several studies 
have shown that trust is a key determinant for the adoption, 
intention to use and reliance on automated systems [29]. For 
sure, “operators tend to use automation that they trust while 
rejecting automation that they do not” [30]. On the other hand, 
over-reliance on automation is also not desirable and may lead 
to situations whereby drivers cognitively distance themselves 
so far from the driving task that they encounter difficulties in 
the transition periods. Such over-reliance was cited as one of 
the causes of the Tesla crash in 2016, with the NTSB noting 
“the operational design of the Tesla’s vehicle automation 
permitted the car driver’s overreliance on the automation, 
noting its design allowed prolonged disengagement from the 
driving task and enabled the driver to use it in ways 
inconsistent with manufacturer guidance and warnings” [31]. 
The trust that an operator has in a system is not binary; it can 
be situational as well as dynamic [32] and the challenge is to 
design an ADS that engenders trust at an appropriate level for 
any given situation. 

III. APROACH 
To address the challenges identified in the scope of 

intervention performance assessment, user trust and 
acceptance, Trustonomy adopts an integrated approach, where 
ADS-related state-of-the-art or emerging technologies and 
solutions are tested and evaluated with real users and non-
technical experts. 

In the following paragraphs we further analyse the 
proposed approach, focusing on the objectives described in 
the previous section.  

A. Driver State Monitoring  
Trustonomy investigates the suitability and 

personalisation potential of various (combinations of) DSM 
techniques, by measuring and inferring: (i) sensory state, 
which affects the ability of the human subject to perceive the 
RtI and the surrounding contextual conditions; (ii) motoric 
state, in order to identify a body state that can be characterised 
as out-of-driving position; (iii) cognitive state, which affects 
the ability for applying attentional resources to perform the 
intervention; (iv) arousal level, which deteriorates when there 
is nothing to do for a long time; (v) emotional state, which is 
also considered explicitly, as it cannot be presupposed that 
rational behaviour lies at the heart of all decisions and actions. 

B. HMI Design Factors  
Trustonomy investigates the suitability and 

personalisation potential of various multimodal HMIs for 
maximising driver intervention performance, trust and 
acceptance, including: a) Visual factors (position and size of 
visual indicators, icons and colours, blinking); b) Auditory 
factors (loudness, tonal pattern, voice); c) Haptic factors 
(bodily part, i.e. hand, foot, thigh, vibration pattern, mid-air 
HMI feedback); d) Timing of onset of RtI; e) Content of 
HMIs, ranging from automation mode change (e.g. temporal 
function halt, malfunction), RtI message types (e.g. “please 
take over!”), intervention action indications (e.g. “hands on 
wheel!”), to HMIs to display system state and HMIs to 
indicate system reliability, etc. 

C. Risk Assessment  
Trustonomy aims at identifying first a detailed catalogue 

of threats that might affect automated/semi-automated driving 
and undermine public trust and confidence in this 
transportation means. Based on such catalogue, it shall 
undertake a risk matrix approach to screen the most worrisome 
threats and then perform a detailed quantitative analysis over 
such list, producing a risk mapping with a full quantitative risk 
assessment model. Adversarial risk analysis models will be 
developed to support automated driving, helping in better 
forecasting how other road users behave, and underpinning 
improved automated decision-making in driving. Finally, the 
robustness of algorithms supporting automated driving 
towards attacks will be explored; as an example, an artificial 
vision algorithm could be hacked and a STOP sign of a road 
could be misinterpreted leading to chaotic situations. This will 
lead to the assessment of such algorithms from an adversarial 
machine-learning perspective. 

D. Early Warning  
Based on the risk assessment described above, 

Trustonomy will define and study precursors of such threats 
and build forecasting models to issue the RtI warnings as early 
as possible, in order to provide more time to the human driver 
to intervene. Essentially, several relevant signals will be 
tracked, monitored and forecasted based on dynamic models 
against several thresholds leading to RtIs. Such forecasts will 
be issued several instants ahead in such manner that if the 
threshold is expected to be reached by the prediction intervals, 
the RtIs would be issued.  



E. Trajectory Planning  
In the case of emergency trajectory planning, the 

generation of trajectories will be done by comparing different 
planning algorithms such as parametric planning or graph 
search planning, with the objective of mitigating the accident 
consequences. The planning method will be multi-objective, 
to generate a set of optimal trajectories according to cost 
functions depending on the accident consequences (fatalities, 
social cost, financial cost, etc.); genetic algorithms will be 
used to determine these planned trajectories. A panel 
composed of experts and regular drivers, cyclists and other 
road users will be asked to select which is the best trajectory 
from the ones proposed by the algorithm; this ethical question 
will then be partially solved by such democratic vote.  

F. Driver Training (curricula, methods, material)  
Trustonomy identifies the need to prepare newly trained 

drivers for higher (L3-L4) stages of driver automation in 
which efficient driver-vehicle interaction will be the key to 
increasing road safety. To this end, a thorough road-safety 
targeted risk mapping with respect to both ADS performance 
as well as driver reception and psycho-motoric performance 
will be made. This will allow to identify specific priorities to 
be covered in the course of the training. For each of the 
identified problems, an individual training method will be 
developed, and applicable ICT-based training tools will be 
selected, so that a full training curriculum for human drivers 
of ADS is composed and tested through real-life piloting 
(involving passenger vehicles, light/heavy freight, public 
transport, etc.).  

G. Driver Intervention Performance Assessment   
DIPA involves the definition of relevant objective 

measures to assess the quality of intervention performance, 
such as driver take-over time from onset of RtI, driver 
intervention time, control stabilisation time, remaining action 
time, as well as subjective measures for the quality of 
intervention performance. It consists of a set of measures to 
determine whether the driver is able to perform an intervention 
in a safe way or it is worth maintaining the control in ADS and 
perform a Minimal Risk Manoeuvre. 

H. Driver Trust  
One of the most important goals of Trustonomy is to 

assure that automated vehicles are being trust by drivers. A 
suite of driving simulator studies will be carried out to 

investigate how a range of users of automated vehicles learn 
to trust the key features, the situations in which that trust 
diminishes and how degraded levels of trust can be boosted in 
an accelerated manner. A toolbox of driving scenarios will be 
developed which can be used to measure, maintain and, where 
necessary, increase levels of trust to the point where maximum 
benefits of automation can be accrued, without the driver 
becoming over-reliant. Potential research questions include: 
what aspects of automation (sub-functions) are more 
susceptible to loss of trust? Which functions can “degrade 
gracefully” without substantial loss of trust? Can the ADS be 
“programmed” to self-evaluate its reliability and thus predict 
the real-time trust that an operator has in it? What 
interventions could help an operator regain trust? 

IV. TRUSTONOMY OVERALL ARCHITECTURE 
In order to perform the assessment of the emerging 

technologies presented in the previous section, we introduce 
the conceptual architecture depicted in Fig. 2. As depicted, the 
approach followed for the definition of the conceptual 
architecture was a mixture of top-down and bottom-up 
approaches. The processes/actions used for the validation of 
the conceptual architecture were derived from the user 
requirements, which were in turn used for the definition of the 
use cases (top-down). Concurrently, the functionality of the 
different components was initially defined using the findings 
from the state-of-the-art review and was adjusted to meet any 
requirements that were not originally taken into consideration 
(bottom-up). 

As it has been previously highlighted, the project produces 
outcomes in different ADS-related design domains. Fig. 2 
illustrates a conceptual design of the Trustonomy architecture. 
The upper part of the figure depicts the Trustonomy 
Frameworks. The different frameworks, namely DSM 
Assessment Framework, HMI Design Assessment 
Framework, Automated Decision Support Framework, Driver 
Training Framework, Driver Intervention Performance 
Assessment Framework and Trust and Acceptance 
Measurement Framework are the main outcomes. These 
frameworks lead to stand-alone tools that can be used for the 
assessment and evaluation of ADS specific parameters related 
to performance, risk and trust assessment. Obviously, the 
domain of analysis of each framework is different and, for this 
reason, the resulting tools are independent and can be used as 
stand-alone solutions.  

 
Fig. 2. Trustonomy Conceptual Architecture. 

 



To perform the analysis and assessment, the Trustonomy 
frameworks are based on data that are collected real-time on 
the Trustonomy pilot sites or on datasets that have been pre-
recorded during specific scenarios of interest. The 
Trustonomy pilot sites involve different conditions (e.g. road 
conditions) and different vehicles (public transport buses, 
passenger vehicles, freight transport cars and driving 
simulators). Additionally, multiple configurations and 
technologies (sensors, DSMs, HMIs) are deployed within the 
different vehicles to allow the monitoring, study and 
evaluation of the vehicle state and the driver condition and 
behaviour.  

To support the management of the multiple data streams 
collected from the pilots and streamed to the data analytics 
processes and applications, Trustonomy is based on a data 
management layer that acts as the middleware between the 
multiple data sources of the project and the Trustonomy 
Frameworks. The same set of tools will be used for the 
management of various pre-recorded datasets that will be used 
for the analysis performed by the Trustonomy Frameworks. 
The above lead the development of the initial specifications 
for the individual Trustonomy tools with primary aim to 
ensure the availability of data sources that each component 
requires in order to function. As part of this activity, input and 
output data sources for each component were identified and 
an overall initial conceptual architecture was drawn up.   

Finally, as illustrated on the right part of Fig. 2, a Trials 
Support Tool will be developed, aiming to assist the execution 
of the Trustonomy trials. 

A. Functional Architecture  
Fig. 3 presents the functional architecture of Trustonomy, 

with the individual Trustonomy frameworks and their internal 
functions. The Trustonomy architecture consists of the 
following frameworks: 

• DSM Assessment Framework: Assess the performance of 
one or more DSMs. 

• HMI Design Assessment Framework: Assess the 
performance of different HMI designs. 

• Automated Decision Support Framework: Undertake the 
decision of issuing a Request to Intervene or preserve an 
autonomous driving mode and, if so, plan the driving 
decisions (e. g., trajectory) accordingly. 

• Driver Training Framework: Assess and validate the 
driving training curricula. 

• Driver Intervention Performance Assessment Framework: 
Assess the driver’s ability to intervene in case this is 
needed. 

• Trust and Acceptance Measurement Framework: Produce 
methodologies to assess trust and acceptance in ADS. 

The Data Management layer is not amongst the main 
outcomes of the project, but it is a layer encompassing 
functions related to data management procedures, acting as an 
enabling technology for the Trustonomy Frameworks. 

V. CONCLUSIONS 
This paper elaborated upon the Trustonomy vision on 

maximising the safety, trust and acceptance of automated 
vehicles. The key benefit of the proposed approach is that it 
encounters all the challenges that arise in the dynamic driver-
vehicle interaction scheme that we see in today’s mixed traffic 
environments. Specifically, an emphasis is given on the driver 
state monitoring systems, the application of human-machine 
interfaces, the use of risk assessment for tracing potential 
threats, the necessity of reinventing driver training material for 
autonomous vehicles, the measuring of driver’s intervention 
performance, and finally the necessity to measure 
performance, trust and acceptance.  

 

 
Fig. 3. Trustonomy Functional Architecture. 

 



The conceptual and the functional architecture of the 
envisioned system have been presented, while further research 
activities include the implementation of the individual 
Trustonomy frameworks and then the testing and validation of 
the discussed approach in extended pilots in fully operational 
environments, evaluating the performance and impact of the 
proposed approach. These activities will be carried out 
through the duration of the Trustonomy project. 
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